Rochester Institute of Technology RIT Scholar Works Articles 12-10-2007 Long-term evolution of Massive Black Hole Binaries. III. Binary Evolution in Collisional Nuclei David Merritt Rochester Institute of Technology Seppo Mikkola Turku University Observatory Andras Szell Rochester Institute of Technology Follow this and additional works at: http://scholarworks.rit.edu/article Recommended Citation David Merritt te al 2007 ApJ 671 53 https://doi.org/10.1086/522691 This Article is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Articles by an authorized administrator of RIT Scholar Works. For more information, please contact
[email protected]. DRAFT VERSION FEBRUARY 1, 2008 Preprint typeset using LATEX style emulateapj v. 10/09/06 LONG-TERM EVOLUTION OF MASSIVE BLACK HOLE BINARIES. III. BINARY EVOLUTION IN COLLISIONAL NUCLEI DAVID MERRITT Department of Physics, 85 Lomb Memorial Drive, Rochester Institute of Technology, Rochester, NY 14623 and Center for Computational Relativity and Gravitation, School of Mathematical Sciences, 78 Lomb Memorial Drive, Rochester Institute of Technology, Rochester, NY 14623 SEPPO MIKKOLA Turku University Observatory, Tuorla, 21500 Piikkiö, Finland ANDRAS SZELL Department of Physics, 85 Lomb Memorial Drive, Rochester Institute of Technology, Rochester, NY 14623 Draft version February 1, 2008 Abstract In galactic nuclei with sufficiently short relaxation times, binary supermassive black holes can evolve beyond their stalling radii via continued interaction with stars. We study this “collisional” evolutionary regime using both fully self-consistent N-body integrations and approximate Fokker-Planck models. The N-body integra- tions employ particle numbers up to 0.26 106 and a direct-summation potential solver; close interactions involving the binary are treated using a new× implementation of the Mikkola-Aarseth chain regularization al- gorithm.