The Coevolution of Nuclear Star Clusters, Massive
The Astrophysical Journal, 812:72 (24pp), 2015 October 10 doi:10.1088/0004-637X/812/1/72 © 2015. The American Astronomical Society. All rights reserved. THE COEVOLUTION OF NUCLEAR STAR CLUSTERS, MASSIVE BLACK HOLES, AND THEIR HOST GALAXIES Fabio Antonini1, Enrico Barausse2,3, and Joseph Silk2,3,4,5 1 Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astrophysics, Northwestern University, Evanston, IL 60208, USA 2 Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France 3 CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France 4 Laboratoire AIM-Paris-Saclay, CEA/DSM/IRFU, CNRS, Universite Paris Diderot, F-91191 Gif-sur-Yvette, France 5 Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA Received 2015 June 5; accepted 2015 September 3; published 2015 October 8 ABSTRACT Studying how nuclear star clusters (NSCs) form and how they are related to the growth of the central massive black holes (MBHs) and their host galaxies is fundamental for our understanding of the evolution of galaxies and the processes that have shaped their central structures. We present the results of a semi-analytical galaxy formation model that follows the evolution of dark matter halos along merger trees, as well as that of the baryonic components. This model allows us to study the evolution of NSCs in a cosmological context, by taking into account the growth of NSCs due to both dynamical-friction-driven migration of stellar clusters and star formation triggered by infalling gas, while also accounting for dynamical heating from (binary) MBHs.
[Show full text]