Dynamics of the Globular Cluster System Associated with M87 (Ngc 4486)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Large-Scale Study of the NGC 1399 Globular Cluster System in Fornax
A&A 451, 789–796 (2006) Astronomy DOI: 10.1051/0004-6361:20054563 & c ESO 2006 Astrophysics Large-scale study of the NGC 1399 globular cluster system in Fornax L. P. Bassino1,2, F. R. Faifer1,2,J.C.Forte1,B.Dirsch3, T. Richtler3, D. Geisler3, and Y. Schuberth4 1 CONICET and Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, 1900 La Plata, Argentina e-mail: [lbassino;favio;forte]@fcaglp.unlp.edu.ar 2 IALP - CONICET, Argentina 3 Universidad de Concepción, Departamento de Física, Casilla 160, Concepción, Chile e-mail: [email protected];[email protected];[email protected] 4 Sternwarte der Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany e-mail: [email protected] Received 21 November 2005 / Accepted 6 January 2006 ABSTRACT We present a Washington C and Kron-Cousins R photometric study of the globular cluster system of NGC 1399, the central galaxy of the Fornax cluster. A large areal coverage of 1 square degree around NGC 1399 is achieved with three adjoining fields of the MOSAIC II Imager at the CTIO 4-m telescope. Working on such a large field, we can perform the first indicative determination of the total size of the NGC 1399 globular cluster system. The estimated angular extent, measured from the NGC 1399 centre and up to a limiting radius where the areal density of blue globular clusters falls to 30 per cent of the background level, is 45 ± 5arcmin,which corresponds to 220−275 kpc at the Fornax distance. -
The Globular Cluster System of NGC 1399
Astronomy & Astrophysics manuscript no. sch1399 c ESO 2018 August 28, 2018 The globular cluster system of NGC 1399 ⋆,⋆⋆ V. dynamics of the cluster system out to 80 kpc Y. Schuberth1,2, T. Richtler2, M. Hilker3, B. Dirsch2, L. P. Bassino4, A. J. Romanowsky5,2, and L. Infante6 1 Argelander-Institut f¨ur Astronomie, Universit¨at Bonn, Auf dem H¨ugel 71, D-53121 Bonn, Germany 2 Universidad de Concepci´on, Departamento de Astronomia, Casilla 160-C, Concepci´on, Chile 3 European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching, Germany 4 Facultad de Ciencias Astron´omicas y Geof´ısicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, 1900–La Plata, Argentina; and Instituto de Astrof´ısica de La Plata (CCT La Plata – CONICET – UNLP) 5 UCO/Lick Observatory, University of California, Santa Cruz, CA 95064, USA 6 Departamento de Astronom´ıa y Astrof´ısica, Pontificia Universidad Cat´olica de Chile, Casilla 306, Santiago 22, Chile Received 14 May, 2009; accepted 16 October, 2009 ABSTRACT Globular clusters (GCs) are tracers of the gravitational potential of their host galaxies. Moreover, their kinematic properties may provide clues for understanding the formation of GC systems and their host galaxies. We use the largest set of GC velocities obtained so far of any elliptical galaxy to revise and extend the previous investigations (Richtler et al. 2004) of the dynamics of NGC 1399, the central dominant galaxy of the nearby Fornax cluster of galaxies. The GC velocities are used to study the kinematics, their relation with population properties, and the dark matter halo of NGC 1399. -
Tidal Origin of NGC 1427A in the Fornax Cluster
MNRAS 000,1{9 (2017) Preprint 30 October 2017 Compiled using MNRAS LATEX style file v3.0 Tidal origin of NGC 1427A in the Fornax cluster K. Lee-Waddell1?, P. Serra2;1, B. Koribalski1, A. Venhola3;4, E. Iodice5, B. Catinella6, L. Cortese6, R. Peletier3, A. Popping6;7, O. Keenan8, M. Capaccioli9 1CSIRO Astronomy and Space Sciences, Australia Telescope National Facility, PO Box 76, Epping, NSW 1710, Australia 2INAF { Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047 Selargius (CA), Italy 3Kapteyn Astronomical Institute, University of Groningen, PO Box 800, NL-9700 AV Groningen, the Netherlands 4Astronomy Research Unit, University of Oulu, FI-90014, Finland 5INAF { Astronomical Observatory of Capodimonte, via Moiariello 16, Naples, I-80131, Italy 6International Centre for Radio Astronomy Research, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia 7CAASTRO: ARC Centre of Excellence for All-sky Astrophysics, Australia 8School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA, United Kingsdom 9Dip.di Fisica Ettore Pancini, University of Naples \Federico II," C.U. Monte SantAngelo, Via Cinthia, I-80126, Naples, Italy Accepted 2017 October 26. Received 2017 October 15; in original form 2017 March 31 ABSTRACT We present new Hi observations from the Australia Telescope Compact Array and deep optical imaging from OmegaCam on the VLT Survey Telescope of NGC 1427A, an arrow-shaped dwarf irregular galaxy located in the Fornax cluster. The data reveal a star-less Hi tail that contains ∼10% of the atomic gas of NGC 1427A as well as extended stellar emission that shed new light on the recent history of this galaxy. -
115 Abell Galaxy Cluster # 373
WINTER Medium-scope challenges 271 # # 115 Abell Galaxy Cluster # 373 Target Type RA Dec. Constellation Magnitude Size Chart AGCS 373 Galaxy cluster 03 38.5 –35 27.0 Fornax – 180 ′ 5.22 Chart 5.22 Abell Galaxy Cluster (South) 373 272 Cosmic Challenge WINTER Nestled in the southeast corner of the dim early winter western suburbs. Deep photographs reveal that NGC constellation Fornax, adjacent to the distinctive triangle 1316 contains many dust clouds and is surrounded by a formed by 6th-magnitude Chi-1 ( 1), Chi-2 ( 2), and complex envelope of faint material, several loops of Chi-3 ( 3) Fornacis, is an attractive cluster of galaxies which appear to engulf a smaller galaxy, NGC 1317, 6 ′ known as Abell Galaxy Cluster – Southern Supplement to the north. Astronomers consider this to be a case of (AGCS) 373. In addition to his research that led to the galactic cannibalism, with the larger NGC 1316 discovery of more than 80 new planetary nebulae in the devouring its smaller companion. The merger is further 1950s, George Abell also examined the overall structure signaled by strong radio emissions being telegraphed of the universe. He did so by studying and cataloging from the scene. 2,712 galaxy clusters that had been captured on the In my 8-inch reflector, NGC 1316 appears as a then-new National Geographic Society–Palomar bright, slightly oval disk with a distinctly brighter Observatory Sky Survey taken with the 48-inch Samuel nucleus. NGC 1317, about 12th magnitude and 2 ′ Oschin Schmidt camera at Palomar Observatory. In across, is visible in a 6-inch scope, although averted 1958, he published the results of his study as a paper vision may be needed to pick it out. -
Mass Deficits, Stalling Radii, and the Merger Histories of Elliptical Galaxies David Merritt Rochester Institute of Technology
Rochester Institute of Technology RIT Scholar Works Articles 5-22-2006 Mass Deficits, Stalling Radii, and the Merger Histories of Elliptical Galaxies David Merritt Rochester Institute of Technology Follow this and additional works at: http://scholarworks.rit.edu/article Recommended Citation David Merritt 2006 ApJ 648 976 This Article is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Articles by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. DRAFT VERSION FEBRUARY 5, 2008 Preprint typeset using LATEX style emulateapj v. 10/09/06 MASS DEFICITS, STALLING RADII, AND THE MERGER HISTORIES OF ELLIPTICAL GALAXIES DAVID MERRITT Department of Physics, Rochester Institute of Technology, Rochester, NY 14623 Draft version February 5, 2008 Abstract A binary supermassive black hole leaves an imprint on a galactic nucleus in the form of a “mass deficit,” a decrease in the mass of the nucleus due to ejection of stars by the binary. The magnitude of the mass deficit is in principle related to the galaxy’s merger history, but the relation has never been quantified. Here, high- accuracy N-body simulations are used to calibrate this relation. Mass deficits are shown to be Mde f ≈ 0.5M12, with M12 the total mass of the binary; the coefficient in this relation depends only weakly on M2/M1 or on the galaxy’s pre-existing density profile. Hence, after N mergers, Mde f ≈ 0.5N M• with M• the final (current) black hole mass. When compared with observed mass deficits, this result implies 1 ∼< N ∼< 3, in accord with hierarchical galaxy formation models. -
Monster Image of the Fornax Galaxy Cluster 25 October 2017
Monster image of the Fornax Galaxy Cluster 25 October 2017 telescope technology to observe the finer details of NGC 1316's unusual structure through a combination of imaging and modelling. The mergers that formed NGC 1316 led to an influx of gas, which fuels an exotic astrophysical object at its centre: a supermassive black hole with a mass roughly 150 million times that of the Sun. As it accretes mass from its surroundings, this cosmic monster produces immensely powerful jets of high- energy particles , that in turn give rise to the Credit: ESO characteristic lobes of emission seen at radio wavelengths, making NGC 1316 the fourth- brightest radio source in the sky. Countless galaxies vie for attention in this monster NGC 1316 has also been host to four recorded type image of the Fornax Galaxy Cluster, some Ia supernovae, which are vitally important appearing only as pinpricks of light while others astrophysical events for astronomers. Since type Ia dominate the foreground. One of these is the supernovae have a very clearly defined brightness, lenticular galaxy NGC 1316. The turbulent past of they can be used to measure the distance to the this much-studied galaxy has left it with a delicate host galaxy; in this case, 60 million light-years. structure of loops, arcs and rings that astronomers These "standard candles" are much sought-after by have now imaged in greater detail than ever before astronomers, as they are an excellent tool to with the VLT Survey Telescope. This astonishingly reliably measure the distance to remote objects. In deep image also reveals a myriad of dim objects fact, they played a key role in the groundbreaking along with faint intracluster light. -
THE BLACK HOLE MASS and EXTREME ORBITAL STRUCTURE in NGC 1399 Karl Gebhardt,1 Tod R
The Astrophysical Journal, 671:1321Y1328, 2007 December 20 A # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE BLACK HOLE MASS AND EXTREME ORBITAL STRUCTURE IN NGC 1399 Karl Gebhardt,1 Tod R. Lauer,2 Jason Pinkney,3 Ralf Bender,4 Douglas Richstone,5 Monique Aller,5 Gary Bower,6 Alan Dressler,7 S. M. Faber,8 Alexei V. Filippenko,9 Richard Green,2 Luis C. Ho,7 John Kormendy,1 Christos Siopis,5 and Scott Tremaine10 Received 2007 April 11; accepted 2007 August 16 ABSTRACT The largest galaxies, and in particular central galaxies in clusters, offer unique insight into understanding the mech- anism for the growth of nuclear black holes. We present Hubble Space Telescope kinematics for NGC 1399, the 8 central galaxy in Fornax. We find the best-fit model contains a black hole of (5:1 Æ 0:7) ; 10 M (at a distance of 21.1 Mpc), a factor of over 2 below the correlation of black hole mass and velocity dispersion. We also find a dramatic signature for central tangential anisotropy. The velocity profiles on adjacent sides 0.500 away from the nucleus show strong bimodality, and the central spectrum shows a large drop in the dispersion. Both of these observations point to an orbital distribution that is tangentially biased. The best-fit orbital model suggests a ratio of the tangential to radial internal velocity dispersions of 3. This ratio is the largest seen in any galaxy to date and will provide an important measure for the mode by which the central black hole has grown. -
High Resolution Imaging of the Early-Type Galaxy NGC 1380: an Insight Into the Nature of Extended Extragalactic Star Clusters
A&A 467, 1003–1009 (2007) Astronomy DOI: 10.1051/0004-6361:20066546 & c ESO 2007 Astrophysics High resolution imaging of the early-type galaxy NGC 1380: an insight into the nature of extended extragalactic star clusters A. L. Chies-Santos, B. X. Santiago, and M. G. Pastoriza Departamento de Astronomia, Instituto de Física, UFRGS. Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil e-mail: [email protected] Received 11 October 2006 / Accepted 27 February 2007 ABSTRACT Context. NGC 1380 is a lenticular galaxy located near the centre of the Fornax Cluster, northeast of NGC 1399. The globular cluster system of this galaxy has hitherto only been studied from the ground. Recent studies of similar early-type galaxies, specially lenticular ones, reveal the existence of star clusters that apparently break up the traditional open/globular cluster dichotomy. Aims. With higher quality photometry from HST/WFPC2 we study the star clusters in NGC 1380, measuring their magnitudes, colours, sizes and projected distances from the centre of the galaxy. Methods. We used deep archival HST/WFPC2 in the B and V bands. We built colour magnitude diagrams from which we selected a sample of cluster candidates. We also analysed their colour distribution and measured their sizes. Based on their location in the luminosity-size diagram we estimated probabilities of them being typical globular clusters as those found in the Galaxy. Results. A total of about 570 cluster candidates were found down to V = 26.5. We measured sizes for approximately 200 of them. The observed colour distribution has three apparent peaks. -
Globular Clusters and Dwarf Galaxies in Fornax I
A&A 464, L21–L24 (2007) Astronomy DOI: 10.1051/0004-6361:20066963 & c ESO 2007 Astrophysics Letter to the Editor Globular clusters and dwarf galaxies in Fornax I. Kinematics in the cluster core from multi-object spectroscopy, G. Bergond1,2,3, E. Athanassoula4,S.Leon5,C.Balkowski2, V. Cayatte6,L.Chemin2,R.Guzmán7, G. Meylan8, and Ph. Prugniel2,9 1 Instituto de Astrofísica de Andalucía, C/ Camino Bajo de Huétor 50, 18008 Granada, España e-mail: [email protected] 2 Observatoire de Paris, GEPI (CNRS UMR 8111 & Université Paris 7), 5 place Jules Janssen, 92195 Meudon, France 3 Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA 4 Observatoire de Marseille, 2 place Le Verrier, 13248 Marseille Cedex 04, France 5 Instituto de Radioastronomía Milimétrica (IRAM), Avda. Divina Pastora 7, local 20, 18012 Granada, España 6 Observatoire de Paris, LUTH (CNRS UMR 8102 & Université Paris 7), 5 place Jules Janssen, 92195 Meudon, France 7 Astronomy department, Univ. of Florida, 211 Bryant Space Science Center, PO Box 112055, Gainesville, FL 32611, USA 8 École Polytechnique Fédérale de Lausanne (EPFL), Laboratoire d’Astrophysique, Observatoire, 1290 Sauverny, Suisse 9 Centre de Recherches Astronomiques, Université Lyon 1, Observatoire de Lyon, 69561 Saint Genis Laval Cedex, France Received 18 December 2006 / Accepted 11 January 2007 ABSTRACT Aims. We acquired radial velocities of a significant number of globular clusters (GCs) on wide fields between galaxies in the nearby Fornax cluster of galaxies, in order to derive their velocity dispersion radial profile and to probe the dynamics of the cluster. Methods. We used FLAMES on the VLT to obtain accurate velocities for 149 GCs, within a ≈500 × 150 kpc strip centered on < NGC 1399, the Fornax central galaxy. -
Central Massive Objects: the Stellar Nuclei – Black Hole Connection
Astronomical News Report on the ESO Workshop Central Massive Objects: The Stellar Nuclei – Black Hole Connection held at ESO Garching, Germany, 22–25 June 2010 Nadine Neumayer1 Eric Emsellem1 1 ESO An overview of the ESO workshop on black holes and nuclear star clusters is presented. The meeting reviewed the status of our observational and the- oretical understanding of central mas- sive objects, as well as the search for intermediate mass black holes in globu- lar clusters. There will be no published proceedings, but presentations are available at http://www.eso.org/sci/ meetings/cmo2010/program.html. This workshop brought together a broad international audience in the combined fields of galaxy nuclei, nuclear star clus ters and supermassive black holes, to confront stateofthe art observations with cuttingedge models. Around a hundred participants from Europe, North and South America, as well as East Asia and Figure 1. Workshop participants assembled outside made up of several populations of stars. Australia gathered for a threeday meet ESO Headquarters in Garching. The existence of very young O and WR ing held at ESO Headquarters in Garching, stars in the central few arcseconds Germany (see Figure 1). The sessions around the black hole is puzzling. The were of very high quality, with many very – Are intermediate mass black holes currently favoured solution to this paradox lively, interesting and fruitful discussions. formed in nuclear clusters/globular of youth is in situ star formation in infalling All talks can be found online on the web clusters? gas clouds. This view is also supported page of the workshop1. -
Stellar Mass Function in the Field
Professor David Carter (PI) Liverpool John Moores University UK Dr Habib G. Khosroshahi Liverpool John Moores University UK Mr Mustapha Mouhcine Liverpool John Moores University UK Ms Susan M. Percival Liverpool John Moores University UK Dr Harry C. Ferguson (USA PI) Space Telescope Science Institute USA/MD Dr Paul Goudfrooij Space Telescope Science Institute USA/MD Dr Terry Bridges Queen's University Canada Dr Thomas H. Puzia Dominion Astrophysical Observatory Canada Dr Carlos del Burgo Dublin Institute For Advanced Studies Ireland Dr Bryan Miller Gemini Observatory, Southern Operations Chile Dr Bianca Poggianti INAF - Osservatorio Astronomico di Padova Italy Dr Alfonso Aguerri Instituto de Astrofisica de Canarias Spain Dr Marc Balcells Instituto de Astrofisica de Canarias Spain Mr Derek Hammer Johns Hopkins University USA/MD Dr Reynier F. Peletier Kapteyn Astronomical Institute Netherlands Prof. Edwin Valentijn Kapteyn Astronomical Institute Netherlands Dr Gijs Verdoes Kleijn Kapteyn Astronomical Institute Netherlands Dr Peter Erwin Max-Planck-Insitute for Extraterrestrial Physics Germany Dr Ann Hornschemeier NASA Goddard Space Flight Center USA/MD Dr Yutaka Komiyama National Astronomical Observatory of Japan Japan Dr Masafumi Yagi National Astronomical Observatory of Japan Japan Dr Jennifer Lotz National Optical Astronomy Observatories, AURA USA/AZ National Radio Astronomy Observatory, Dr Neal A. Miller USA/VA and Johns Hopkins University Dr Eric W. Peng Peking University China Dr Dan Batcheldor Rochester Institute of Technology USA/NY Prof. David Merritt Rochester Institute of Technology USA/NY Dr Ronald O. Marzke San Francisco State University USA/CA Dr Alister W. Graham Swinburne University of Technology Australia Dr Helmut Jerjen The Australian National University Australia Dr Avon P. -
Globular Cluster Halos Around the Brightest Fornax Ellipticals
Globular Cluster Halos around the brightest Fornax Ellipticals Markus Kissler-Patig UCO/Lick Observatory, University of California, Santa Cruz, CA 96054, USA 1. What it is all about Our goal is to understand the globular clusters surrounding the brightest galaxies in the Fornax galaxy cluster, and relate their properties to the formation history of the galaxies and the galaxy cluster. In general, we need to understand the presence of globular cluster sub–populations around the brightest galaxies (and their apparent absence around the less luminous ellipticals, Kissler-Patig 1997). In particular, the extreme over–abundance of globular clusters around the central cD galaxy is still unexplained. Fornax is a relatively poor galaxy cluster at a distance of ≃ 19 Mpc (as- sumed throughout the following). The properties of the brightest early–type galaxies (taken from the RC3, Kissler-Patig et al. 1997a,b, and Forbes et al. 1997) are summarized below, including the number of globular clusters (NGC), and the specific frequency (SN ). NGC 1399, a giant cD galaxy, sits in the center of the cluster gravitational potential, while NGC 1404 and NGC 1380 are at projected distances of 50 kpc and 200 kpc to the SE and NW respectively. − −1 Name MVT [mag] B V [mag] Velopt [km s ] NGC SN NGC 1399 −21.8 0.96 1447 ≃ 6000 ≃ 11 NGC 1380 −21.5 0.94 1841 ≃ 600 ≃ 2 NGC 1404 −21.4 0.97 1929 ≃ 750 ≃ 2 arXiv:astro-ph/9712059v1 4 Dec 1997 2. The globular cluster systems of NGC 1399, NGC 1380, and NGC 1404 • Qualitatively, NGC 1399, NGC 1380 and NGC 1404 have very similar globular cluster populations (Kissler-Patig et al.