Pascal's and Huygens's Game-Theoretic Foundations for Probability

Total Page:16

File Type:pdf, Size:1020Kb

Pascal's and Huygens's Game-Theoretic Foundations for Probability sarton2018_vol.32.book Page 117 Monday, September 30, 2019 10:37 AM Pascal’s and Huygens’s game-theoretic foundations for probability Glenn Shafer Blaise Pascal and Christiaan Huygens developed game-theoretic founda- tions for the calculus of chances – foundations that replaced appeals to frequency with arguments based on a game’s temporal structure. Pascal argued for equal division when chances are equal. Huygens extended the argument by considering strategies for a player who can make any bet with any opponent so long as its terms are equal. These game-theoretic foundations were disregarded by Pascal’s and Huygens’s 18th century successors, who found the already established foundation of equally frequent chances more conceptually relevant and mathematically fruitful. But the game-theoretic foundations can be devel- oped in ways that merit attention in the 21st century. 1. The calculus of chances before Pascal and Fermat We are often told that probability theory began with an exchange of letters in 1654 between Blaise Pascal (1623-1662) and Pierre Fermat (1607- 1665). As Florence Nightingale David put it, The name of Blaise Pascal is always linked with that of Fermat as one of the “joint discoverers” of the probability calculus.1 1 [1], p. 75. 117 sarton2018_vol.32.book Page 118 Monday, September 30, 2019 10:37 AM 118 We can trace this attribution back to Laplace, who told his students at the École Normale in 1795 that probability theory owes its birth to two French geometers of the 17th century.2 Laplace repeated these words in 1812, in the first edition of his Théorie analytique,3 but he tempered them two years later in the history of proba- bility theory with which he concluded his Essai philosophique: For quite a long time, people have ascertained the ratios of favourable to unfavourable chances in the simplest games; stakes and bets were fixed by these ratios. But before Pascal and Fermat, no one gave principles and methods for reducing the matter to calculation, and no one had solved prob- lems of this type that were even a little complicated. So we should attribute to these two great geometers the first elements of the science of probabili- ties …4 Many of Laplace’s successors have found the nuances unnecessary. Lacroix, for example, began his 1816 probability textbook with this unqualified attribution: The probability calculus, invented by Pascal and Fermat, has never since ceased exciting the interest and exercising the wisdom of their most illus- trious successors …5 Similar unqualified statements by mathematicians and historians of math- ematics abound, throughout the 19th and 20th centuries and up to the present day. But Laplace was surely correct when he conceded that people had been counting chances and using the counts to fix stakes and bets long before Pascal and Fermat. Counting chances People have been making finely balanced dice for millennia, and they have probably been counting the chances for throws of these dice for just as 2 Apparently not published at the time, Laplace’s lecture was reproduced on pp. 146-177 of Volume XIV of his complete works [2]. The words translated here come at the end of the lecture. Except when otherwise noted, all translations are mine. 3 [3], p. 3. 4 [4], p. 89. 5 [5], p. iii. sarton2018_vol.32.book Page 119 Monday, September 30, 2019 10:37 AM 119 long. But the earliest documentary evidence for such counting appears to be the Latin poem De Vetula, probably written around 1250 by a teacher of the quadrivium (arithmetic, geometry, astronomy, and music) at the University of Paris.6 A long poem, touching on philosophical, religious, and scientific topics, De Vetula begins by warning its readers against the temptations of erotic love and gambling. In the case of gambling, the author warns that a gambler faces ruin even if he knows how to count chances, then proceeds to count them anyway for the sum of the points on three dice. There are 216 chances, he explains, all of equal force and frequency. But the sum of the points can range from 3 to 18, and these 16 possibilities have unequal force and frequency. There are 108 chances that the sum will be between 3 and 10, distributed unequally: Sum of points 3 4 5 6 7 8 9 10 Total # of chances 1 3 6 10 15 21 25 27 108 There are another 108 chances that the sum will be between 11 and 18, distributed similarly: Sum of points 18 17 16 15 14 13 12 11 Total # of chances 1 3 6 10 15 21 25 27 108 David Bellhouse has called De Vetula a “medieval bestseller”. It was often quoted. Nearly 60 manuscript copies survive. The first printed edition appeared in about 1475. Not everyone who reproduced it understood how the author counted chances. But some did, including the editors of editions printed in 1479, 1534, and 1662. There are at least two other surviving documents in which mathematicians counted the chances for dice before 1654: a book by Cardano, who died in 1576, and a letter by Galileo, who died in 1642. Neither appeared in print in its author’s lifetime. Cardano’s Liber de Ludo Aleae was published in his collected works in 1663,7 and Galileo’s letter appeared in his collected works in 1718.8 Both Cardano and Galileo counted the chances for the sum 6 [6], [7], [8], [9]. 7 Geralamo Cardano, Liber de Ludo Aleae, in [10], volume 1, pp. 262-276. English translation in [11], pp. 182-241. 8 [12], pp. 591-594. English translation [1], pp. 192-195. sarton2018_vol.32.book Page 120 Monday, September 30, 2019 10:37 AM 120 of points on three dice. As Bellhouse has pointed out, Cardano’s presenta- tion suggests that he may have been influenced directly by De Vetula, whereas Galileo obtains the counts in a different way.9 As mathematics developed, mathematicians’ ability to count chances improved. Galileo mentions that the number of equally frequent chances is multiplied by 6 every time a die is added to the throw. There are 216 equal chances in the case of three dice because 6 × 6 × 6 = 216. The author of De Vetula had not mentioned this. Fixing stakes and bets The whole point of counting chances is to use them to fix stakes and bets. The author of De Vetula does not bother to explain how this is done, but readers adept in mathematics would have known what to do: use the rule of three. The universities of medieval Europe prepared young men for careers in the priesthood, law and medicine. To learn practical mathematics, you went elsewhere – to teachers who prepared young men to work in trade. We know what these teachers taught, because countless of their manuals – commercial arithmetics, we call them – have survived. This being a lecture in honour of George Sarton, I pause to recall Sarton’s interest in these manuals. As he pointed out in 1933, they were being written in both Arabic and in Spanish in Spain in the 11th century.10 They spread throughout Europe as trade developed.11 The rule of three was the main tool of the commercial arithmetics. After learning how to add, subtract, divide and multiply, merchants and their clerks need to understand proportions. If you buy 15 bushels of wheat for 10 shillings, what price should you charge someone else for 3 bushels? For us, this is a matter of algebra: 15/3 = 10/x, and so x = 2 shillings. But al- Khwarizmi’s 9th-century algebra was all in words, and the medieval commercial arithmetics still had only words. Algebra with symbols emerged only in the Renaissance. It was largely developed by the authors of commercial arithmetics – the Italian abacus masters and the German 9 [13]. 10 [14], [15]. 11 See for example [16]. sarton2018_vol.32.book Page 121 Monday, September 30, 2019 10:37 AM 121 reckoning masters. But even in the 19th century, commercial arithmetics emphasized the non-symbolic rule of three, deploying it in problem after problem in which you find an unknown fourth number in a proportion from three that are known, problems about trading in goods, dividing profits, changing currencies, pricing alloys, etc., etc. Occasionally, for fun, an author might throw in a problem about a game. Here are two questions that could have been answered by anyone who was adept at the rule of three and could count the chances for three dice. Q1. Three dice are to be thrown repeatedly until either a 9 or a 15 appears. Player A bets on 9 and Player B bets on 15. Player A puts 5 shillings on the table. How much should Player B put on the table? Q2. What should Player A pay in order to win 80 shillings if he throws an 11 on a single throw of three dice? Permitting ourselves a bit of algebra rather than trying to imitate a 13th- century abacus teacher’s use of the rule of three, we can answer these ques- tions as follows. A1. To answer Q1, we recall that there are 25 chances of throwing a 9 and only 10 chances of throwing a 15. The chances have equal frequency. So Player B wins 10 times for every 25 times Player A wins. Player A has put 5 shillings on the table for Player B to win. If we write x for the amount Player B puts on the table, then Player B wins 10 × 5 shil- lings every time Player A wins 25 × x.
Recommended publications
  • Objectiones Qvintae Y Disqvisitio Metaphysica De Pierre Gassendi
    OBJECTIONES QVINTAE Y DISQVISITIO METAPHYSICA DE PIERRE GASSENDI . TESIS DOCTORAL. REALIZADA POR JESÚS DEL VALLE CORTÉS. DIRIGIDA POR EL CATEDRÁTICO DOCTOR DON MARCELINO RODRÍGUEZ DONÍS. A la memoria de Fernando del Valle Vázquez, de su hijo agradecido. Y a Silvia Aguirrezábal Guerrero. LIBRO PRIMERO. EXHORDIVM. A MODO DE INTRODUCCIÓN. ería necesario un largo estudio para establecer con detalle las condiciones en las cuales fueron compuestas, en primer lugar, las S Quintas Objeciones de Pierre Gassendi, Prepósito de la Iglesia de Digne y agudísimo Filósofo, designadas de esta manera en un Índice redactado por Mersenne, y después las Instancias 1, fechadas el 15 de marzo de 1642, pero que seguramente comenzaron a difundirse durante el invierno anterior . Son palabras de Bernard Rochot 2 y con ellas comenzaba la introducción de su traducción francesa de la Petri Gassendi Disquisitio metaphysica . Esta tesis no es sino el cumplimiento de este anhelo de Rochot, que ha ya mucho convertimos en propio, si bien hemos ampliado los límites de la empresa, toda vez que este trabajo no se contenta con plasmar los acontecimientos que dieron lugar a la aparición de ambos escritos, sino que incluye el análisis pormenorizado de ellos, e incluso el de las escuetas réplicas de Descartes a las Instancias . Es la primera vez que se recorre el ciclo completo de los argumentos de la querella, hasta su cierre con la Carta a Clerselier . Eran años de carrera cuando estudiábamos, bajo la tutela del Doctor D. Marcelino Rodríguez Donís, las Meditationes de prima philosophia , con sus siete Objeciones y Respuestas y, de entre ellas, las agrias Objectiones quintae sobresalían, a nuestro juicio, muy por encima de las demás, a pesar de que uno de los siete objetores fuese el ínclito Thomas Hobbes 3.
    [Show full text]
  • Pascal's and Huygens's Game-Theoretic Foundations For
    Pascal's and Huygens's game-theoretic foundations for probability Glenn Shafer Rutgers University [email protected] The Game-Theoretic Probability and Finance Project Working Paper #53 First posted December 28, 2018. Last revised December 28, 2018. Project web site: http://www.probabilityandfinance.com Abstract Blaise Pascal and Christiaan Huygens developed game-theoretic foundations for the calculus of chances | foundations that replaced appeals to frequency with arguments based on a game's temporal structure. Pascal argued for equal division when chances are equal. Huygens extended the argument by considering strategies for a player who can make any bet with any opponent so long as its terms are equal. These game-theoretic foundations were disregarded by Pascal's and Huy- gens's 18th century successors, who found the already established foundation of equally frequent cases more conceptually relevant and mathematically fruit- ful. But the game-theoretic foundations can be developed in ways that merit attention in the 21st century. 1 The calculus of chances before Pascal and Fermat 1 1.1 Counting chances . .2 1.2 Fixing stakes and bets . .3 2 The division problem 5 2.1 Pascal's solution of the division problem . .6 2.2 Published antecedents . .7 2.3 Unpublished antecedents . .8 3 Pascal's game-theoretic foundation 9 3.1 Enter the Chevalier de M´er´e. .9 3.2 Carrying its demonstration in itself . 11 4 Huygens's game-theoretic foundation 12 4.1 What did Huygens learn in Paris? . 13 4.2 Only games of pure chance? . 15 4.3 Using algebra . 16 5 Back to frequency 18 5.1 Montmort .
    [Show full text]
  • A Tale of the Cycloid in Four Acts
    A Tale of the Cycloid In Four Acts Carlo Margio Figure 1: A point on a wheel tracing a cycloid, from a work by Pascal in 16589. Introduction In the words of Mersenne, a cycloid is “the curve traced in space by a point on a carriage wheel as it revolves, moving forward on the street surface.” 1 This deceptively simple curve has a large number of remarkable and unique properties from an integral ratio of its length to the radius of the generating circle, and an integral ratio of its enclosed area to the area of the generating circle, as can be proven using geometry or basic calculus, to the advanced and unique tautochrone and brachistochrone properties, that are best shown using the calculus of variations. Thrown in to this assortment, a cycloid is the only curve that is its own involute. Study of the cycloid can reinforce the curriculum concepts of curve parameterisation, length of a curve, and the area under a parametric curve. Being mechanically generated, the cycloid also lends itself to practical demonstrations that help visualise these abstract concepts. The history of the curve is as enthralling as the mathematics, and involves many of the great European mathematicians of the seventeenth century (See Appendix I “Mathematicians and Timeline”). Introducing the cycloid through the persons involved in its discovery, and the struggles they underwent to get credit for their insights, not only gives sequence and order to the cycloid’s properties and shows which properties required advances in mathematics, but it also gives a human face to the mathematicians involved and makes them seem less remote, despite their, at times, seemingly superhuman discoveries.
    [Show full text]
  • Cycloid Article(Final04)
    The Helen of Geometry John Martin The seventeenth century is one of the most exciting periods in the history of mathematics. The first half of the century saw the invention of analytic geometry and the discovery of new methods for finding tangents, areas, and volumes. These results set the stage for the development of the calculus during the second half. One curve played a central role in this drama and was used by nearly every mathematician of the time as an example for demonstrating new techniques. That curve was the cycloid. The cycloid is the curve traced out by a point on the circumference of a circle, called the generating circle, which rolls along a straight line without slipping (see Figure 1). It has been called it the “Helen of Geometry,” not just because of its many beautiful properties but also for the conflicts it engendered. Figure 1. The cycloid. This article recounts the history of the cycloid, showing how it inspired a generation of great mathematicians to create some outstanding mathematics. This is also a story of how pride, pettiness, and jealousy led to bitter disagreements among those men. Early history Since the wheel was invented around 3000 B.C., it seems that the cycloid might have been discovered at an early date. There is no evidence that this was the case. The earliest mention of a curve generated by a -1-(Final) point on a moving circle appears in 1501, when Charles de Bouvelles [7] used such a curve in his mechanical solution to the problem of squaring the circle.
    [Show full text]
  • Marin Mersenne As Mathematical Intelligencer
    Hist. Sci., li (2013) SMall SkIllS, BIG NETwORkS: MaRIN MERSENNE aS MaTHEMaTICal INTEllIGENCER Justin Grosslight Independent Scholar Writing in August 1634, the French polymath Nicolas-Claude Fabri de Peiresc reflected upon Marin Mersenne’s endeavours. Mersenne, Peiresc asserted, had forced himself into “frontiers that are a little more in fashion of the times than these prolix treaties of the schools that so few men handle outside of the colleges”.1 Peiresc was quite prescient to realize the novel claims that Mersenne was promoting. From the middle of the 1620s until his death in 1648, Mersenne encouraged discussion on a number of new mathematical concepts, ideas that lacked a secure home within the Aristotelian university curriculum.2 By mathematics, I am referring to mixed mathematics, the application of arithmetic and geometry often to physical proc- esses, and related topics in natural philosophy: examples include Galilean mechan- ics, the question of whether a void exists in nature, and analysis of conic sections and their spatial counterparts.3 For Peiresc and others, Mersenne was an exemplar of new, heterodox ideas: though he was a member of the religious Minim order, he was respected widely as a mathematician, he lived a gregarious life in cosmopoli- tan Paris, and he was an intimate friend of the famed French mathematician rené Descartes as well as a correspondent with the Italian Galileo Galilei and the Dutch Christiaan huygens.4 But while Mersenne is still remembered as a mathematician and correspondent of famous mathematicians, Peiresc’s description of Mersenne as trend-conscious or even a trendsetter has been effectively forgotten.
    [Show full text]
  • Figurate Numbers and Sums of Numerical Powers: Fermat, Pascal, Bernoulli
    Figurate numbers and sums of numerical powers: Fermat, Pascal, Bernoulli David Pengelley In the year 1636, one of the greatest mathematicians of the early seventeenth century, the Frenchman Pierre de Fermat (1601—1665), wrote to his correspondent Gilles Personne de Roberval1 (1602—1675) that he could solve “what is perhaps the most beautiful problem of all arithmetic” [4], and stated that he could do this using the following theorem on the figurate numbers derived from natural progressions, as he first stated in a letter to another correspondent, Marin Mersenne2 (1588—1648) in Paris: 11111111 Pierre de Fermat, from Letter to Mersenne. September/October, 1636, and again to Roberval, November 4, 1636 The last number multiplied by the next larger number is double the collateral triangle; the last number multiplied by the triangle of the next larger is three times the collateral pyramid; the last number multiplied by the pyramid of the next larger is four times the collateral triangulo-triangle; and so on indefinitely in this same manner [4], [15, p. 230f], [8, vol. II, pp. 70, 84—85]. 11111111 Fermat, most famous for his last theorem,3 worked on many problems, some of which had ancient origins. Fermat had a law degree and spent most of his life as a government offi cial in Toulouse. There are many indications that he did mathematics partly as a diversion from his professional duties, solely for personal gratification. That was not unusual in his day, since a mathematical profession comparable to today’sdid not exist. Very few scholars in Europe made a living through their research accomplishments.
    [Show full text]
  • Circular Reasoning: Who First Proved That $ C/D $ Is a Constant?
    CIRCULAR REASONING: WHO FIRST PROVED THAT C=d IS A CONSTANT? DAVID RICHESON Abstract. We answer the question: who first proved that C=d is a con- stant? We argue that Archimedes proved that the ratio of the circumfer- ence of a circle to its diameter is a constant independent of the circle and that the circumference constant equals the area constant (C=d = A=r2). He stated neither result explicitly, but both are implied by his work. His proof required the addition of two axioms beyond those in Euclid's Elements; this was the first step toward a rigorous theory of arc length. We also discuss how Archimedes's work coexisted with the 2000-year belief|championed by scholars from Aristotle to Descartes|that it is impossible to find the ratio of a curved line to a straight line. For a long time I was too embarrassed to ask the question in the title. The expression C = πd, which gives the relationship between the circumference and the diameter of a circle, is one of the few formulas known to almost all children and adults, regardless of how long they have been out of school. But who first proved it? I was sure that merely asking the question would tarnish my reputation as a mathematician and as a student of the history of mathematics. Surely the answer is well-known and easy to find. But I could not locate it|at least none of the standard reference books discussed the matter. When I finally summoned the courage to ask others I received two types of replies: either \It is obvious; all circles are similar" or \I don't know." The first of these is intriguing and has some merit; it may be why the invariance of C=d was discovered in so many different cultures.
    [Show full text]
  • History of Mathematics 17Th Century Developments
    History of Mathematics 17th century developments Peter Gibson November 5, 2019 Overview and historical context The 17th century was marked by imperial expansion and rivalry. The Russian empire expanded to encompass vast territories, governed by the Romanov imperial family (which ruled from 1584-1917). In particular, Peter the Great (r. 1682-1725) consolidated both territory and political power. In western Europe there was rivalry between the French Bourbon kings and the Hapsburg rulers of Spain and Austria. The Dutch Republic broke away from Spanish control at the end of the Thirty Years War (1618-1648). There was an expansion of naval power among European states, accompanying increased overseas trade and colonisation of the Americas. The slave trade flourshed during this time. P. Gibson Math 4400 2 / 19 An estimate 12M tons of sugar was transported to Europe in the century 1690-1790, during which time an estimated 12M African slaves were forced into labour in European colonies. Politically, the prevailing model was one of absolutist, dynastic monarchy, as typified by Louis XIV (r. 1643-1715) in France or Peter the Great in Russia. (The situation in England was an exception, with the civil war having resulted in power sharing between the monarchy and the nobility.) The balance of power shifted away from Spain and Portugal, toward Britain and France. Overall, mercantalism was the dominant economic model, involving extraction of wealth from colonial territory in the Americas and elsewhere, and transportation of goods to Europe. P. Gibson Math 4400 3 / 19 Overall, mercantalism was the dominant economic model, involving extraction of wealth from colonial territory in the Americas and elsewhere, and transportation of goods to Europe.
    [Show full text]
  • 2009 Math History (Open) 1 E Is None of These 1) a Sizable Portion of Our
    2009 Math History (Open) E is none of these 1) A sizable portion of our current knowledge of ancient Egyptian mathematics stems from this text. In its 14th problem the volume of a frustum acting as a base for a pyramid is calculated. What is the name of this ancient Egyptian manuscript? A) Reisner Papyrus B) Rhind Papyrus C) Moscow Papyrus D) Berlin Papyrus 2) This Indian mathematician and priest from around 800 BC presented an approximation for √2 correct to five decimal places in his Sulbasutra. In addition, his Sulbasutra also contained geometric solutions to linear equations of one unknown, an early version of the Pythagorean Theorem, and an approximation of π accurate enough for constructing circular shapes on altars. Quadratic equations of the forms ax2 = c and ax2 + bx = c were also found in his writings. A) Baudhayana B) Katyayana C) Apastamba D) Aryabhata I 3) Born around 624 BC, this Greek mathematician, philosopher, scientist, and engineer, regarded as the first of the Seven Sages, or wise men of Ancient Greece, founded abstract geometry. He is credited for theorems such as “If two straight lines intersect, the opposite angles formed are equal”, and “Any angle inscribed in a semicircle is a right angle”. The latter theorem is named after him. It is also said that he defined the constellation Ursa Minor, which greatly helped navigators. A) Thales of Miletus B) Anaximander C) Archimedes D) Zeno of Elea 4) Although Gauss provided the first rigorous proof for the Fundamental Theorem of Arithmetic, stating that “All natural numbers can be formed by multiplying a unique set of prime numbers unless they are prime themselves”; this Greek mathematician essentially proved it a millennium and a half earlier.
    [Show full text]
  • Isaac Barrow English Version
    ISAAC BARROW (October, 1630 – May 4, 1677) by HEINZ KLAUS STRICK, Germany Unlike many of his ancestors and close relatives, THOMAS BARROW – after a dispute with his father – did not embark on an academic career, but worked his way up in London to become linen merchant to the court of King CHARLES I of England. His first marriage produced a son; his wife died when the boy with the first name ISAAC was four years old. The child was given to the grandfather, who spoiled the boy beyond measure. His father, who remarried after two years, soon enrolled ISAAC at Charterhouse School, an elite boarding school founded in 1611 which still exists today, and paid double the school fees – in the expectation that the boy would then receive special support. This was not the case, however, and ISAAC soon acquired a reputation as a bully. So the father tried another boarding school, the Felsted School in Essex, founded in 1564, which JOHN WALLIS had also attended. At this school, education and the strict observance of rules were very important. Now, at last, the boy's talent became apparent; he made good progress in the core subjects of Greek, Latin, Hebrew and logic. As a result of the bloody clashes between the Catholic population and the Protestant settlers in Ireland (the Irish Rebellion), his father lost his fortune and could no longer pay the school fees. But ISAAC did not have to leave the school, as the headmaster of the Felsted School had recognized his talent and was willing to support him further.
    [Show full text]
  • Awareness and Cavalieri's Principle
    ALGEBRAIC FORMULAS, GEOMETRIC AWARENESS AND CAVALIERI’S PRINCIPLE JÉRÔME PROULX, DAVID PIMM It seems appropriate in a new journal of mathematics deployed, geometry has vanished (despite the etymological education [For the Learning of Mathematics] that there origins of the word itself). should be an attempt to tackle a perennial problem [the We argue that offering and focusing upon formulas in this loss of geometry] with new terms. (Tahta, 1980, p. 9) context transports the mathematical work from the geomet- ric realm of area and volume to that of substitution of One of the fundamental tensions at work in both learning numerical values into formulas – a quite different mathe- and teaching mathematics is that between fluency and matical arena of potential technique, fluency and skill. (One understanding. [1] Formulas are frequently offered as an of us, for instance, remembers classroom work involving aid to fluency, as a concise and manipulable summary of an ‘changing the subject of the formula’ – algebraic tasks that invariance, an indifference to change and to the contingent. were quite independent of the meaning and referents of the Formulas contain a tacit ‘always’ (with ‘under suitable con- particular formula in question and, indeed, whose unavowed ditions’, sometimes said sotto voce). One unfortunate result purpose was precisely such semantic suppression.) Signifi- can be students at various levels seeing mathematics as cantly, however, this arena has nothing to do with the being ‘all about formulas’. More than twenty-five years ago, geometric notions of area and volume themselves: when stu- Hart (1981) observed: dents work with area or volume formulas, they are not mathematics teaching is often seen as an initiation into working on understanding concepts of area or volume, they the rules and procedures which, though very powerful are working within a particular sub-domain of algebra, (and therefore attractive to teachers), are often seen by namely substitution.
    [Show full text]
  • Naming Infinity: a True Story of Religious Mysticism And
    Naming Infinity Naming Infinity A True Story of Religious Mysticism and Mathematical Creativity Loren Graham and Jean-Michel Kantor The Belknap Press of Harvard University Press Cambridge, Massachusetts London, En gland 2009 Copyright © 2009 by the President and Fellows of Harvard College All rights reserved Printed in the United States of America Library of Congress Cataloging-in-Publication Data Graham, Loren R. Naming infinity : a true story of religious mysticism and mathematical creativity / Loren Graham and Jean-Michel Kantor. â p. cm. Includes bibliographical references and index. ISBN 978-0-674-03293-4 (alk. paper) 1. Mathematics—Russia (Federation)—Religious aspects. 2. Mysticism—Russia (Federation) 3. Mathematics—Russia (Federation)—Philosophy. 4. Mathematics—France—Religious aspects. 5. Mathematics—France—Philosophy. 6. Set theory. I. Kantor, Jean-Michel. II. Title. QA27.R8G73 2009 510.947′0904—dc22â 2008041334 CONTENTS Introduction 1 1. Storming a Monastery 7 2. A Crisis in Mathematics 19 3. The French Trio: Borel, Lebesgue, Baire 33 4. The Russian Trio: Egorov, Luzin, Florensky 66 5. Russian Mathematics and Mysticism 91 6. The Legendary Lusitania 101 7. Fates of the Russian Trio 125 8. Lusitania and After 162 9. The Human in Mathematics, Then and Now 188 Appendix: Luzin’s Personal Archives 205 Notes 212 Acknowledgments 228 Index 231 ILLUSTRATIONS Framed photos of Dmitri Egorov and Pavel Florensky. Photographed by Loren Graham in the basement of the Church of St. Tatiana the Martyr, 2004. 4 Monastery of St. Pantaleimon, Mt. Athos, Greece. 8 Larger and larger circles with segment approaching straight line, as suggested by Nicholas of Cusa. 25 Cantor ternary set.
    [Show full text]