Galactic Bulge Feedback and Its Impact on Galaxy Evolution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dynamics and Evolution of Supermassive Black Holes in Merging Galaxies
Dynamics and Evolution of Supermassive Black Holes in Merging Galaxies Fazeel Mahmood Khan Astronomisches Rechen-Institut Zentrum f¨urAstronomie der Universit¨atHeidelberg Heidelberg 2011 Cover picture: Gemini image of NGC 5426-27 (Arp 271). Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences Put forward by Fazeel Mahmood Khan Born in: Azad Kashmir, Pakistan Oral examination: January 25, 2012 Dynamics and Evolution of Supermassive Black Holes in Merging Galaxies Referees: PD Dr. Andreas Just Prof. Dr. Volker Springel Abstract Supermassive black holes (SMBHs) are ubiquitous in galaxy centers and are correlated with their hosts in fundamental ways, suggesting an intimate link between SMBH and galaxy evolution. In the paradigm of hierarchical galaxy formation this correlation demands prompt coalescence of SMBH binaries, presumably due to dynamical friction, interaction of stars and gas with the binary and finally due to gravitational wave emission. If they are able to coalesce in less than a Hubble time, SMBH binaries will be a promising source of gravitational waves for gravitational wave detectors. However, it has been suggested that SMBH binaries may stall at a separation of 1 parsec. This stalling is sometimes referred to as the \Final Parsec Problem (FPP)". This study uses N-body simulations to test an improved formula for the orbital decay of SMBHs due to dynamical friction. Using a large set of N-body simulations, we show that the FPP does not occur in galaxies formed via mergers. The non spherical shape of the merger remnants ensures a constant supply of stars for the binary to interact with. -
And Ecclesiastical Cosmology
GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc. -
The Intrinsic Shape of Galaxy Bulges 3
The intrinsic shape of galaxy bulges J. M´endez-Abreu Abstract The knowledge of the intrinsic three-dimensional (3D) structure of galaxy components provides crucial information about the physical processes driving their formationand evolution.In this paper I discuss the main developments and results in the quest to better understand the 3D shape of galaxy bulges. I start by establishing the basic geometrical description of the problem. Our understanding of the intrinsic shape of elliptical galaxies and galaxy discs is then presented in a historical context, in order to place the role that the 3D structure of bulges play in the broader picture of galaxy evolution. Our current view on the 3D shape of the Milky Way bulge and future prospects in the field are also depicted. 1 Introduction and overview Galaxies are three-dimensional (3D) structures moving under the dictates of gravity in a 3D Universe. From our position on the Earth, astronomers have only the op- portunity to observe their properties projected onto a two-dimensional (2D) plane, usually called the plane of the sky. Since we can neither circumnavigate galaxies nor wait until they spin around, our knowledge of the intrinsic shape of galaxies is still limited, relying on sensible, but sometimes not accurate, physical and geometrical hypotheses. Despite the obvious difficulties inherent to measure the intrinsic 3D shape of galaxies, it is doubtless that it keeps an invaluable piece of information about their formation and evolution. In fact, astronomers have acknowledged this since galaxies arXiv:1502.00265v2 [astro-ph.GA] 31 Aug 2015 were established to be island universes and the topic has produced an outstanding amount of literature during the last century. -
Dark Matter and Background Light
Dark Matter and Background Light J.M. Overduin Gravity Probe B, Hansen Experimental Physics Laboratory, Stanford University, Stanford, California, U.S.A. 94305-4085 and P.S. Wesson Department of Physics, University of Waterloo, Ontario, Canada N2L 3G1 Abstract Progress in observational cosmology over the past five years has established that the Universe is dominated dynamically by dark matter and dark energy. Both these new and apparently independent forms of matter-energy have properties that are inconsistent with anything in the existing standard model of particle physics, and it appears that the latter must be extended. We review what is known about dark matter and energy from their impact on the light of the night sky. Most of the candidates that have been proposed so far are not perfectly black, but decay into or otherwise interact with photons in characteristic ways that can be accurately modelled and compared with observational data. We show how experimental limits on the intensity of cosmic background radiation in the microwave, infrared, optical, arXiv:astro-ph/0407207v1 10 Jul 2004 ultraviolet, x-ray and γ-ray bands put strong limits on decaying vacuum energy, light axions, neutrinos, unstable weakly-interacting massive particles (WIMPs) and objects like black holes. Our conclusion is that the dark matter is most likely to be WIMPs if conventional cosmology holds; or higher-dimensional sources if spacetime needs to be extended. Key words: Cosmology, Background radiation, Dark matter, Black holes, Higher-dimensional field theory PACS: 98.80.-k, 98.70.Vc, 95.35.+d, 04.70.Dy, 04.50.+h Email addresses: [email protected] (J.M. -
Eight More Low Luminosity Globular Clusters in the Sagittarius Dwarf Galaxy D
Astronomy & Astrophysics manuscript no. 40714corr ©ESO 2021 June 8, 2021 Eight more low luminosity globular clusters in the Sagittarius dwarf galaxy D. Minniti1; 2, M. Gómez1, J. Alonso-García3; 4, R. K. Saito5, and E. R. Garro1 1 Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Fernández Concha 700, Las Condes, Santiago, Chile 2 Vatican Observatory, Vatican City State, V-00120, Italy 3 Centro de Astronomía (CITEVA), Universidad de Antofagasta, Av. Angamos 601, Antofagasta, Chile 4 Millennium Institute of Astrophysics, Santiago, Chile 5 Departamento de Fisica, Universidade Federal de Santa Catarina, Trindade 88040-900, Florianopolis, SC, Brazil Received; Accepted ABSTRACT Context. The Sagittarius (Sgr) dwarf galaxy is merging with the Milky Way, and the study of its globular clusters (GCs) is important to understand the history and outcome of this ongoing process. Aims. Our main goal is to characterize the GC system of the Sgr dwarf galaxy. This task is hampered by high foreground stellar contamination, mostly from the Galactic bulge. Methods. We performed a GC search specifically tailored to find new GC members within the main body of this dwarf galaxy using the combined data of the VISTA Variables in the Via Lactea Extended Survey (VVVX) near-infrared survey and the Gaia Early Data Release 3 (EDR3) optical database. Results. We applied proper motion (PM) cuts to discard foreground bulge and disk stars, and we found a number of GC candidates in the main body of the Sgr dwarf galaxy. We selected the best GCs as those objects that have significant overdensities above the stellar background of the Sgr galaxy and that possess color-magnitude diagrams (CMDs) with well-defined red giant branches (RGBs) consistent with the distance and reddening of this galaxy. -
The Galaxy in Context: Structural, Kinematic & Integrated Properties
The Galaxy in Context: Structural, Kinematic & Integrated Properties Joss Bland-Hawthorn1, Ortwin Gerhard2 1Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006, Australia; email: [email protected] 2Max Planck Institute for extraterrestrial Physics, PO Box 1312, Giessenbachstr., 85741 Garching, Germany; email: [email protected] Annu. Rev. Astron. Astrophys. 2016. Keywords 54:529{596 Galaxy: Structural Components, Stellar Kinematics, Stellar This article's doi: 10.1146/annurev-astro-081915-023441 Populations, Dynamics, Evolution; Local Group; Cosmology Copyright c 2016 by Annual Reviews. Abstract All rights reserved Our Galaxy, the Milky Way, is a benchmark for understanding disk galaxies. It is the only galaxy whose formation history can be stud- ied using the full distribution of stars from faint dwarfs to supergiants. The oldest components provide us with unique insight into how galaxies form and evolve over billions of years. The Galaxy is a luminous (L?) barred spiral with a central box/peanut bulge, a dominant disk, and a diffuse stellar halo. Based on global properties, it falls in the sparsely populated \green valley" region of the galaxy colour-magnitude dia- arXiv:1602.07702v2 [astro-ph.GA] 5 Jan 2017 gram. Here we review the key integrated, structural and kinematic pa- rameters of the Galaxy, and point to uncertainties as well as directions for future progress. Galactic studies will continue to play a fundamen- tal role far into the future because there are measurements that can only be made in the near field and much of contemporary astrophysics depends on such observations. 529 Redshift (z) 20 10 5 2 1 0 1012 1011 ) ¯ 1010 M ( 9 r i 10 v 8 M 10 107 100 101 102 ) c p 1 k 10 ( r i v r 100 10-1 0.3 1 3 10 Time (Gyr) Figure 1 Left: The estimated growth of the Galaxy's virial mass (Mvir) and radius (rvir) from z = 20 to the present day, z = 0. -
The Coevolution of Nuclear Star Clusters, Massive
The Astrophysical Journal, 812:72 (24pp), 2015 October 10 doi:10.1088/0004-637X/812/1/72 © 2015. The American Astronomical Society. All rights reserved. THE COEVOLUTION OF NUCLEAR STAR CLUSTERS, MASSIVE BLACK HOLES, AND THEIR HOST GALAXIES Fabio Antonini1, Enrico Barausse2,3, and Joseph Silk2,3,4,5 1 Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astrophysics, Northwestern University, Evanston, IL 60208, USA 2 Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France 3 CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France 4 Laboratoire AIM-Paris-Saclay, CEA/DSM/IRFU, CNRS, Universite Paris Diderot, F-91191 Gif-sur-Yvette, France 5 Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA Received 2015 June 5; accepted 2015 September 3; published 2015 October 8 ABSTRACT Studying how nuclear star clusters (NSCs) form and how they are related to the growth of the central massive black holes (MBHs) and their host galaxies is fundamental for our understanding of the evolution of galaxies and the processes that have shaped their central structures. We present the results of a semi-analytical galaxy formation model that follows the evolution of dark matter halos along merger trees, as well as that of the baryonic components. This model allows us to study the evolution of NSCs in a cosmological context, by taking into account the growth of NSCs due to both dynamical-friction-driven migration of stellar clusters and star formation triggered by infalling gas, while also accounting for dynamical heating from (binary) MBHs. -
ROTATING GALACTIC ARMS and LEADING-EDGE SHOCK WAVES in H 111 by Robert E
NASA TECHNICAL NOTE NASA TN D-2810 I -- c'- / 0 bo N d z c 4 VI 4 z ROTATING GALACTIC ARMS AND LEADING-EDGE SHOCK WAVES IN H 111 by Robert E. Duuidson Langley ReseurcrS Center Lungley Stution, Hampton, Vu, NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 0 WASHINGTON, D. C. 0 MAY 1965 ROTATING GALACTIC ARMS AND LEADING-EDGE SHOCK WAVES IN H 111 By Robert E. Davidson Langley Research Center Langley Station, Hampton, Va. NATIONAL AERONAUT ICs AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - Price $1.00 ROTATING GALACTIC ARMS AND LEADING-EDGE SHOCK WAVES IN H I11 By Robert E. Davidson Langley Research Center SUMMARY A steady-state galactic-structure theory based on magnetohydrodynamic prin- ciples has been developed. Quasi-steady states, however, are not excluded. The theory provides an energy source for the coronal heating called for in the the- ories of Pickelner and Spitzer. The magnitude of the energy source can be cal- culated and appears adequate for Spitzer's theory and possibly is adequate for Pickelner's theory. In order to agree with other aspects of our knowledge of spiral galaxies, barred spirals in particular, it is necessary to assume that spiral arms are shaped by supersonic drag with attendant shocks. The angular motion of the galactic arms through the gas in the disk produces a flow over the arms which is subsonic within a certain distance of the galactic center and is supersonic outside it. From resulting aerodynamic effects an explanation of important galactic phenomena can be made. -
978-3642540820 Isbn-10: 3642540821
2018 Spring — PHYS 315 [8255] Book: Peter Schneider Extragalactic astronomy and cosmology ISBN-13: 978-3642540820 ISBN-10: 3642540821 3 credits Pre-requisites: PHYS122 or PHYS 122H with grade C or higher. A good grade in either PHYS 105 or PHYS 304 will be of some advantage, but not required. Material: scientific calculator Instructor: Professor T.J.Turner Office Hours, M,W,F by appointment only in PHYS 412 Phone 410 455 1978 email [email protected] Overview: The formation, constituents, structure and dynamics of galaxies. Galaxy types. Hierarchy of structure. AGN. Dark matter. Distance estimation. Course objectives: Main objectives are for students to become familiar with the characteristics and components of the various galaxy types in the known universe. Detailed Objectives: By the end of the course students will be able to -describe the various types of galaxies found in the universe -describe some of the observing techniques used in the study of galaxies -understand the components of our Galaxy, the Milky Way -understand the importance of supermassive black holes in galaxy nuclei -understand the importance of galaxy studies to cosmology Grading: Final Exam 20% 2 Mid term Exams 20% each Telescope attendance 10% Class attendance 10% Homework 20% The course will include (provisional topics, may be revised in the details): The Milky Way as a galaxy o Galactic coordinates o Determination of distances within our Galaxy + Trigonometric parallax + Proper motions + Moving cluster parallax + Photometric distance; extinction and reddening + Spectroscopic -
Chemodynamical History of the Galactic Bulge Arxiv:1805.01142V1
Chemodynamical history of the Galactic Bulge Beatriz Barbuy1, Cristina Chiappini2, Ortwin Gerhard3 1Department of Astronomy, Universidade de S~aoPaulo, S~aoPaulo 05508-090, Brazil; e-mail: [email protected], [email protected] 2Leibniz-Institut f¨urAstrophysik Potsdam (AIP), An der Sternwarte 16, 14482, Potsdam, Germany; e-mail: [email protected] 3Max-Planck-Institut f¨urextraterrestrische Physik P.O. Box 1312. D-85741 Garching, Germany; email: [email protected] Annu. Rev. Astron. Astrophys. 2018. Keywords 56:1{55 Copyright c 2018 by Annual Reviews. bulge, bar, stellar populations, chemical composition, dynamical All rights reserved evolution, chemical evolution, chemodynamical evolution Abstract The Galactic Bulge can uniquely be studied from large samples of in- dividual stars, and is therefore of prime importance for understanding the stellar population structure of bulges in general. Here the observa- tional evidence on the kinematics, chemical composition, and ages of Bulge stellar populations based on photometric and spectroscopic data is reviewed. The bulk of Bulge stars are old and span a metallicity range −1.5∼<[Fe/H]∼<+0.5. Stellar populations and chemical properties suggest a star formation timescale below ∼2 Gyr. The overall Bulge is barred and follows cylindrical rotation, and the more metal-rich stars trace a Box/Peanut (B/P) structure. Dynamical models demonstrate the different spatial and orbital distributions of metal-rich and metal- arXiv:1805.01142v1 [astro-ph.GA] 3 May 2018 poor stars. We discuss current Bulge formation scenarios based on dy- namical, chemical, chemodynamical and cosmological models. Despite impressive progress we do not yet have a successful fully self-consistent chemodynamical Bulge model in the cosmological framework, and we will also need more extensive chrono-chemical-kinematic 3D map of stars to better constrain such models. -
Planets in the Galactic Bulge, Globular Clusters and in Nearby Galaxies
Planets in the galactic bulge, globular clusters and in nearby Galaxies, or what is the impact of the stellar environment on the formation and evolution of planets? Eike W. Guenther Thüringer Landessternwarte Tautenburg Almost all we know about extrasolar planets is based on stars (planets) in the local solar neighbourhood! In this sense, know almost nothing about planetary systems in the universe! The percentage of stars with planets increases with the mass and the metallicity of the host star Metal rich host stars have more planets. More massive stars have more planets. Johnson et al 2010 The metallicity effect depends on the mass of the planet! Prantzos 2008, based on calculation from Mordasini et al 2006 Whether a massive, outer planet like Jupiter is necessary for the inner planets to be habitable is still an open issue. Consequences of metallicity effect: --> The frequency of (massive) planets should increase towards the inner galaxy. --> Planets should be rare in dwarf galaxies. However, we do not know if the metallicity and the mass of the host star are most important factors for planet formation. What are effects of the stellar density, or the presence/absence of hot ionizing stars in the vicinity? Expected number of extrasolar planet host stars as a function of Galactocentric distance for 6 < R < 10 kpc (Reid 2006). Metallicity effect+ sterilization from Super Novae + 4 Gyrs needed for complex life to emerge --> Galactic habitable zone (Linewaever at al. 2004). Key questions: ---> Is the metallicity and the mass of the host star really the main factors that determine how likely it is that a star has a planet or not? ---> What is the role that the environment plays in the formation and evolution of planets (encounters with other stars, presence of hot stars in the vicinity). -
Evolution of Chemical Abundances in Seyfert Galaxies
A&A 478, 335–351 (2008) Astronomy DOI: 10.1051/0004-6361:20078663 & c ESO 2008 Astrophysics Evolution of chemical abundances in Seyfert galaxies S. K. Ballero1,2,F.Matteucci1,2, L. Ciotti3,F.Calura2, and P. Padovani4 1 Dipartimento di Astronomia, Università di Trieste, via G.B. Tiepolo 11, 34143 Trieste, Italy e-mail: [email protected] 2 INAF, Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, 34143 Trieste, Italy 3 Dipartimento di Astronomia, Università di Bologna, via Ranzani 1, 40127 Bologna, Italy 4 European Organisation for Astronomical Research in the Southern Hemisphere (ESO), Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany Received 12 September 2007 / Accepted 23 October 2007 ABSTRACT Aims. We study the chemical evolution of spiral bulges hosting Seyfert nuclei, based on updated chemical and spectro-photometrical evolution models for the bulge of our Galaxy, to make predictions about other quantities measured in Seyferts and to model the photometric features of local bulges. The chemical evolution model contains updated and detailed calculations of the Galactic potential and of the feedback from the central supermassive black hole, and the spectro-photometric model covers a wide range of stellar ages and metallicities. 9 11 Methods. We computed the evolution of bulges in the mass range 2 × 10 −10 M by scaling the efficiency of star formation and the bulge scalelength, as in the inverse-wind scenario for elliptical galaxies, and by considering an Eddington limited accretion onto the central supermassive black hole. Results. We successfully reproduced the observed relation between the masses of the black hole and of the host bulge.