DEC Fauna List
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogenetic Analysis of Anostracans (Branchiopoda: Anostraca) Inferred from Nuclear 18S Ribosomal DNA (18S Rdna) Sequences
MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 25 (2002) 535–544 www.academicpress.com Phylogenetic analysis of anostracans (Branchiopoda: Anostraca) inferred from nuclear 18S ribosomal DNA (18S rDNA) sequences Peter H.H. Weekers,a,* Gopal Murugan,a,1 Jacques R. Vanfleteren,a Denton Belk,b and Henri J. Dumonta a Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium b Biology Department, Our Lady of the Lake University of San Antonio, San Antonio, TX 78207, USA Received 20 February 2001; received in revised form 18 June 2002 Abstract The nuclear small subunit ribosomal DNA (18S rDNA) of 27 anostracans (Branchiopoda: Anostraca) belonging to 14 genera and eight out of nine traditionally recognized families has been sequenced and used for phylogenetic analysis. The 18S rDNA phylogeny shows that the anostracans are monophyletic. The taxa under examination form two clades of subordinal level and eight clades of family level. Two families the Polyartemiidae and Linderiellidae are suppressed and merged with the Chirocephalidae, of which together they form a subfamily. In contrast, the Parartemiinae are removed from the Branchipodidae, raised to family level (Parartemiidae) and cluster as a sister group to the Artemiidae in a clade defined here as the Artemiina (new suborder). A number of morphological traits support this new suborder. The Branchipodidae are separated into two families, the Branchipodidae and Ta- nymastigidae (new family). The relationship between Dendrocephalus and Thamnocephalus requires further study and needs the addition of Branchinella sequences to decide whether the Thamnocephalidae are monophyletic. Surprisingly, Polyartemiella hazeni and Polyartemia forcipata (‘‘Family’’ Polyartemiidae), with 17 and 19 thoracic segments and pairs of trunk limb as opposed to all other anostracans with only 11 pairs, do not cluster but are separated by Linderiella santarosae (‘‘Family’’ Linderiellidae), which has 11 pairs of trunk limbs. -
A New Species of Bothriembryon (Mollusca, Gastropoda
A peer-reviewed open-access journal ZooKeys 581: 127–140A new species(2016) of Bothriembryon (Mollusca, Gastropoda, Bothriembryontidae)... 127 doi: 10.3897/zookeys.581.8044 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of Bothriembryon (Mollusca, Gastropoda, Bothriembryontidae) from south-eastern Western Australia Corey S. Whisson1,2, Abraham S.H. Breure3,4 1 Western Australian Museum, Locked Bag 49, Welshpool, WA 6106, Australia 2 School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia 3 Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands 4 Royal Belgian Institute of Natural Sciences, Vautierstraat 29, Brussels, Belgium Corresponding author: Abraham S.H. Breure ([email protected]) Academic editor: F. Köhler | Received 5 February 2016 | Accepted 17 March 2016 | Published 14 April 2016 http://zoobank.org/15337CC0-0F00-4682-97C0-DAAE0D5CC2BE Citation: Whisson CS, Breure ASH (2016) A new species of Bothriembryon (Mollusca, Gastropoda, Bothriembryontidae) from south-eastern Western Australia. ZooKeys 581: 127–140. doi: 10.3897/zookeys.581.8044 Abstract Bothriembryon sophiarum sp. n. is described, based on shell and anatomical morphology, from the coastal area of south-easternmost Western Australia. This is the first description of a new extant Australian bo- thriembryontid in 33 years. The shell of B. sophiarum is slender with a unique teleoconch sculpture. It is found in low coastal scrub on cliff edges and escarpments and because of its restricted distribution, qualifies as a short range endemic. Keywords Western Australia, Orthalicoidea, ecology, anatomy, micro-CT Introduction Along with the diverse and generally more northern and eastern Camaenidae, the en- demic Australian genus Bothriembryon (Bothriembryontidae) forms a large and charac- teristic component of the Australian terrestrial molluscan fauna, particularly in Western Australia (Iredale 1939; Kershaw 1985; Solem 1998). -
Anchialine Cave Biology in the Era of Speleogenomics Jorge L
International Journal of Speleology 45 (2) 149-170 Tampa, FL (USA) May 2016 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Life in the Underworld: Anchialine cave biology in the era of speleogenomics Jorge L. Pérez-Moreno1*, Thomas M. Iliffe2, and Heather D. Bracken-Grissom1 1Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami FL 33181, USA 2Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA Abstract: Anchialine caves contain haline bodies of water with underground connections to the ocean and limited exposure to open air. Despite being found on islands and peninsular coastlines around the world, the isolation of anchialine systems has facilitated the evolution of high levels of endemism among their inhabitants. The unique characteristics of anchialine caves and of their predominantly crustacean biodiversity nominate them as particularly interesting study subjects for evolutionary biology. However, there is presently a distinct scarcity of modern molecular methods being employed in the study of anchialine cave ecosystems. The use of current and emerging molecular techniques, e.g., next-generation sequencing (NGS), bestows an exceptional opportunity to answer a variety of long-standing questions pertaining to the realms of speciation, biogeography, population genetics, and evolution, as well as the emergence of extraordinary morphological and physiological adaptations to these unique environments. The integration of NGS methodologies with traditional taxonomic and ecological methods will help elucidate the unique characteristics and evolutionary history of anchialine cave fauna, and thus the significance of their conservation in face of current and future anthropogenic threats. -
§4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
§4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm, -
Monitoring Program – Fauna
Procedure Document No. 2663 Document Title Monitoring Program – Fauna Area HSE Issue Date Major Process Environment Sub Process Authoriser Jacqui McGill – Asset President Version Number 19 Olympic Dam 1 SCOPE..................................................................................................................................... 2 1.1 Responsible ODC personnel ........................................................................................... 2 1.2 Review and modification ................................................................................................. 2 2 DETAILED PROCEDURE ........................................................................................................ 3 2.1 Feral and abundant species ............................................................................................ 3 2.2 ‘At-risk’ fauna – Category 1a ........................................................................................... 3 2.3 ‘At-risk’ fauna – Categories 1b and 2 ............................................................................... 4 2.4 Fauna losses .................................................................................................................. 5 3 COMMITMENTS ...................................................................................................................... 7 3.1 Reporting ........................................................................................................................ 7 3.2 Summary of commitments.............................................................................................. -
Platypus Collins, L.R
AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March. -
Calaby References
Abbott, I.J. (1974). Natural history of Curtis Island, Bass Strait. 5. Birds, with some notes on mammal trapping. Papers and Proceedings of the Royal Society of Tasmania 107: 171–74. General; Rodents; Abbott, I. (1978). Seabird islands No. 56 Michaelmas Island, King George Sound, Western Australia. Corella 2: 26–27. (Records rabbit and Rattus fuscipes). General; Rodents; Lagomorphs; Abbott, I. (1981). Seabird Islands No. 106 Mondrain Island, Archipelago of the Recherche, Western Australia. Corella 5: 60–61. (Records bush-rat and rock-wallaby). General; Rodents; Abbott, I. and Watson, J.R. (1978). The soils, flora, vegetation and vertebrate fauna of Chatham Island, Western Australia. Journal of the Royal Society of Western Australia 60: 65–70. (Only mammal is Rattus fuscipes). General; Rodents; Adams, D.B. (1980). Motivational systems of agonistic behaviour in muroid rodents: a comparative review and neural model. Aggressive Behavior 6: 295–346. Rodents; Ahern, L.D., Brown, P.R., Robertson, P. and Seebeck, J.H. (1985). Application of a taxon priority system to some Victorian vertebrate fauna. Fisheries and Wildlife Service, Victoria, Arthur Rylah Institute of Environmental Research Technical Report No. 32: 1–48. General; Marsupials; Bats; Rodents; Whales; Land Carnivores; Aitken, P. (1968). Observations on Notomys fuscus (Wood Jones) (Muridae-Pseudomyinae) with notes on a new synonym. South Australian Naturalist 43: 37–45. Rodents; Aitken, P.F. (1969). The mammals of the Flinders Ranges. Pp. 255–356 in Corbett, D.W.P. (ed.) The natural history of the Flinders Ranges. Libraries Board of South Australia : Adelaide. (Gives descriptions and notes on the echidna, marsupials, murids, and bats recorded for the Flinders Ranges; also deals with the introduced mammals, including the dingo). -
Insights Into Australian Bat Lyssavirus in Insectivorous Bats of Western Australia
Tropical Medicine and Infectious Disease Article Insights into Australian Bat Lyssavirus in Insectivorous Bats of Western Australia Diana Prada 1,*, Victoria Boyd 2, Michelle Baker 2, Bethany Jackson 1,† and Mark O’Dea 1,† 1 School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; [email protected] (B.J.); [email protected] (M.O.) 2 Australian Animal Health Laboratory, CSIRO, Geelong, VIC 3220, Australia; [email protected] (V.B.); [email protected] (M.B.) * Correspondence: [email protected]; Tel.: +61-893607418 † These authors contributed equally. Received: 21 February 2019; Accepted: 7 March 2019; Published: 11 March 2019 Abstract: Australian bat lyssavirus (ABLV) is a known causative agent of neurological disease in bats, humans and horses. It has been isolated from four species of pteropid bats and a single microbat species (Saccolaimus flaviventris). To date, ABLV surveillance has primarily been passive, with active surveillance concentrating on eastern and northern Australian bat populations. As a result, there is scant regional ABLV information for large areas of the country. To better inform the local public health risks associated with human-bat interactions, this study describes the lyssavirus prevalence in microbat communities in the South West Botanical Province of Western Australia. We used targeted real-time PCR assays to detect viral RNA shedding in 839 oral swabs representing 12 species of microbats, which were sampled over two consecutive summers spanning 2016–2018. Additionally, we tested 649 serum samples via Luminex® assay for reactivity to lyssavirus antigens. Active lyssavirus infection was not detected in any of the samples. -
Translocations and Fauna Reconstruction Sites: Western Shield Review—February 2003
108 Conservation Science W. Aust. 5 (2) : 108–121P.R. Mawson (2004) Translocations and fauna reconstruction sites: Western Shield review—February 2003 PETER R. MAWSON1 1Senior Zoologist, Wildlife Branch , Department of Conservation and Land Management, Locked Bag 104 Bentley Delivery Centre WA 6983. [email protected] SUMMARY address this problem, but will result in slower progress towards future milestones for some species. The captive-breeding of western barred bandicoots Objectives has also been hampered by disease issues, but this problem is dealt with in more detail elsewhere in this edition (see The objectives of Western Shield with regard to fauna Morris et al. this issue). translocations were to re-introduce a range of native fauna There is a clear need to better define criteria that will species to a number of sites located primarily in the south- be used to determine the success or failure of translocation west of Western Australia. At some sites whole suites of programs, and for those same criteria to be included in fauna needed to be re-introduced, while at others only Recovery Plans and Interim Recovery Plans. one or a few species were targeted for re-introduction. A small number of the species that are currently the Integration of Western Shield activities with recovery subject of captive-breeding programs and or translocations actions and co-operative arrangements with community do not have Recovery Plans or Interim Recovery Plans, groups, wildlife carers, wildlife sanctuaries, Perth Zoo and contrary to CALM Policy Statement No. 50. In other educational outcomes were other key objectives. cases the priorities by which plans are written does not Achievements reflect the IUCN rank assigned those species by the Western Australian Threatened Species Scientific The fauna translocation objectives defined in the founding Committee. -
ABSTRACT Keys from Other Parts of Australia Provide a Good Basis for Making Identifications in Many Cases
The current status of bats in Western Australia Kyle N. Armstrong Specialised Zoological; [email protected] Understanding of the distribution and ecology of some Western Australian bats has advanced considerably in the last ten years, while knowledge of others remains basic. The state has one species listed in the highest conservation level under state legislation (Rhinonicteris aurantia), and one population of this species is listed in a Threatened category under the Commonwealth Environment Protection and Biodiversity Conservation Act 1999. Six other species are included on the Department of Environment and Conservation’s Priority Fauna Listing based on their known distribution and representation on conservation and threatened lands (Falsistrellus mackenziei, Hipposideros stenotis, Macroderma gigas, Mormopterus loriae cobourgiana, Nyctophilus major tor and Vespadelus douglasorum). These listings reflect mainly a lack of knowledge and perceived threat. Recent unpublished research on R. aurantia and M. gigas has provided much relevant information for assessing development proposals, mainly in the Pilbara where plans for iron and gold mines coincide Downloaded from http://meridian.allenpress.com/book/chapter-pdf/2647925/fs_2011_026.pdf by guest on 29 September 2021 with their habitat. There are several unresolved taxonomic issues in the fauna, and when these are resolved, the tally for the state might increase by up to two species from a total of 37. The impact of logging, mining and other disturbances involving forest clearing in the south west is largely unknown, but the first studies have been completed recently. The status of cave occupancy of bats in south west caves was recently assessed, and only five caves have persistent bat colonies of significant size. -
Annual Report 2010–2011
Australian Museum 2010–2011 Report Annual Australian Museum Annual Report 2010–2011 Australian Museum Annual Report 2010 – 2011 ii Australian Museum Annual Report 2010 –11 The Australian Museum Annual Report 2010 –11 Availability is published by the Australian Museum Trust, This annual report has been designed for accessible 6 College Street Sydney NSW 2010. online use and distribution. A limited number of copies have been printed for statutory purposes. © Australian Museum Trust 2011 This report is available at: ISSN 1039-4141 www.australianmuseum.net.au/Annual-Reports. Editorial Further information on the research and education Project management: Wendy Rapee programs and services of the Australian Museum Editing and typesetting: Brendan Atkins can be found at www.australianmuseum.net.au. Proofreading: Lindsay Taaffe Design and production: Australian Museum Environmental responsibility Design Studio Printed on Sovereign Offset, an FSC- certified paper from responsibly grown fibres, made under an All photographs © Australian Museum ISO 14001– accredited environmental management 2011, unless otherwise indicated. system and without the use of elemental chlorine. Contact Australian Museum 6 College Street Sydney NSW 2010 Open daily 9.30 am – 5.00 pm t 02 9320 6000 f 02 9320 6050 e [email protected] w www.australianmuseum.net.au www.facebook.com/australianmuseum www.twitter.com/austmus www.youtube.com/austmus front cover: The Museum's after-hours program, Jurassic Lounge, attracted a young adult audience to enjoy art, music and new ideas. Photo Stuart Humphreys. iii Minister The Hon. George Souris, MP and Minister for the Arts Governance The Museum is governed by a Trust established under the Australian Museum Trust Act 1975. -
Vertebrate Monitoring and Re-Sampling in Kakadu National Park
Vertebrate monitoring and re-sampling in Kakadu National Park Final report to Parks Australia: February 2002. John Woinarski, Michelle Watson and Nic Gambold Parks and Wildlife Commission of the Northern Territory PO Box 496 Palmerston Northern Territory, 0831. SUMMARY This report describes the results for the period January to December 2001 in the project Vertebrate Monitoring and Re-Sampling at Kakadu National Park (KNP), a collaborative project involving Parks Australia (North), Parks and Wildlife Commission of the Northern Territory, and the Tropical Savannas Cooperative Research Centre. The explicit objectives of this consultancy were to: • assess change in the vertebrate (and particularly mammal) fauna of KNP by re- sampling sites previously sampled; • assess the response of the mammal fauna to fire regimes, through sampling a set of sites selected to represent contrasting fire regimes; • establish a set of terrestrial vertebrate fauna samples which will contribute to the assessment of cane toad impacts; • sample terrestrial vertebrate fauna at a selection of existing KNP fire monitoring plots; • train Parks Australia staff in vertebrate sampling; and • collate all available data on terrestrial vertebrate fauna sampling, and deliver this to Parks Australia as GIS and other curated data bases. Note that this project will continue for a further year (2002). Hence, for some aspects of this project, the information presented here describes progress results rather than completed actions. monitoring and the Kakadu mammal fauna Prior to this work, there was no integrated monitoring program for terrestrial biodiversity across Kakadu NP. The development of such a program is important to assess the extent to which the Park’s values are being maintained and to help assess and guide management actions.