A-Photographers-Antarctica-2015.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Crossing the Circle
ANTARCTIC 2021.22 CROSSING THE CIRCLE Southern Expedition Contents 1 Overview 2 Itinerary 5 Arrival and Departure Details 7 Your Ship Options 10 Included Activities 11 Adventure Options 12 Dates and Rates 13 Inclusions and Exclusions 14 Your Expedition Team 15 Extend Your Trip 16 Meals on Board 17 Possible Excursions 21 Packing Checklist Overview Crossing the Circle: Southern Expedition Antarctica offers so many extraordinary things to see and do, and traveling with Quark Expeditions® offers multiple options to personalize your experience. We’ve designed this guide to help you identify what interests you most, so that you can start planning your version of the perfect expedition to the 7th Continent. With a more in-depth exploration of the Antarctic Peninsula, our Crossing the Circle: Southern Expedition voyage gives you the chance to venture beyond the EXPEDITION IN BRIEF Antarctic Circle, a milestone few have reached. Including an in-depth exploration of Be one of the few travelers the penguin colonies, glaciers, bays and historical sites of the Peninsula, you’ll also to venture to 66°33'S navigate beyond 66⁰33´ South. Encounter even more wildlife and experience the Visit Antarctic research awe of splendid isolation. You can personalize your adventure with options that suit stations your interests, and cross the 7th Continent off your list—your way. Witness abundant Antarctic wildlife, including penguins, Antarctica has been inspiring explorers for centuries and our expeditions offer the seals and whales chance for you to discover why. We’re excited to host you on your unforgettable Experience western Antarctic Peninsula highlights and visit adventure! Feel free to reach out to our team of Polar Travel Advisers who can iconic landing sites answer your questions and provide assistance at any time. -
The Geological Society Books
The Geological Society Books Chapter 4.1a Antarctic Peninsula I. Volcanology --Manuscript Draft-- Manuscript Number: GSLBooks18-059 Full Title: Chapter 4.1a Antarctic Peninsula I. Volcanology Article Type: Chapter Corresponding Author: John Laidlaw Smellie University of Leicester Leicester, Leicestershire UNITED KINGDOM Other Authors: Malcolm Hole Section/Category: Volcanism in Antarctica: 200 Million Years of Subduction, Rifting and Continental Break-Up Abstract: The Antarctic Peninsula is distinguished by late Neogene volcanic activity related to a series of northerly-younging ridge crest—trench collisions and the progressive opening of ‘no-slab windows’ in the subjacent mantle. The outcrops were amongst the last to be discovered in the region, with many occurrences not visited until the 1970’s and 1980’s. The volcanism consists of several monogenetic volcanic fields and small isolated centres. It is sodic alkaline to tholeiitic in composition and ranges in age between 7.7 Ma and present. No eruptions have been observed (with the possible, but dubious, exception of Seal Nunataks in 1893), but very young isotopic ages for some outcrops suggest that future eruptions are a possibility. The eruptions were overwhelmingly glaciovolcanic and the outcrops have been a major source of information on glaciovolcano construction. They have also been highly instrumental in advancing our understanding of the configuration of the Plio-Pleistocene Antarctic Peninsula Ice Sheet. However, our knowledge is hindered by a paucity of modern, precise isotopic ages. In particular, there is no obvious relationship between the age of ridge crest—trench collisions and the timing of slab-window volcanism, a puzzle that may only be resolved by new dating. -
Antarctic Primer
Antarctic Primer By Nigel Sitwell, Tom Ritchie & Gary Miller By Nigel Sitwell, Tom Ritchie & Gary Miller Designed by: Olivia Young, Aurora Expeditions October 2018 Cover image © I.Tortosa Morgan Suite 12, Level 2 35 Buckingham Street Surry Hills, Sydney NSW 2010, Australia To anyone who goes to the Antarctic, there is a tremendous appeal, an unparalleled combination of grandeur, beauty, vastness, loneliness, and malevolence —all of which sound terribly melodramatic — but which truly convey the actual feeling of Antarctica. Where else in the world are all of these descriptions really true? —Captain T.L.M. Sunter, ‘The Antarctic Century Newsletter ANTARCTIC PRIMER 2018 | 3 CONTENTS I. CONSERVING ANTARCTICA Guidance for Visitors to the Antarctic Antarctica’s Historic Heritage South Georgia Biosecurity II. THE PHYSICAL ENVIRONMENT Antarctica The Southern Ocean The Continent Climate Atmospheric Phenomena The Ozone Hole Climate Change Sea Ice The Antarctic Ice Cap Icebergs A Short Glossary of Ice Terms III. THE BIOLOGICAL ENVIRONMENT Life in Antarctica Adapting to the Cold The Kingdom of Krill IV. THE WILDLIFE Antarctic Squids Antarctic Fishes Antarctic Birds Antarctic Seals Antarctic Whales 4 AURORA EXPEDITIONS | Pioneering expedition travel to the heart of nature. CONTENTS V. EXPLORERS AND SCIENTISTS The Exploration of Antarctica The Antarctic Treaty VI. PLACES YOU MAY VISIT South Shetland Islands Antarctic Peninsula Weddell Sea South Orkney Islands South Georgia The Falkland Islands South Sandwich Islands The Historic Ross Sea Sector Commonwealth Bay VII. FURTHER READING VIII. WILDLIFE CHECKLISTS ANTARCTIC PRIMER 2018 | 5 Adélie penguins in the Antarctic Peninsula I. CONSERVING ANTARCTICA Antarctica is the largest wilderness area on earth, a place that must be preserved in its present, virtually pristine state. -
Barrientos Island (Aitcho Islands) ANTARCTIC TREATY King George Is
Barrientos Island (Aitcho Islands) ANTARCTIC TREATY King George Is. Barrientos Island visitor site guide Ferraz Station Turret Point (Aitcho Islands) Admiralty Bay Elephant Is. Maxwell Bay Penguin Island 62˚24’S, 59˚47’W - North entrance to English Strait Marsh/frei Stations Great Wall Station between Robert and Greenwich Islands. Bellingshausen Station Arctowski Station Artigas Station Jubany Station King Sejong Station Potter Cove Key features AITCHO Nelson Is. ISLANDRobert Is. - Gentoo and Chinstrap Penguins S Mitchell Cove - Southern Elephant Seals Greenwich Is. Robert Point - Geological features Fort Point Half Moon Is. Yankee Harbour - Southern Giant Petrels Livingston Is. - Vegetation Hannah Point Bransfield Strait Snow Is. Telefon Bay Pendulum Cove Gourdin Is. Deception Is. Baily Head Description Vapour Col Cape Whaler's Bay Dubouzet B. O'higgins Station TOPOGRAPHY This 1.5km island’s north coast is dominated by steep cliffs, reaching a height of approximatelyAstr 70olabe Cape Hope metres, with a gentle slope down to the south coast. The eastern and western ends of the island Island are Legoupil Bay black sand and cobbled beaches. Columnar basalt outcrops are a notable feature of the western end. a insul FAUNA Confirmed breeders: Gentoo penguin (Pygoscelis papua), chinstrap penguin (Pygoscelis antarctica), Pen inity southern giant petrel (Macronectes giganteus), kelp gull (LarusNorthwest dominicanus (Nw)), and skuas (Catharacta spp.). Tr Suspected breeders: Blue-eyed shag (Phalacrocorax atricepsSubar) andea Wilson’s storm-petrel (OceanitesBone Bay Tower Is. oceanicus). Regularly haul out: Weddell seals (Leptonychotes weddellii), southern elephant seals (Mirounga leonina), and from late December, Antarctic fur seals (Arctocephalus Trgazellainity Is. ). Charcot Bay FLORA The entire centre of the island is covered by a very extensive moss carpet. -
US Antarctic Program Information Exchange
Information Exchange Under United States Antarctic Activities Articles III and VII (5) of the Modifications of Activities Planned for 2004-2005 ANTARCTIC TREATY X. Tourism X. Tourism Section X presents planned itineraries for U.S. based non- governmental activities in the Treaty area. Abercrombie & Kent International, Inc. Atholl Shipping Corporation and Abercrombie & Kent International, Inc. of Oak Brook, Illinois, conducted a total of ten cruises to the Antarctic Peninsula during the 2004-2005 season using the M/S Explorer II. Given below, for each cruise, is the port of origin, and sites visited (with dates) M/S EXPLORER Cruise EXP16NOV2004 November 2004 94 PAX; 145 STAFF; 162 CREW # PAX 1 Ports Landed Dates Montevideo, URUGUAY 16 NOV 2004 At sea 17-20 NOV 2004 Point Wild, Elephant Island 21 NOV 2004 Esperanza Station, Hope Bay 99 22 NOV 2004 James Ross Island 89* 23 NOV 2004 Vortex Island 106 23 NOV 2004 Paulet Island 114 24 NOV 2004 Brown Bluff, Tabarin Peninsula 87 24 NOV 2004 National Science Foundation 23 Arlington, Virginia 22230 October 1, 2005 Information Exchange Under United States Antarctic Activities Articles III and VII (5) of the Modifications of Activities Planned for 2004-2005 ANTARCTIC TREATY X. Tourism Hannah Point, Livingston Island 84 25 NOV 2004 Whalers Bay, Deception Island 108 25 NOV 2004 At sea 26-27 NOV 2004 Ushuaia, ARGENTINA 28 NOV 2004 1 = Includes passengers, staff and crew landed * = zodiac cruising only Cruise EXP28NOV 2004 November/December 2004 207 PAX; 13 STAFF; 159 CREW # PAX 1 Ports Landed Dates Ushuaia, -
Assessing Environmental Conditions of Antarctic Footpaths to Support Management Decisions
Journal of Environmental Management 177 (2016) 320e330 Contents lists available at ScienceDirect Journal of Environmental Management journal homepage: www.elsevier.com/locate/jenvman Research article Assessing environmental conditions of Antarctic footpaths to support management decisions * Pablo Tejedo a, , Javier Benayas a, Daniela Cajiao b, Belen Albertos c, Francisco Lara d, Luis R. Pertierra a, Manuela Andres-Abell an e, Consuelo Wic e, Maria Jose Lucianez~ d, Natalia Enríquez d, Ana Justel f, Günther K. Reck b a Departamento de Ecología, Universidad Autonoma de Madrid, C/ Darwin 2, ES-28049 Madrid, Spain b Instituto de Ecología Aplicada ECOLAP-USFQ, Universidad de San Francisco de Quito, P.O. Box 1712841, Quito, Ecuador c Departamento de Botanica, Universidad de Valencia, Avda. Vicente Andres Estelles s/n, ES-46100 Burjassot, Spain d Departamento de Biología, Universidad Autonoma de Madrid, C/ Darwin 2, ES-28049 Madrid, Spain e Departamento de Ciencia y Tecnología Agroforestal y Genetica, Universidad de Castilla-La Mancha, Avda. Espana~ s/n, ES-02071 Albacete, Spain f Departamento de Matematicas, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 5, ES-28049 Madrid, Spain article info abstract Article history: Thousands of tourists visit certain Antarctic sites each year, generating a wide variety of environmental Received 18 September 2015 impacts. Scientific knowledge of human activities and their impacts can help in the effective design of Received in revised form management measures and impact mitigation. We present a case study from Barrientos Island in which a 6 April 2016 management measure was originally put in place with the goal of minimizing environmental impacts but Accepted 10 April 2016 resulted in new undesired impacts. -
ICE Ecosystem 2
1 ICE Ecosystem 2 In this section, I explain some of the physical workings of the Antarctic ecosystem, such as the carbon cycle and the biological pump and how it relates to Antarctica's Southern Ocean as a carbon "sink," as well as some of the key biological and natural history elements in the area, beginning at the foundation with phytoplankton and zooplankton, focusing on Antarctic krill. Although not directly addressed in the remainder of my project, even a vague understanding of these processes is vital in order to appreciate the implications of climate change on the Antarctic ecosystem. The Carbon Cycle A brief discussion of the carbon cycle is necessary for an understanding of nature’s approximately 3 billion year old system of carbon recycling. Carbon is the “building block of life” and is the “element that anchors all organic substances, from fossil fuels to DNA” (Herring [1]). Only the biological/physical carbon cycle is within the scope of this project: Through the process of photosynthesis, green plants absorb solar energy and remove carbon dioxide from the atmosphere to produce carbohydrates [. .]. Plants and animals effectively “burn” these carbohydrates [ . .] through the process of respiration, the reverse of photosynthesis. Respiration releases the energy contained in sugars for use in metabolism and renders the carbohydrate “fuel” back to carbon dioxide. Together, respiration and decomposition [ . .] return the biologically fixed carbon back to the atmosphere (Herring [1]). Antarctic phytoplankton plays as important a part in this global carbon cycle as do the densely forested tropics. In the oceans, carbon dioxide exchange is largely controlled by sea surface temperatures, circulating currents, and by the biological processes of photosynthesis and respiration. -
ANT 2014-2015 DBD with Maps 03-07-2013
Day by Day Itinerary INTRODUCTION Antarctica Expedition Cruises 2014 / 2015 Antarctic Peninsula ‐ Falkland Islands ‐ South Georgia Atlantic Odyssey Itinerary All promoted itineraries are for general guidance only. Programs may vary depending on local ice and weather conditions and ad hoc decisions by the Expedition Leader to take advantage of opportunities to see wildlife. Flexibility is paramount for expedition cruises. Landings are always subJect to weather, local site availabilities and environmental regulations (IAATO). Official sailing plans and landing slots will be scheduled with IAATO approximately 5 months prior to the start of the season. The final sailing plan will be determined by the Expedition Leader on board. The implementation of the sailing plan is subject to the capability of the vessel and the discretion of the Master. Taking the exorbitant high fuel prices into account, it is agreed that Oceanwide Expeditions has the right to reduce the speed of the engines (including sailing on one engine) wherever possible, unless this affects the character of the intended voyage substantially and Jeopardizes the safety of the vessel, its crew, staff and passengers. Rubber Boots and Expedition Jackets Onboard Plancius & Ortelius all passengers are entitled to use a pair of sturdy rubber boots for free. Sizes need to be pre‐ ordered with our reservation departments at least 8 weeks prior to departure. A voucher will be sent with final travel documents approximately 4 weeks prior to departure. Laying claims on equipment items without pre‐order and voucher can not be accepted when boarding the vessel. Boots will need to be returned to the expedition team at the end of the voyage. -
Aeromagnetic Survey Over the South Shetland Islands, Bransfield Strait and Part of the Antarctic Peninsula
AEROMAGNETIC SURVEY OVER THE SOUTH SHETLAND ISLANDS, BRANSFIELD STRAIT AND PART OF THE ANTARCTIC PENINSULA JUAN CARLOS PARRA E. Servicio Nacional de Geología y Minería, Casilla 10465. Santiago, Chile. OSCAR GONZALEZ·FERRAN Departamento de Geología y Geofísica, Universidad de Chile, Casilla JOHN BANNISTER P. 2777. Santiago, Chile. ABSTRACT About 3,500 km of regional magnetic Iines have been flown over the South Shetland Islands, the Bransfield Strait and part of the Antarctic Peninsula. Qualitative interpretation of the magnetic maps shows that the general structure of the area is characterized by large magnetic anomalies (northwest of the South Shetland Islands and southeast of the Bransfield Strait) associated with and produced by intrusive rocks of Cretaceous to Middle Ter tiary age. This intrusive suite is apparently related to subduction, which ceased during the Lower Miocene giving way to an extensive tectonic phase characterized by a north-east trending system of normal faults. The inter pretation of the aeromagmatic map shows these faults to be subparallel to the northwestem border of the An· tarctic Peninsula and to the edge of the South Shetland Trench. Associated with these faults, in the central Brans field Strait, there is a well defined magnetic anomaly pattern. This is interpreted as produced by basic injections hito the continental crust, defining an incipient rift along the Bransfield Strait. An overlapping spreading center was recognized near Deception Island. A quantitative model was drawn using 2 1/2 dimensional automatic inter pretation along a profile perpendicular to the spreading center anomaly. RESUMEN Como parte de un programa aeromagnético regional se sobrevolaron alrededor de 3.500 km de perfiles aero magnéticos, cubriendo las islas Shetland del Sur, el estrecho de Bransfield y parte de la península Antártica. -
Trampling on Maritime Antarctica: Can Soil Ecosystems Be Effectively Protected Through Existing Codes of Conduct? Pablo Tejedo,1 Luis R
RESEARCH/REVIEW ARTICLE Trampling on maritime Antarctica: can soil ecosystems be effectively protected through existing codes of conduct? Pablo Tejedo,1 Luis R. Pertierra,1 Javier Benayas,1 Peter Convey,2 Ana Justel3 & Antonio Quesada4 1 Department of Ecology, Faculty of Sciences, Universidad Auto´ noma de Madrid, C/ Darwin 2, Madrid, ES-28049, Spain 2 British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK 3 Department of Mathematics, Faculty of Sciences, Universidad Auto´ noma de Madrid, C/ Francisco Toma´ s y Valiente 7, Madrid, ES-28049, Spain 4 Department of Biology, Faculty of Sciences, Universidad Auto´ noma de Madrid, C/ Darwin 2, Madrid, ES-28049, Spain Keywords Abstract Trampling impacts; environmental monitoring; low impact practices; soil Soil trampling is one of the most obvious direct negative human impacts resilience; soil penetration resistance; in Antarctica. Through a range of experiments and field studies based on collembolan abundance. quantitative physical (soil penetration resistance) and biological (collembolan abundance) indicators, we evaluate the current codes of conduct relating to Correspondence the protection of Antarctic soils from the consequences of pedestrian impacts. Pablo Tejedo, Department of Ecology, These guidelines include using, where available, established paths that cross Faculty of Sciences, Universidad Auto´ noma de Madrid, C/ Darwin 2, Madrid, ES-28049, vegetation-free soils. However, the effectiveness of this strategy is highly Spain. dependent on context. Limited intensity use*below 100 foot passes per year* E-mail: [email protected] produces small changes at the soil surface that can recover relatively rapidly, suggesting that the dispersal of activity across wider corridors may be the most appropriate option. -
Antarctic Peninsula the Extended Expedition to the White Continent 1 to 16 January 2013
ANTA RCTIC PENINSULA T HE E XTENDED EXP EDITION TO THE WHITE C ONTINENT C HEESEMANS’ E C OLOGY S AFARIS E XPEDITION L OG 2013 CHEESEMANS’ ECOLOGY SAFARIS EXPEDITION LOG Antarctic Peninsula The Extended Expedition to the White Continent 1 to 16 January 2013 Markus Eichenberger Willian Draisma Willian Draisma Designed by Debbie Thompson and Kate Spencer Dailies coordinated by Joe Kaplan and written by Tom Fleischner, Jessica Joganic, Rosemary Joganic, Joe Kaplan, Samantha Oester, Christina Prahl, Clemens Vanderwerf, and Shirley West; with contributions from other participants Images by passengers and sta as credited Cover Photo Almirante Brown By Kathy Richardson Back Cover Photo Grandidier Channel By Dustin Richards This Page Photo Almirante Brown By Willian Draisma COPYRIGHT NOTICE Copyright ©2013 Cheesemans’ Ecology Safaris Photographers hold the copyright to their work. ii TABLE OF CONTENTS INTRODUCTION Introduction 1 For over twenty years, Cheesemans’ Ecology Safaris has op- The Expedition 2 erated the longest, most in-depth expeditions to the Ant- arctic region, a destination of supreme splendor and seren- Ushuaia and Embarkation 1 January 4 ity that deserves no less. We are honored that each of you At Sea to The Peninsula 2 January 6 chose to travel with us on this lifetime journey. Much time Half Moon Island 3 January 8 and e ort was invested, most of it “behind the scenes,” to ensure that you had the same life altering experience that Cierva Cove and Danco Island 4 January 10 so many of our previous expedition participants a rm. Cuverville Island and Port Lockroy 5 January 12 On 31 December we celebrated New Year’s Eve in Ushuaia, Antarctic Circle and Detaille Island 6 January 16 Argentina, and then boarded our ship the Ortelius the fol- Hugh Rose David Meeks Petermann and Booth Islands 7 January 18 lowing morning, sailing 2,337 miles over the next 16 days, with 97 passengers, 13 Paradise Bay and Almirante Brown 8 January 22 expedition sta , and the hardworking ship’s crew. -
South Shetland Islands and the Antarctic Peninsula
RCC PILOTAGE FOUNDATION www.rccpf.org.uk SOUTH SHETLAND ISLANDS PETE HILL ©RCC Pilotage Foundation 2004 AND THE ANTARCTIC PENINSULA NOËL MARSHALL ©RCC Pilotage Foundation 2007 The RCC Pilotage Foundation is grateful to Pete Hill and Noël Marshall for describing their experiences during cruises to these waters. These separate accounts overlap in the Shetland Islands. This can best be seen in the Contents page of this interactive publication. Caution These notes have been prepared by the authors on the basis of the information they were able to obtain in the course of their indidual visits to the areas described. In particular, soundings shown reflect the route taken by the author and the absence of soundings does not indicate that depths are necessarily safe. The notes are in no way comprehensive and refer only to the conditions encountered at the time of the visits. Any plans are simply sketches and do not represent the results of a survey of the places referred to. They should be used with extreme caution. The RCC Pilotage Foundation and the authors have published these notes in the hope that they may be of some help to mariners but the safety of a vessel depends ultimately on the judgment of the skipper who should assess all information, published or unpublished. To the extent permitted by law, the RCC Pilotage Foundation and the authors do not accept liability for any loss and/or damage howsoever caused that may arise from reliance on information contained in these pages. CONTENTS To view the area in Google Maps, click pin PETE HILL