Transport Layer

Total Page:16

File Type:pdf, Size:1020Kb

Transport Layer T TRANSPORT LAYER INTRODUCTION The Internet has evolved into an extremely large complex system and has changed many important aspects of our lives. Like any complex engineering system, the design of the Internet is carried out in a modular way, where each main functional module is called a ‘‘layer.’’ One of the layering structures often used is the five-layer model con- sisting of the physical layer, the link layer, the network Figure 1. Internet protocol stack. layer, the transport layer, and the application layer.1 See Fig. 1 for a simple illustration. The sending and receiving computers each run analo- gous stacks, with data being passed down the stack from the processes running on one host. For example, a computer sending application, and then up the receiver’s stack to the may be sending several files generated by filling in web receiving application. The physical layer is the part that forms,whileatthesametimesendinge-mails.Thenet- actually moves information from one place to another, such work layer only cares about sending a stream of data out of as by varying voltages on wires or generating electromag- the computer. Therefore, the transport layer needs to netic waves. The application layer is the part with which aggregate data from different applications into a single users interact, such as the hypertext transport protocol stream before passing it to the network layer. This is (HTTP) used to browse the Web, or the simple mail transfer called multiplexing. Similarly, when the computer protocol (SMTP) used to send e-mail. receives data from the outside, the transport layer is again Each layer consists of protocols to specify such things as responsible for distributing that data to different applica- the data format, the procedure for exchanging data, the tions—such as a web browser or e-mail client—in a process allocation of resources, and the actions that need to be taken called demultiplexing. Figure 1 also shows the data direc- in different circumstances. This protocol can be implemen- tions for multiplexing (sending) and demultiplexing ted in either software or hardware or both. This article (receiving). concerns transport layer protocols and their associated algo- Multiplexing is achieved by dividing flows of data from rithms, mainly focusing on the wireline Internet but also the application into (one or more) short packets, also called discussing some other types of networks such as wireless segments. Packets from different flows can then be inter- ones. leaved as they are sent to the network layer. Demultiplex- The transport layer manages the end-to-end transpor- ing is achieved by allocating each communication flow a tation of packets across a network. Its role is to connect unique identifier. The sender marks each packet with its application processes running on end hosts as seamlessly as flow’s identifier, and the receiver separates incoming possible, as if the two end applications were connected by a packets into flows based on their identifiers. In the Inter- reliable dedicated link, thus making the network ‘‘invisi- net, these identifiers consist of transport layer port num- ble.’’ To do this, it must manage several nonidealities of real bers, and additionally the network layer addresses of the networks: shared links, data loss and duplication, conten- sender and receiver and a number identifying the trans- tion for resources, and variability of delay. By examining port layer protocol being used. Even before a flow is these functionalities in turn, we will provide a brief intro- started, a ‘‘well-known’’ port number can be used to iden- duction to this important layer, including its functions and tify which process on the receiver the sender is attempting implementation, with an emphasis on the underlying ideas to contact; for example, Web servers are ‘‘well known’’ to and fundamentals. We will also discuss possible directions use port 80. for the future evolution of the transport layer and suggest Multiplexing and demultiplexing is one of the most some further reading. fundamental tasks of the transport layer. Other functions are required by some applications but not by all, and so different transport layer protocols provide different subsets MULTIPLEXING: MANAGING LINK SHARING of the possible services. However, essentially all transport layer protocols perform at least multiplexing and demulti- One basic function of the transport layer is multiplexing plexing. and demultiplexing. Usually there are multiple application There are two dominant types of transport layer protocol used in the Internet. One is UDP (User Datagram Protocol), 1There are also some other ways of defining these layers; e.g., the and the other is TCP (Transmission Control Protocol). The standard OSI (open systems interconnection) reference model former provides unreliable and connectionless service to defines seven layers with the session layer and the presentation the upper layers, whereas the latter generates reliable and layer added. connection-based service. 1 Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah. Copyright # 2008 John Wiley & Sons, Inc. 2 TRANSPORT LAYER UDP: Multiplexing Only for packet loss include transient routing loops, congestion of a resource, or physical errors that were not successfully UDP is a very simple protocol. It is called connectionless corrected by the physical or link layer. because all UDP packets are treated independently by the This problem is very similar to that faced by the link transport layer, rather than being part of an ongoing flow.2 layer. The difference is that the link layer operates over a Besides minor error checking, UDP essentially only does single unreliable physical link to make it appear reliable to multiplexing and demultiplexing. It does not provide any the network layer, whereas the transport layer operates guarantee that packets will be received in the order they are over an entire unreliable network to make it appear reliable sent, or even that they will be received at all. It also does not to the application. For this reason, the algorithms employed control its transmission rate. In fact, the rationale behind at the transport layer are very similar to those employed at the design of UDP is to let applications have more control the link layer, and they will be reviewed briefly here. over the data sending process and to reduce the delay ARQ (Automatic Repeat-reQuest) is the basic mechan- associated with setting up a connection. These features ism to deal with data corruption. When the receiver receives are desirable for certain delay-sensitive applications such a correct data packet, it will send out a positive acknowl- as streaming video and Internet telephony. In general, edgment (ACK); when it detects an error, it will send out a applications that can tolerate certain data loss/corruption negative acknowledgment (NAK). but are sensitive to delay would choose to use UDP. Because physically corrupted packets are usually dis- carded by the link layer, the transport layer will not directly TCP: Reliable Connection-Oriented Transport observe that a packet has been lost, and hence, many trans- In contrast to UDP, TCP provides a connection-oriented port layer protocols do not explicitly implement NAKs. A service, which means that it sends data as a stream of notable exception is multicast transport protocols. Multicast related packets, making concepts such as the order of pack- protocols allow the sender to send a single packet, which is ets meaningful. In particular, TCP provides reliable service replicated inside the network to reach multiple receivers, to upper layer applications, ensuring that the packets are possiblynumberinginthethousands.IfeachsentanACKfor correctly received and in the order in which they are sent. every packet, the receiver would be flooded. If instead recei- At the start of a connection, TCP uses a three-way vers send NAKs only when they believe packets are missing, handshake to establish a connection between sender and the network load is greatly reduced. TCP implicitly regards receiver, in which they agree on what protocol parameters ACKs for three or more out-of-order packets (resulting in to use. This process takes 1.5 round-trip times (one side ‘‘duplicate ACKs’’) as forming a NAK. sends a SYNchronize packet, the other replies with a SYN An interesting problem immediately develops. If the and an ACKnowledge packet, and the first confirms with an sender only sends the next packet when it is sure the first ACK), which is an overhead avoided by UDP. one is received correctly, the system will be very inefficient. TCP receives data from the application as a single In that case, the sender would only be able to send one packet stream, e.g., a large file, and segments it into a sequence every round-trip time (the time it takes for a packet to reach of packets. It tries to use large packets to minimize over- the destination and the ACK to return), whereas the time head, but there is a maximum size that the network can taken to send a packet is usually much smaller than the carry efficiently, called the MTU (maximum transfer unit). round-trip time. This is especially true for today’s high-speed TCP is responsible for choosing the correct size, in a process networks. For example, consider a 1 Gbit/s (1,000,000,000 called path MTU discovery. In contrast, UDP is given data bits per second) connection between two hosts that are already segmented into packets, and so it is the applica- separated by 1500 km and therefore have a round-trip tion’s responsibility to observe MTU restrictions. distance of 3000 km. Sending a packet of size 10 kbit takes TCP is the most common transport protocol in the only 10 ms (ten microseconds), whereas the round-trip time Internet; measurements show that it accounds for about cannot be smaller than the physical distance divided by the 80% of the traffic (1).
Recommended publications
  • The Transport Layer: Tutorial and Survey SAMI IREN and PAUL D
    The Transport Layer: Tutorial and Survey SAMI IREN and PAUL D. AMER University of Delaware AND PHILLIP T. CONRAD Temple University Transport layer protocols provide for end-to-end communication between two or more hosts. This paper presents a tutorial on transport layer concepts and terminology, and a survey of transport layer services and protocols. The transport layer protocol TCP is used as a reference point, and compared and contrasted with nineteen other protocols designed over the past two decades. The service and protocol features of twelve of the most important protocols are summarized in both text and tables. Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—Data communications; Open System Interconnection Reference Model (OSI); C.2.1 [Computer-Communication Networks]: Network Architecture and Design—Network communications; Packet-switching networks; Store and forward networks; C.2.2 [Computer-Communication Networks]: Network Protocols; Protocol architecture (OSI model); C.2.5 [Computer- Communication Networks]: Local and Wide-Area Networks General Terms: Networks Additional Key Words and Phrases: Congestion control, flow control, transport protocol, transport service, TCP/IP 1. INTRODUCTION work of routers, bridges, and communi- cation links that moves information be- In the OSI 7-layer Reference Model, the tween hosts. A good transport layer transport layer is the lowest layer that service (or simply, transport service) al- operates on an end-to-end basis be- lows applications to use a standard set tween two or more communicating of primitives and run on a variety of hosts. This layer lies at the boundary networks without worrying about differ- between these hosts and an internet- ent network interfaces and reliabilities.
    [Show full text]
  • Solutions to Chapter 2
    CS413 Computer Networks ASN 4 Solutions Solutions to Assignment #4 3. What difference does it make to the network layer if the underlying data link layer provides a connection-oriented service versus a connectionless service? [4 marks] Solution: If the data link layer provides a connection-oriented service to the network layer, then the network layer must precede all transfer of information with a connection setup procedure (2). If the connection-oriented service includes assurances that frames of information are transferred correctly and in sequence by the data link layer, the network layer can then assume that the packets it sends to its neighbor traverse an error-free pipe. On the other hand, if the data link layer is connectionless, then each frame is sent independently through the data link, probably in unconfirmed manner (without acknowledgments or retransmissions). In this case the network layer cannot make assumptions about the sequencing or correctness of the packets it exchanges with its neighbors (2). The Ethernet local area network provides an example of connectionless transfer of data link frames. The transfer of frames using "Type 2" service in Logical Link Control (discussed in Chapter 6) provides a connection-oriented data link control example. 4. Suppose transmission channels become virtually error-free. Is the data link layer still needed? [2 marks – 1 for the answer and 1 for explanation] Solution: The data link layer is still needed(1) for framing the data and for flow control over the transmission channel. In a multiple access medium such as a LAN, the data link layer is required to coordinate access to the shared medium among the multiple users (1).
    [Show full text]
  • TCP Congestion Control: Overview and Survey of Ongoing Research
    Purdue University Purdue e-Pubs Department of Computer Science Technical Reports Department of Computer Science 2001 TCP Congestion Control: Overview and Survey Of Ongoing Research Sonia Fahmy Purdue University, [email protected] Tapan Prem Karwa Report Number: 01-016 Fahmy, Sonia and Karwa, Tapan Prem, "TCP Congestion Control: Overview and Survey Of Ongoing Research" (2001). Department of Computer Science Technical Reports. Paper 1513. https://docs.lib.purdue.edu/cstech/1513 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. TCP CONGESTION CONTROL: OVERVIEW AND SURVEY OF ONGOING RESEARCH Sonia Fahmy Tapan Prem Karwa Department of Computer Sciences Purdue University West Lafayette, IN 47907 CSD TR #01-016 September 2001 TCP Congestion Control: Overview and Survey ofOngoing Research Sonia Fahmy and Tapan Prem Karwa Department ofComputer Sciences 1398 Computer Science Building Purdue University West Lafayette, IN 47907-1398 E-mail: {fahmy,tpk}@cs.purdue.edu Abstract This paper studies the dynamics and performance of the various TCP variants including TCP Tahoe, Reno, NewReno, SACK, FACK, and Vegas. The paper also summarizes recent work at the lETF on TCP im­ plementation, and TCP adaptations to different link characteristics, such as TCP over satellites and over wireless links. 1 Introduction The Transmission Control Protocol (TCP) is a reliable connection-oriented stream protocol in the Internet Protocol suite. A TCP connection is like a virtual circuit between two computers, conceptually very much like a telephone connection. To maintain this virtual circuit, TCP at each end needs to store information on the current status of the connection, e.g., the last byte sent.
    [Show full text]
  • OSI Model and Network Protocols
    CHAPTER4 FOUR OSI Model and Network Protocols Objectives 1.1 Explain the function of common networking protocols . TCP . FTP . UDP . TCP/IP suite . DHCP . TFTP . DNS . HTTP(S) . ARP . SIP (VoIP) . RTP (VoIP) . SSH . POP3 . NTP . IMAP4 . Telnet . SMTP . SNMP2/3 . ICMP . IGMP . TLS 134 Chapter 4: OSI Model and Network Protocols 4.1 Explain the function of each layer of the OSI model . Layer 1 – physical . Layer 2 – data link . Layer 3 – network . Layer 4 – transport . Layer 5 – session . Layer 6 – presentation . Layer 7 – application What You Need To Know . Identify the seven layers of the OSI model. Identify the function of each layer of the OSI model. Identify the layer at which networking devices function. Identify the function of various networking protocols. Introduction One of the most important networking concepts to understand is the Open Systems Interconnect (OSI) reference model. This conceptual model, created by the International Organization for Standardization (ISO) in 1978 and revised in 1984, describes a network architecture that allows data to be passed between computer systems. This chapter looks at the OSI model and describes how it relates to real-world networking. It also examines how common network devices relate to the OSI model. Even though the OSI model is conceptual, an appreciation of its purpose and function can help you better understand how protocol suites and network architectures work in practical applications. The OSI Seven-Layer Model As shown in Figure 4.1, the OSI reference model is built, bottom to top, in the following order: physical, data link, network, transport, session, presentation, and application.
    [Show full text]
  • Is QUIC a Better Choice Than TCP in the 5G Core Network Service Based Architecture?
    DEGREE PROJECT IN INFORMATION AND COMMUNICATION TECHNOLOGY, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Is QUIC a Better Choice than TCP in the 5G Core Network Service Based Architecture? PETHRUS GÄRDBORN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE Is QUIC a Better Choice than TCP in the 5G Core Network Service Based Architecture? PETHRUS GÄRDBORN Master in Communication Systems Date: November 22, 2020 Supervisor at KTH: Marco Chiesa Supervisor at Ericsson: Zaheduzzaman Sarker Examiner: Peter Sjödin School of Electrical Engineering and Computer Science Host company: Ericsson AB Swedish title: Är QUIC ett bättre val än TCP i 5G Core Network Service Based Architecture? iii Abstract The development of the 5G Cellular Network required a new 5G Core Network and has put higher requirements on its protocol stack. For decades, TCP has been the transport protocol of choice on the Internet. In recent years, major Internet players such as Google, Facebook and CloudFlare have opted to use the new QUIC transport protocol. The design assumptions of the Internet (best-effort delivery) differs from those of the Core Network. The aim of this study is to investigate whether QUIC’s benefits on the Internet will translate to the 5G Core Network Service Based Architecture. A testbed was set up to emulate traffic patterns between Network Functions. The results show that QUIC reduces average request latency to half of that of TCP, for a majority of cases, and doubles the throughput even under optimal network conditions with no packet loss and low (20 ms) RTT. Additionally, by measuring request start and end times “on the wire”, without taking into account QUIC’s shorter connection establishment, we believe the results indicate QUIC’s suitability also under the long-lived (standing) connection model.
    [Show full text]
  • A QUIC Implementation for Ns-3
    This paper has been submitted to WNS3 2019. Copyright may be transferred without notice. A QUIC Implementation for ns-3 Alvise De Biasio, Federico Chiariotti, Michele Polese, Andrea Zanella, Michele Zorzi Department of Information Engineering, University of Padova, Padova, Italy e-mail: {debiasio, chiariot, polesemi, zanella, zorzi}@dei.unipd.it ABSTRACT One of the most important novelties is QUIC, a transport pro- Quick UDP Internet Connections (QUIC) is a recently proposed tocol implemented at the application layer, originally proposed by transport protocol, currently being standardized by the Internet Google [8] and currently considered for standardization by the Engineering Task Force (IETF). It aims at overcoming some of the Internet Engineering Task Force (IETF) [6]. QUIC addresses some shortcomings of TCP, while maintaining the logic related to flow of the issues that currently affect transport protocols, and TCP in and congestion control, retransmissions and acknowledgments. It particular. First of all, it is designed to be deployed on top of UDP supports multiplexing of multiple application layer streams in the to avoid any issue with middleboxes in the network that do not same connection, a more refined selective acknowledgment scheme, forward packets from protocols other than TCP and/or UDP [12]. and low-latency connection establishment. It also integrates cryp- Moreover, unlike TCP, QUIC is not integrated in the kernel of the tographic functionalities in the protocol design. Moreover, QUIC is Operating Systems (OSs), but resides in user space, so that changes deployed at the application layer, and encapsulates its packets in in the protocol implementation will not require OS updates. Finally, UDP datagrams.
    [Show full text]
  • Internet Protocol Suite
    InternetInternet ProtocolProtocol SuiteSuite Srinidhi Varadarajan InternetInternet ProtocolProtocol Suite:Suite: TransportTransport • TCP: Transmission Control Protocol • Byte stream transfer • Reliable, connection-oriented service • Point-to-point (one-to-one) service only • UDP: User Datagram Protocol • Unreliable (“best effort”) datagram service • Point-to-point, multicast (one-to-many), and • broadcast (one-to-all) InternetInternet ProtocolProtocol Suite:Suite: NetworkNetwork z IP: Internet Protocol – Unreliable service – Performs routing – Supported by routing protocols, • e.g. RIP, IS-IS, • OSPF, IGP, and BGP z ICMP: Internet Control Message Protocol – Used by IP (primarily) to exchange error and control messages with other nodes z IGMP: Internet Group Management Protocol – Used for controlling multicast (one-to-many transmission) for UDP datagrams InternetInternet ProtocolProtocol Suite:Suite: DataData LinkLink z ARP: Address Resolution Protocol – Translates from an IP (network) address to a network interface (hardware) address, e.g. IP address-to-Ethernet address or IP address-to- FDDI address z RARP: Reverse Address Resolution Protocol – Translates from a network interface (hardware) address to an IP (network) address AddressAddress ResolutionResolution ProtocolProtocol (ARP)(ARP) ARP Query What is the Ethernet Address of 130.245.20.2 Ethernet ARP Response IP Source 0A:03:23:65:09:FB IP Destination IP: 130.245.20.1 IP: 130.245.20.2 Ethernet: 0A:03:21:60:09:FA Ethernet: 0A:03:23:65:09:FB z Maps IP addresses to Ethernet Addresses
    [Show full text]
  • Medium Access Control Layer
    Telematics Chapter 5: Medium Access Control Sublayer User Server watching with video Beispielbildvideo clip clips Application Layer Application Layer Presentation Layer Presentation Layer Session Layer Session Layer Transport Layer Transport Layer Network Layer Network Layer Network Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller Data Link Layer Data Link Layer Data Link Layer Computer Systems and Telematics (CST) Physical Layer Physical Layer Physical Layer Institute of Computer Science Freie Universität Berlin http://cst.mi.fu-berlin.de Contents ● Design Issues ● Metropolitan Area Networks ● Network Topologies (MAN) ● The Channel Allocation Problem ● Wide Area Networks (WAN) ● Multiple Access Protocols ● Frame Relay (historical) ● Ethernet ● ATM ● IEEE 802.2 – Logical Link Control ● SDH ● Token Bus (historical) ● Network Infrastructure ● Token Ring (historical) ● Virtual LANs ● Fiber Distributed Data Interface ● Structured Cabling Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.2 Design Issues Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.3 Design Issues ● Two kinds of connections in networks ● Point-to-point connections OSI Reference Model ● Broadcast (Multi-access channel, Application Layer Random access channel) Presentation Layer ● In a network with broadcast Session Layer connections ● Who gets the channel? Transport Layer Network Layer ● Protocols used to determine who gets next access to the channel Data Link Layer ● Medium Access Control (MAC) sublayer Physical Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.4 Network Types for the Local Range ● LLC layer: uniform interface and same frame format to upper layers ● MAC layer: defines medium access ..
    [Show full text]
  • The Internet Protocol, Version 4 (Ipv4)
    Today’s Lecture I. IPv4 Overview The Internet Protocol, II. IP Fragmentation and Reassembly Version 4 (IPv4) III. IP and Routing IV. IPv4 Options Internet Protocols CSC / ECE 573 Fall, 2005 N.C. State University copyright 2005 Douglas S. Reeves 1 copyright 2005 Douglas S. Reeves 2 Internet Protocol v4 (RFC791) Functions • A universal intermediate layer • Routing IPv4 Overview • Fragmentation and reassembly copyright 2005 Douglas S. Reeves 3 copyright 2005 Douglas S. Reeves 4 “IP over Everything, Everything Over IP” IP = Basic Delivery Service • Everything over IP • IP over everything • Connectionless delivery simplifies router design – TCP, UDP – Dialup and operation – Appletalk – ISDN – Netbios • Unreliable, best-effort delivery. Packets may be… – SCSI – X.25 – ATM – Ethernet – lost (discarded) – X.25 – Wi-Fi – duplicated – SNA – FDDI – reordered – Sonet – ATM – Fibre Channel – Sonet – and/or corrupted – Frame Relay… – … – Remote Direct Memory Access – Ethernet • Even IP over IP! copyright 2005 Douglas S. Reeves 5 copyright 2005 Douglas S. Reeves 6 1 IPv4 Datagram Format IPv4 Header Contents 0 4 8 16 31 •Version (4 bits) header type of service • Functions version total length (in bytes) length (x4) prec | D T R C 0 •Header Length x4 (4) flags identification fragment offset (x8) 1. universal 0 DF MF s •Type of Service (8) e time-to-live (next) protocol t intermediate layer header checksum y b (hop count) identifier •Total Length (16) 0 2 2. routing source IP address •Identification (16) 3. fragmentation and destination IP address reassembly •Flags (3) s •Fragment Offset ×8 (13) e t 4. Options y IP options (if any) b •Time-to-Live (8) 0 4 ≤ •Protocol Identifier (8) s e t •Header Checksum (16) y b payload 5 •Source IP Address (32) 1 5 5 6 •Destination IP Address (32) ≤ •IP Options (≤ 320) copyright 2005 Douglas S.
    [Show full text]
  • The OSI Model: Understanding the Seven Layers of Computer Networks
    Expert Reference Series of White Papers The OSI Model: Understanding the Seven Layers of Computer Networks 1-800-COURSES www.globalknowledge.com The OSI Model: Understanding the Seven Layers of Computer Networks Paul Simoneau, Global Knowledge Course Director, Network+, CCNA, CTP Introduction The Open Systems Interconnection (OSI) model is a reference tool for understanding data communications between any two networked systems. It divides the communications processes into seven layers. Each layer both performs specific functions to support the layers above it and offers services to the layers below it. The three lowest layers focus on passing traffic through the network to an end system. The top four layers come into play in the end system to complete the process. This white paper will provide you with an understanding of each of the seven layers, including their functions and their relationships to each other. This will provide you with an overview of the network process, which can then act as a framework for understanding the details of computer networking. Since the discussion of networking often includes talk of “extra layers”, this paper will address these unofficial layers as well. Finally, this paper will draw comparisons between the theoretical OSI model and the functional TCP/IP model. Although TCP/IP has been used for network communications before the adoption of the OSI model, it supports the same functions and features in a differently layered arrangement. An Overview of the OSI Model Copyright ©2006 Global Knowledge Training LLC. All rights reserved. Page 2 A networking model offers a generic means to separate computer networking functions into multiple layers.
    [Show full text]
  • An Experimental Evaluation of Low Latency Congestion Control for Mmwave Links
    An Experimental Evaluation of Low Latency Congestion Control for mmWave Links Ashutosh Srivastava, Fraida Fund, Shivendra S. Panwar Department of Electrical and Computer Engineering, NYU Tandon School of Engineering Emails: fashusri, ffund, [email protected] Abstract—Applications that require extremely low latency are −40 expected to be a major driver of 5G and WLAN networks that −45 include millimeter wave (mmWave) links. However, mmWave −50 links can experience frequent, sudden changes in link capacity −55 due to obstructions in the signal path. These dramatic variations RSSI (dBm) in link capacity cause a temporary “bufferbloat” condition −60 0 25 50 75 100 during which delay may increase by a factor of 2-10. Low Time (s) latency congestion control protocols, which manage bufferbloat Fig. 1: Effect of human blocker on received signal strength of by minimizing queue occupancy, represent a potential solution a 60 GHz WLAN link. to this problem, however their behavior over links with dramatic variations in capacity is not well understood. In this paper, we explore the behavior of two major low latency congestion control protocols, TCP BBR and TCP Prague (as part of L4S), using link Link rate: 5 packets/ms traces collected over mmWave links under various conditions. 1ms queuing delay Our evaluation reveals potential problems associated with use of these congestion control protocols for low latency applications over mmWave links. Link rate: 1 packet/ms Index Terms—congestion control, low latency, millimeter wave 5ms queuing delay Fig. 2: Illustration of effect of variations in link capacity on I. INTRODUCTION queueing delay. Low latency applications are envisioned to play a significant role in the long-term growth and economic impact of 5G This effect is of great concern to low-delay applications, and future WLAN networks [1].
    [Show full text]
  • 61A Lecture 35 Distributed Computing Internet Protocol Transmission
    Announcements • Homework 9 (6 pts) due Wednesday 11/26 @ 11:59pm ! Homework Party Monday 6pm-8pm in 2050 VLSB • Guest in live lecture, TA Soumya Basu, on Monday 11/24 • Optional Scheme recursive art contest due Monday 12/1 @ 11:59pm 61A Lecture 35 • No lecture on Wednesday 11/26 (turkey) • No lab on Tuesday 11/25 & Wednesday 11/26 • The week of 12/1: Homework 10 due Wednesday 12/3 & Quiz 3 due Thursday 12/4 on SQL Monday, November 24 ! The lab on SQL (12/2 & 12/3) will be an excellent place to get homework help 2 Distributed Computing A distributed computing application consists of multiple programs running on multiple computers that together coordinate to perform some task. • Computation is performed in parallel by many computers. • Information can be restricted to certain computers. • Redundancy and geographic diversity improve reliability. Distributed Computing Characteristics of distributed computing: • Computers are independent — they do not share memory. • Coordination is enabled by messages passed across a network. • Individual programs have differentiating roles. Distributed computing for large-scale data processing: • Databases respond to queries over a network. • Data sets can be partitioned across multiple machines (next lecture). 4 Network Messages Computers communicate via messages: sequences of bytes transmitted over a network. Messages can serve many purposes: • Send data to another computer • Request data from another computer • Instruct a program to call a function on some arguments. Internet Protocol • Transfer a program to be executed by another computer. Messages conform to a message protocol adopted by both the sender (to encode the message) & receiver (to interpret the message).
    [Show full text]