Dynamics and Evolution of Supermassive Black Holes in Merging Galaxies

Total Page:16

File Type:pdf, Size:1020Kb

Dynamics and Evolution of Supermassive Black Holes in Merging Galaxies Dynamics and Evolution of Supermassive Black Holes in Merging Galaxies Fazeel Mahmood Khan Astronomisches Rechen-Institut Zentrum f¨urAstronomie der Universit¨atHeidelberg Heidelberg 2011 Cover picture: Gemini image of NGC 5426-27 (Arp 271). Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences Put forward by Fazeel Mahmood Khan Born in: Azad Kashmir, Pakistan Oral examination: January 25, 2012 Dynamics and Evolution of Supermassive Black Holes in Merging Galaxies Referees: PD Dr. Andreas Just Prof. Dr. Volker Springel Abstract Supermassive black holes (SMBHs) are ubiquitous in galaxy centers and are correlated with their hosts in fundamental ways, suggesting an intimate link between SMBH and galaxy evolution. In the paradigm of hierarchical galaxy formation this correlation demands prompt coalescence of SMBH binaries, presumably due to dynamical friction, interaction of stars and gas with the binary and finally due to gravitational wave emission. If they are able to coalesce in less than a Hubble time, SMBH binaries will be a promising source of gravitational waves for gravitational wave detectors. However, it has been suggested that SMBH binaries may stall at a separation of 1 parsec. This stalling is sometimes referred to as the \Final Parsec Problem (FPP)". This study uses N-body simulations to test an improved formula for the orbital decay of SMBHs due to dynamical friction. Using a large set of N-body simulations, we show that the FPP does not occur in galaxies formed via mergers. The non spherical shape of the merger remnants ensures a constant supply of stars for the binary to interact with. On its way to coalescence, the SMBH binary ejects several times its total mass in stars and leads to the formation of the cores observed at the center of giant ellipticals. The results of this study also support a cosmological scenario where the prompt coalescence of SMBHs following galaxy mergers is common and where SMBH binaries are promising sources of gravitational waves at low and high redshifts. Zusammenfassung In vielen Galaxienzentren werden Supermassive Schwarze L¨ocher (SMBHs) detektiert. Ihre Massen korrelieren mit unterschiedlichen Eigenschaften dieser Galaxien, was als enge Verbindung in der Entwicklung der SMBHs und Galaxien interpretiert werden kann. Im Bild der hierarchi- schen Galaxienentstehung erfordert diese enge evolution¨areKoppelung ein schnelles Verschmelzen von Doppel-SMBHs, vermutlich verursacht durch dynamische Reibung, die Wechselwirkungen des Doppelsystems mit Sternen bzw. Gas und im finalen Stadium durch Abstrahlung von Gravita- tionswellen. W¨urdendie Doppel-SMBHs schneller als in einer Hubble-Zeit verschmelzen, w¨arensie eine vielversprechende Quelle von Gravitationswellen f¨urdie entsprechenden Detektoren. Jedoch wird vermutet, dass die Entwicklung der Doppel-SMBHs bei Abst¨andenvon ungef¨ahreinem Par- sec zum Erliegen kommt. Dieser Effekt wird manchmal auch als \Finales Parsec Problem" (FPP) bezeichnet. In dieser Arbeit nutzen wir N-K¨orper-Simulationen f¨ureine erweiterte Beschreibung des Herabsinkens von SMBHs als Folge dynamischer Reibung. Mit einer Vielzahl von N-K¨orper- Simulationen zeigen wir, dass das FPP in Galaxien, die durch Verschmelzungen entstehen, nicht auftritt. Die Abweichung von der Kugelsymmetrie der aus der Verschmelzung neu gebildeten Galaxie sorgt f¨ureinen kontinuierlichen Nachschub an Sternen, die mit dem SMBH-Doppelsystem wechselwirken. Auf dem Weg zu ihrer eigenen Verschmelzung schleudern die Doppel-SMBHs Sterne mit einem Vielfachen ihrer eigenen Masse aus der Galaxie heraus, wodurch sich flache Dichteprofile bilden, wie sie h¨aufigin elliptischen Galaxien beobachtet werden. Die Ergebnisse dieser Arbeit unterst¨utzenkosmologische Szenarien, in welchen das rasche Verschmelzen von SMBHs ¨ublicherweise sowohl bei niedrigen als auch bei hohen Rotverschiebungen nach einer Galaxienverschmelzung eintritt und in denen Doppel-SMBHs eine vielversprechende Quelle von Gravitationswellen sind. To my parents Contents 1 Introduction 1 2 Supermassive Black Holes in Galaxy Centers 7 2.1 Observational Evidence for Binary Supermassive Black Holes . 9 2.1.1 Direct Evidence for Dual SMBHs: Spatially Resolved Systems . 11 2.1.2 Indirect Evidence for BBHs: Spatially Unresolved Binary Systems . 13 2.2 Supermassive Black Hole Binary Evolution . 15 2.3 The Final Parsec Problem . 19 2.3.1 Numerical Studies of Final Parsec Problem . 19 2.3.2 Avoiding Final Parsec Problem . 22 3 Galaxy Models and N-body Simulations 27 3.1 Models for Spherical System . 28 3.1.1 The Plummer Model . 28 3.1.2 The Hernquist Model . 29 3.1.3 The Dehnen/Tremaine Model . 29 3.1.4 η-Models With a Central Black Hole . 30 3.2 Initial Setup . 32 3.3 Numerical Codes . 33 3.3.1 φ-GRAPE . 33 3.3.2 Φ-GPU . 34 3.3.3 SUPERBOX . 34 3.3.4 Semi-analytic Code - INTGC . 35 4 Dynamical Friction Force 37 4.1 Power Law Profiles . 38 4.1.1 Distribution Functions . 39 4.2 Physical Models . 42 4.3 Coulomb Logarithm . 43 4.4 Cumulative Distribution Functions . 44 4.5 Dynamical Friction in Gaseous Medium . 48 5 Orbital Decay of SMBHs in Galactic Centers 51 5.1 Kepler Potential . 57 5.1.1 Bahcall-Wolf cusp . 57 5.1.2 Hernquist Cusp . 58 5.1.3 The Outskirts of a Plummer Sphere . 58 5.1.4 The Outskirts of Dehnen Models . 60 5.2 Applications . 60 5.2.1 The Galactic Center . 60 5.2.2 Minor Merger . 61 i CONTENTS 6 Numerical Tests of Dynamical Friction Formula 63 6.1 Bahcall-Wolf Cusp . 64 6.1.1 Cusp Stability Analysis . 64 6.1.2 Circular Runs . 64 6.1.3 Eccentric Runs . 66 6.2 Hernquist Cusp . 70 6.3 Outskirts of the Plummer Sphere . 70 6.4 Outskirts of Dehnen Models . 71 6.5 Self Gravitating Cusps . 72 6.5.1 Dehnen-1.5 Model . 72 6.5.2 Hernquist Model . 74 6.6 Velocity Distribution Functions . 74 7 SMBH Binaries in Equal Mass Galaxy Mergers 79 7.1 Numerical Methods and Initial Conditions . 79 7.2 Isolated Models . 81 7.3 Galaxy Mergers . 83 7.4 SMBH Binary Evolution in Galaxy Mergers . 84 7.5 Estimates of Coalescence Time for SMBHs . 89 8 Unequal Mass Galaxy Mergers and SMBH Binaries 93 8.1 Initial Conditions and Numerical Methods . 94 8.1.1 The Host Galaxies and Their SMBHs . 94 8.1.2 Galaxy Merger Setup . 95 8.1.3 Numerical Methods and Hardware . 96 8.2 Evolution of SMBH Binaries . 96 8.3 Mass Deficits . 101 8.4 Coalescence Times for SMBH Binaries . 105 8.4.1 Post-Newtonian Simulations . 106 9 SMBH Binary Evolution in a Late Type Galaxy Merger 111 9.1 Initial Conditions . 111 9.2 Numerical Methods . 112 9.3 SMBH Binary Evolution . 112 9.4 Time for the Coalescence of SMBH Binary . 118 9.5 Discussion . 120 10 Conclusion 123 ii List of Acronyms AGN Active Galactic Nuclei BH Black Hole DF Distribution Function FPP Final Parsec Problem GW Gravitational Wave HST Hubble Space Telescope IMBH Intermediate Mass Black Hole IMF Initial Mass Function Λ CDM Lambda Cold Dark Matter PDF Probability Distribution Function POPIII Population III PTA Pulsar Timing Array SMBH Super Massive Black Holes VLBA Very Long Base-line Array Chapter 1 Introduction Black holes are one of the most exotic predictions of physics described by Einstein's Theory of General Relativity (GR). In GR matter and energy cause spacetime curvature and the black holes which are the densest masses in the Universe are the objects of spacetime wrapped around themselves. Indirect astronomical observational evidence support that the astrophysical black holes exist in three mass ranges: stellar mass black holes (BH), having masses of 4-15 M , are formed as the end product of stellar evolution of massive stars for a wide range of stellar masses and 2 4 metallicities. Intermediate mass black holes (IMBH), with masses ∼ 10 − 10 M , are suggested to have been formed by the collapse of population III (PopIII) stars (Rees 1984, Madau & Rees 2001) or by runaway mergers of very massive stars in the center of dense stellar clusters (Portegies Zwart & McMillan 2002, Portegies Zwart et al. 2004, G¨urkan et al. 2004). Supermassive black 5 9 holes (SMBH), with masses ranging from 10 − 10 M reside at the center of massive galaxies. SMBH are suggested to grow to these enormous masses by starting as a seed black hole of few hundred solar masses as a remnant of a PopIII star and then accretion plays vital role in the growth of supermassive black hole. In another scenario a SMBH can form as the end product of dynamical instabilities setting in massive gaseous protogalactic disks (Koushiappas et al. 2004, Begelman et al. 2006, Volonteri & Begelman 2010) or in the mergers of gas rich disk galaxies (Mayer et al. 2010). Mergers between SMBHs can also assist the mass growth of black holes. The idea of supermassive black holes was proposed in 1960s to explain the enormous luminosi- ties of quasars (Salpeter 1964, Zel'Dovich & Novikov 1964). Quasars, the most powerful sources of energy in the universe, are believed to be powered by accretion of gas and stars onto SMBHs. This idea has also been generally accepted for the explanation of radiation and jets emission from all active galactic nuclei (AGN). The existence of SMBHs is now firmly established by measurements of velocities of stars and gas which have Keplarian rise near the centers of galaxies. Observations of distant quasars (redshift greater than 6) suggest that SMBHs with masses of up to a billion solar masses were already in place at the centers of galaxies in the first billion years after the Big Bang (Fan 2006). The presence of the SMBH at the center of a galaxy is correlated with the dynamics of its stellar component.
Recommended publications
  • Very High Energy Emission from Blazars Interpreted Through Simultaneous Multiwavelength Observations
    UNIVERSITA` DEGLI STUDI DI SIENA FACOLTA` DI SCIENZE MATEMATICHE, FISICHE E NATURALI Dipartimento di Fisica Very High Energy emission from blazars interpreted through simultaneous multiwavelength observations Relatore/Supervisor: Candidato/Candidate: Dr. Antonio Stamerra Giacomo Bonnoli Tutore/Tutor: Prof. Riccardo Paoletti Ph.D. School in Physics Cycle XXI December 2010 Abstract In the framework of Astroparticle Physics the understanding of the particle acceleration process and related high energy electromagnetic emission within astrophysical sources is an issue of fundamental importance to unravel the structure and evolution of many classes of celestial objects, on different scales from micro{quasars to active galactic nuclei. This has an important role not only for astrophysics itself, but for many related topics of cosmic ray physics and High Energy physics, such as the search for dark matter. Also cosmology is interested, as deepening our knowledge on Active Galactic Nuclei and their interaction with the environment can help to clarify open issues on the formation of cosmic structures and evolution of universe on large scales. The present view on sources emitting high energy radiation is now gaining new insight thanks to multiwavelength observations. This approach allows to explore the spectral energy distribution of the sources all across the electromagnetic spectrum, therefore granting the best achievable understanding of the physical processes that originate the radiation that we see, and their mutual relationships. Our theories model the sources in terms of parameters that can be inferred from the observables quantities measured, and the multiwavelength observations are a key instrument in order to rule out or support some selected models out of the many that compete in the effort of describing the processes at work.
    [Show full text]
  • The Coevolution of Nuclear Star Clusters, Massive
    The Astrophysical Journal, 812:72 (24pp), 2015 October 10 doi:10.1088/0004-637X/812/1/72 © 2015. The American Astronomical Society. All rights reserved. THE COEVOLUTION OF NUCLEAR STAR CLUSTERS, MASSIVE BLACK HOLES, AND THEIR HOST GALAXIES Fabio Antonini1, Enrico Barausse2,3, and Joseph Silk2,3,4,5 1 Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astrophysics, Northwestern University, Evanston, IL 60208, USA 2 Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France 3 CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France 4 Laboratoire AIM-Paris-Saclay, CEA/DSM/IRFU, CNRS, Universite Paris Diderot, F-91191 Gif-sur-Yvette, France 5 Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA Received 2015 June 5; accepted 2015 September 3; published 2015 October 8 ABSTRACT Studying how nuclear star clusters (NSCs) form and how they are related to the growth of the central massive black holes (MBHs) and their host galaxies is fundamental for our understanding of the evolution of galaxies and the processes that have shaped their central structures. We present the results of a semi-analytical galaxy formation model that follows the evolution of dark matter halos along merger trees, as well as that of the baryonic components. This model allows us to study the evolution of NSCs in a cosmological context, by taking into account the growth of NSCs due to both dynamical-friction-driven migration of stellar clusters and star formation triggered by infalling gas, while also accounting for dynamical heating from (binary) MBHs.
    [Show full text]
  • The Historical 1900 and 1913 Outbursts of the Binary Blazar Candidate OJ287
    A&A 559, A20 (2013) Astronomy DOI: 10.1051/0004-6361/201219323 & c ESO 2013 Astrophysics The historical 1900 and 1913 outbursts of the binary blazar candidate OJ287 R. Hudec1,2, M. Bašta3,P.Pihajoki4, and M. Valtonen5 1 Astronomical Institute, Academy of Sciences of the Czech Republic, Fricovaˇ 298, 251 65 Ondrejov,ˇ Czech Republic e-mail: [email protected] 2 Czech Technical University, Faculty of Electrical Engineering, Technicka 2, 160 00 Praha 6, Czech Republic 3 Faculty of Informatics and Statistics, University of Economics, 130 67 Prague, Czech Republic 4 Department of Physics and Astronomy, University of Turku, 21500 Piikkio, Finland 5 Finnish Centre for Astronomy with ESO, University of Turku, 21500 Piikkio, Finland Received 31 March 2012 / Accepted 14 February 2013 ABSTRACT We report on historical optical outbursts in the OJ287 system in 1900 and 1913, detected on archival astronomical plates of the Harvard College Observatory. The 1900 outburst is reported for the first time. The first recorded outburst of the periodically active quasar OJ287 described before was observed in 1913. Up to now the information on this event was based on three points from plate archives. We used the Harvard plate collection, and added another seven observations to the light curve. The light curve is now well covered and allows one to determine the beginning of the outburst quite accurately. The outburst was longer and more energetic than the standard 1983 outburst. Should the system be strictly periodic, the period determined from these two outbursts would be 11.665 yr. However, this does not match the 1900 outburst or other prominent outbursts in the record.
    [Show full text]
  • IAU Symp 269, POST MEETING REPORTS
    IAU Symp 269, POST MEETING REPORTS C.Barbieri, University of Padua, Italy Content (i) a copy of the final scientific program, listing invited review speakers and session chairs; (ii) a list of participants, including their distribution on gender (iii) a list of recipients of IAU grants, stating amount, country, and gender; (iv) receipts signed by the recipients of IAU Grants (done); (v) a report to the IAU EC summarizing the scientific highlights of the meeting (1-2 pages). (vi) a form for "Women in Astronomy" statistics. (i) Final program Conference: Galileo's Medicean Moons: their Impact on 400 years of Discovery (IAU Symposium 269) Padova, Jan 6-9, 201 Program Wednesday 6, location: Centro San Gaetano, via Altinate 16.0 0 – 18.00 meeting of Scientific Committee (last details on the Symp 269; information on the IYA closing ceremony program) 18.00 – 20.00 welcome reception Thursday 7, morning: Aula Magna University 8:30 – late registrations 09.00 – 09.30 Welcome Addresses (Rector of University, President of COSPAR, Representative of ESA, President of IAU, Mayor of Padova, Barbieri) Session 1, The discovery of the Medicean Moons, the history, the influence on human sciences Chair: R. Williams Speaker Title 09.30 – 09.55 (1) G. Coyne Galileo's telescopic observations: the marvel and meaning of discovery 09.55 – 10.20 (2) D. Sobel Popular Perceptions of Galileo 10.20 – 10.45 (3) T. Owen The slow growth of human humility (read by Scott Bolton) 10.45 – 11.10 (4) G. Peruzzi A new Physics to support the Copernican system. Gleanings from Galileo's works 11.10 – 11.35 Coffee break Session 1b Chair: T.
    [Show full text]
  • Pete and Paul's Observing Challenges
    BAA Winchester Weekend 2019 Pete and Paul’s Observing Challenges Pete Lawrence & Paul G. Abel. Challenge 1: Observing the Transit of Mercury On 2019 November 11th the planet Mercury will pass in front of the sun. The first challenge is to observe the transit. The chart below gives the start and end time of the transit along with Mercury’s path across the sun. If you have a refractor under 150mm aperture you can project the Sun and observe the transit in white light. Alternatively certified solar film can be used to make any telescope safe for solar viewing by covering the entire front aperture – remember to cap or remove the finder! Another method is to observe with a hydrogen-alpha telescope directly. BE CAREFUL WHEN OBSERVING THE SUN! Never observe the Sun directly without a certified filter. UK observers will be able to observe the start of the transit but the Sun will set before the transit concludes. 1 Challenge 2: Viewing Mercury Against the Spicule Layer at the Start of the Transit Just before the start of the transit, Mercury will pass against the spicule layer of the Sun. The spicule layer is a cross-section through the chromosphere as seen at the edge of the Sun via a hydrogen alpha filter. It is not visible in white light, only H-alpha, so you will need a solar telescope for this challenge. In H-alpha, Mercury will appear as a black silhouette against the spicule layer (see image below). It’s best to start observing from around 1215UT- make sure you know which side is east and west in your telescope! If you get the wrong side, you will miss the event and remember the sun sets from the UK by the time the transit ends.
    [Show full text]
  • Observer's Handbook 1986
    OBSERVER’S HANDBOOK 1986 EDITOR: ROY L. BISHOP THE ROYAL ASTRONOMICAL SOCIETY OF CANADA CONTRIBUTORS AND ADVISORS A l a n H. B a t t e n , Dominion Astrophysical Observatory, 5071 W. Saanich Road, Victoria, BC, Canada V8X 4M6 (The Nearest Stars). L a r r y D. B o g a n , Department of Physics, Acadia University, Wolfville, NS, Canada B0P 1X0 (Configurations of Saturn’s Satellites). Terence Dickinson, R.R. 3, Odessa, ON, Canada K0H 2H0 (The Planets). David W. Dunham, International Occultation Timing Association, P.O. Box 7488, Silver Spring, MD 20907, U.S.A. (Lunar and Planetary Occultations). Alan Dyer, Queen Elizabeth Planetarium, 10004-104 Ave., Edmonton, AB, Canada T5J 0K1 (Messier Catalogue, Deep-Sky Objects). Fred Espenak, Planetary Systems Branch, NASA-Goddard Space Flight Centre, Greenbelt, MD, U.S.A. 20771 (Eclipses and Transits). M arie Fidler, The Royal Astronomical Society of Canada, 136 Dupont St., Toronto, ON, Canada M5R 1V2 (Observatories and Planetaria). Victor Gaizauskas, Herzberg Institute of Astrophysics, National Research Council, Ottawa, ON, Canada K1A 0R6 (Solar Activity). R o b e r t F. G a r r is o n , David Dunlap Observatory, University of Toronto, Box 360, Richmond Hill, ON, Canada L4C 4Y6 (The Brightest Stars). Ian H alliday, Herzberg Institute of Astrophysics, National Research Council, Ottawa, ON, Canada K1A 0R6 (Miscellaneous Astronomical Data). W illiam Herbst, Van Vleck Observatory, Wesleyan University, Middletown, CT, U.S.A. 06457 (Galactic Nebulae). H e l e n S. H o g g , David Dunlap Observatory, University of Toronto, Box 360, Richmond Hill, ON, Canada L4C 4Y6 (Foreword).
    [Show full text]
  • Winter 1999 Vol
    A PERIODICAL OF PARTICLE PHYSICS WINTER 1999 VOL. 29, NUMBER 3 FEATURES Editors 2 GOLDEN STARDUST RENE DONALDSON, BILL KIRK The ISOLDE facility at CERN is being used to study how lighter elements are forged Contributing Editors into heavier ones in the furnaces of the stars. MICHAEL RIORDAN, GORDON FRASER JUDY JACKSON, AKIHIRO MAKI James Gillies PEDRO WALOSCHEK 8 NEUTRINOS HAVE MASS! Editorial Advisory Board The Super-Kamiokande detector has found a PATRICIA BURCHAT, DAVID BURKE LANCE DIXON, GEORGE SMOOT deficit of one flavor of neutrino coming GEORGE TRILLIN G, KARL VAN BIBBER through the Earth, with the likely HERMAN WINICK implication that neutrinos possess mass. Illustrations John G. Learned TERRY AN DERSON 16 IS SUPERSYMMETRY THE NEXT Distribution LAYER OF STRUCTURE? C RYSTAL TILGHMAN Despite its impressive successes, theoretical physicists believe that the Standard Model is The Beam Line is published quarterly by the incomplete. Supersymmetry might provide Stanford Linear Accelerator Center the answer to the puzzles of the Higgs boson. Box 4349, Stanford, CA 94309. Telephone: (650) 926-2585 Michael Dine EMAIL: [email protected] FAX: (650) 926-4500 Issues of the Beam Line are accessible electronically on the World Wide Web at http://www.slac.stanford.edu/pubs/beamline. SLAC is operated by Stanford University under contract with the U.S. Department of Energy. The opinions of the authors do not necessarily reflect the policies of the Stanford Linear Accelerator Center. Cover: The Super-Kamiokande detector during filling in 1996. Physicists in a rubber raft are polishing the 20-inch photomultipliers as the water rises slowly.
    [Show full text]
  • The Unique Blazar OJ 287 and Its Massive Binary Black Hole Central Engine
    Review The Unique Blazar OJ 287 and its Massive Binary Black Hole Central Engine Lankeswar Dey1* , Achamveedu Gopakumar1, Mauri Valtonen2,3, Stanislaw Zola4,5 , Abhimanyu Susobhanan1, Rene Hudec6,7, Pauli Pihajoki8, Tapio Pursimo9, Andrei Berdyugin3, Vilppu Piirola2, Stefano Ciprini10,11, Kari Nilsson2, Helen Jermak12, Mark Kidger13 and Stefanie Komossa14 1 Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai 400005, India; [email protected] (A.G.); [email protected] (A.S.) 2 Finnish Centre for Astronomy with ESO, University of Turku, FI-20014, Turku, Finland; [email protected] (M.V.); piirola@utu.fi (V.P.); kani@utu.fi (K.N.) 3 Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland; andber@utu.fi (A.B.) 4 Astronomical Observatory, Jagiellonian University, ul. Orla 171, Cracow PL-30-244, Poland; [email protected] (S.Z.) 5 Mt. Suhora Astronomical Observatory, Pedagogical University, ul. Podchorazych 2, PL30-084 Cracow, Poland 6 Czech Technical University in Prague, Faculty of Electrical Engineering, Technicka 2, Prague 166 27, Czech Republic; [email protected] (R.H.) 7 Engelhardt Astronomical observatory, Kazan Federal University, Kremlyovskaya street 18, 420008 Kazan, Russian Federation 8 Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, FI-00560, Helsinki, Finland; pauli.pihajoki@helsinki.fi (P.H.) 9 Nordic Optical Telescope, Apartado 474, E-38700 Santa Cruz de La Palma, Spain; [email protected] (T.P.) 10 Space Science Data Center -
    [Show full text]
  • The Formation of Extremely Diffuse Galaxy Cores by Merging Supermassive Black Holes
    The Astrophysical Journal, 864:113 (20pp), 2018 September 10 https://doi.org/10.3847/1538-4357/aada47 © 2018. The American Astronomical Society. All rights reserved. The Formation of Extremely Diffuse Galaxy Cores by Merging Supermassive Black Holes Antti Rantala1 , Peter H. Johansson1 , Thorsten Naab2 , Jens Thomas3 , and Matteo Frigo2 1 Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, FI-00560 Helsinki, Finland; antti.rantala@helsinki.fi 2 Max-Planck-Insitut für Astrophysik, Karl-Schwarzchild-Str. 1, D-85748, Garching, Germany 3 Max-Planck-Institut für Extraterrestriche Physik, Giessenbach-Str. 1, D-85741, Garching, Germany Received 2018 May 25; revised 2018 August 9; accepted 2018 August 12; published 2018 September 5 Abstract 10 Given its velocity dispersion, the early-type galaxy NGC 1600 has an unusually massive (M• = 1.7 × 10 Me) central supermassive black hole (SMBH) surrounded by a large core (rb = 0.7 kpc) with a tangentially biased stellar distribution. We present high-resolution equal-mass merger simulations including SMBHs to study the formation of such systems. The structural parameters of the progenitor ellipticals were chosen to produce merger remnants resembling NGC 1600. We test initial stellar density slopes of ρ∝r−1 and ρ∝r−3/2 and vary 8 9 the initial SMBH masses from 8.5×10 to 8.5×10 Me. With increasing SMBH mass, the merger remnants show a systematic decrease in central surface brightness, an increasing core size, and an increasingly tangentially biased central velocity anisotropy. Two-dimensional kinematic maps reveal decoupled, rotating core regions for the most massive SMBHs. The stellar cores form rapidly as the SMBHs become bound, while the velocity anisotropy develops more slowly after the SMBH binaries become hard.
    [Show full text]
  • Elisa/NGO, Revealing a Hidden Universe Notes & News for GW
    GW Notes Special Issue: eLISA/NGO, revealing a hidden universe Notes & News for GW science Guest editors: David Spergel and Zhang Shuangnan Editors: Pau Amaro-Seoane and Bernard F. Schutz ISSN: 1868-1921 GW Notes was born from the need for a journal where the distinct communities in- volved in gravitational wave research might gather. While these three communities - Astrophysics, General Relativity and Data Analysis - have made significant collabora- tive progress over recent years, we believe that it is indispensable to future advancement that they draw closer, and that they speak a common idiom. Notes & News for GW science 1 Publisher: Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) Am Mühlenberg 1 14476 Potsdam Germany Editors: P. Amaro Seoane and B.F. Schutz ISSN: 1868-1921 URL: http://brownbag.lisascience.org/lisa-gw-notes/ Notes & News for GW science #6 May 28, 2013 GW Notes 1 Notes & News for GW science eLISA/NGO: Revealing a hidden universe Editorial Prof. A. Lobo As you proably know, Prof. José Alberto Lobo Gutiérrez passed away last September 30 2012. He left behind a wife (Rosa Maria), a son (Albert), and a daughter (Montser- rat). Prof. Lobo has been a pioneer of the field of Gravitational Wave Astronomy in Spain, devoting his life to resonant ground-based detectors and to space-based ones. His contributions range from theoretical studies to the development of instrumen- tation, including data analysis methods. Even in the final stages of his cancer, he was mainly concerned and actively planning towards maintaining and promoting Notes & News for GW science the Spanish team activities and involvement into LISA PathFinder and its successor mission LISA.
    [Show full text]
  • Jorstad01.Pdf
    THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 134:181È240, 2001 June V ( 2001. The American Astronomical Society. All rights reserved. Printed in U.S.A. MULTIEPOCH VERY LONG BASELINE ARRAY OBSERVATIONS OF EGRET-DETECTED QUASARS AND BL LACERTAE OBJECTS: SUPERLUMINAL MOTION OF GAMMA-RAY BRIGHT BLAZARS SVETLANA G. JORSTAD,1,2,3 ALAN P. MARSCHER,1 JOHN R. MATTOX,1,4 ANN E. WEHRLE,5 STEVEN D. BLOOM,6 AND ALEXEI V. YURCHENKO2 Received 2000 November 1; accepted 2001 January 24 ABSTRACT We present the results of a program to monitor the structure of the radio emission in 42 c-ray bright blazars (31 quasars and 11 BL Lac objects) with the Very Long Baseline Array (VLBA) at 43, 22, and occasionally 15 and 8.4 GHz, over the period from 1993 November to 1997 July. We determine proper motions in 33 sources and Ðnd that the apparent superluminal motions in c-ray sources are much faster than for the general population of bright compact radio sources. This follows the strong dependence of the c-ray Ñux on the level of relativistic beaming for both external radiation Compton and synchrotron self-Compton emission. There is a positive correlation (correlation coefficient r \ 0.45) between the Ñux density of the VLBI core and the c-ray Ñux and a moderate correlation (partial correlation coefficient r \ 0.31) between c-ray apparent luminosity and superluminal velocities of jet components, as expected if the c-ray emission originates in a very compact region of the relativistic jet and is highly beamed. In 43% of the sources the jet bends by more than 20¡ on parsec scales, which is consistent with ampliÐca- tion by projection e†ects of modest actual changes in position angle.
    [Show full text]
  • Late-Night Thoughts of a Classical Astronomer
    21 Late-Night Thoughts of a Classical Astronomer Virginia Trimblel ABSTRACT Conference participants from the astronomical side of the fence were astounded by the wide range of statistical concepts and tech­ niques available, at least in principle, for use. Complimentarily, those from the statistical side expressed surprise at the enormous range of kinds of astronomical data (in spatial, temporal, wavelength, and other domains) crying out for more sophisticated analysis. Nevertheless, bringing the two together is not to be done over afternoon tea, and real collaborations, not just advisors, are needed. 21.1 Introduction: The astronomical data base I arrived at Penn State with a prediction at hand: "Nobody is going to learn anything at this meeting." That is, I expected that the astronomers would not actually be able to carry out any analyses that they hadn't been able to do before, and that the statisticians would not be able to take home any specific databases and do anything with them. I believe this turned out to be at least roughly the case. What then was the purpose in coming? To find out what is out there, in terms of methods and problems and, perhaps more important, who is out there who knows something about the techniques or the data that one might be interested in. One of the speakers reminded us that statisticians should not be regarded as shoe salesmen, who might or might not have something that fits. But at least some of the leather merchants have had a chance to meet some of the shoemakers. The rawest possible astronomical information consists of individual pho­ tons (or the radio-wavelength equivalent in Stokes parameters) labeled by energy, time of arrival, two-dimensional direction of arrival, and (occasion­ ally) polarization.
    [Show full text]