Advances in Small Modular Reactor Technology Developments

Total Page:16

File Type:pdf, Size:1020Kb

Advances in Small Modular Reactor Technology Developments spine = 8.30 mm, 150pp, 100gm paper Advances in Small Modular Reactor Technology Developments A Supplement to: IAEA Advanced Reactors Information System (ARIS) For further information: Nuclear Power Technology Development Section (NPTDS) Division of Nuclear Power IAEA Department of Nuclear Energy International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria Telephone: +43 1 2600-0 Fax: +43 1 2600-7 Email: O [email protected] Internet: http://www.iaea.org Printed by IAEA in Austria September 2014 14-30651 ADVANCES IN SMALL MODULAR REACTOR TECHNOLOGY DEVELOPMENTS A Supplement to: IAEA Advanced Reactors Information System (ARIS) http://aris.iaea.org COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at: Marketing and Sales Unit, Publishing Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 email: [email protected] http://www.iaea.org/books © IAEA, 2014 Printed by the IAEA in Austria September 2014 FOREWORD The IAEA Department of Nuclear Energy devotes a number of its initiatives to support the development and deployment of small and medium-sized reactors (SMRs), recognizing their potential as options for enhancing the energy supply security both in expanding and embarking countries. Recently, the IAEA saw an increase in the participation of Member States in its programme for the technology development of SMRs. The driving forces in the development of such reactors are: meeting the need for flexible power generation for wider range of users and applications; replacing the ageing fossil fuel-fired power plants; enhancing safety performance through inherent and passive safety features; offering better economic affordability; suitability for non-electric applications; options for remote regions without established electricity grid infrastructures; and offering possibilities for synergetic energy systems that combine nuclear and alternate energy sources. The trend in development has been towards design certification of small modular reactors, which are defined as advanced reactors that produce electric power up to 300 MW(e), designed to be built in factories and shipped to utilities for installation as demand arises. These new factory-built designs aim to reduce lengthy construction times while simultaneously increasing quality, thereby minimizing the financing costs associated with nowadays construction projects that span 5–8 years. SMR designs include water-cooled reactors, high temperature gas cooled reactors, as well as liquid metal cooled reactors with fast neutron spectrum. Some of SMRs are to be deployed as multiple-module power plants. Several countries are also pioneering in the development and application of transportable nuclear power plants, including floating and seabed-based SMRs. The distinct concepts of operations, staffing and security requirements, size of emergency planning zones (EPZs), licensing process, legal and regulatory framework are the main issues for the SMRs deployment. The projected timelines of readiness for deployment of SMRs generally range from the present to 2025–2030. Member States, both those considering their first nuclear power plant and those with an existing nuclear power programme, are interested in information about advanced SMR designs and concepts, as well as new development trends. The IAEA Department of Nuclear Energy, which has been facilitating Member States in addressing common technologies and issues for SMRs and related fuel cycles in the past three decades, plays a prominent role in presenting international scientific forums and technical cooperation in this field for interested Member States. The IAEA has been regularly publishing booklets on the status of SMR technology developments with the objective to provide Member States, including those considering initiating a nuclear power programme and those already having practical experience in nuclear power, a balance and objective overview of the status of SMR designs. This booklet is reporting the advances in global development of small modular reactor designs and technologies. This booklet covers only water-cooled and high temperature gas cooled small modular reactor designs and technologies. As for various small reactors with fast neutron spectrum, they are reported in a recent dedicated booklet on status of innovative fast reactor designs and concepts (see Annex III). This booklet is intended as a supplement to the IAEA Advanced Reactor Information System (ARIS), which can be accessed at http://aris.iaea.org. This publication was developed by Nuclear Power Technology Development Section, Division of Nuclear Power of the IAEA Department of Nuclear Energy in cooperation with Member States. The IAEA acknowledges the roles and contributions of A. Iunikova in coordinating the development of this booklet. The IAEA officers responsible for this publication were H. Subki and F. Reitsma of the Division of Nuclear Power. CONTENTS INTRODUCTION ……………………………………………………………………………. 1 WATER COOLED REACTORS …………………………………………………………….. 5 CAREM-25 (CNEA, Argentina) ………………………………………. 7 ACP-100 (CNNC, China) ………………………………………………….. 11 Flexblue (DCNS, France) ………………………………………………….. 14 AHWR300-LEU (BARC, India) …………………………………………… 18 IRIS (IRIS, International Consortium) …………………………………….. 22 DMS (Hitachi-GE Nuclear Energy, Japan) ………………………………… 26 IMR (Mitsubishi Heavy Industries, Japan) ………………………………… 30 SMART (KAERI, Republic of Korea) …………………………………….. 34 KLT-40S (OKBM Afrikantov, Russian Federation) ………………………. 38 VBER-300 (OKBM Afrikantov, Russian Federation) …………………….. 42 ABV-6M (OKBM Afrikantov, Russian Federation) ………………………. 46 RITM-200 (OKBM Afrikantov, Russian Federation) …………………….. 50 VVER-300 (OKB Gidropress, Russian Federation) ………………………. 54 VK-300 (RDIPE, Russian Federation) …………………………………….. 58 UNITHERM (RDIPE, Russian Federation) ……………………………….. 62 RUTA-70 (RDIPE, IPPE, Russian Federation) ………………………. 66 SHELF (RDIPE, Russian Federation) ……………………………………… 70 ELENA (Research Russian Centre “Kurchatov ……………………………. 72 Institute”, Russian Federation) mPower (B&W Generation mPower, USA) ……………………………... 76 NuScale (NuScale Power Inc., USA) ……………………………………… 80 Westinghouse SMR (Westinghouse Electric Company LLC, USA) ……... 84 SMR-160 (Holtec International, USA) …………………………………….. 88 HIGH TEMPERATURE GAS COOLED REACTORS …………………………………... 93 HTR-PM (Tsinghua University, China) …………………………………... 95 GT-HTR300 (Japan Atomic Energy Agency, Japan) ………………………. 99 GT-MHR (OKBM Afrikantov, Russian Federation) ………………………. 103 MHR-T reactor/Hydrogen production complex ……………………………. 107 (OKBM Afrikantov, Russian Federation) MHR-100 (OKBM Afrikantov, Russian Federation) ………………………. 111 PBMR-400 (Pebble Bed Modular Reactor SOC Ltd, South Africa) ……….. 115 HTMR-100 (STL, South Africa) ………………………………………... 119 SC-HTGR (AREVA, USA) ………………………………………………… 123 Xe-100 (X-energy, USA) ………………………………………………….. 127 ANNEX I Summary of SMR design status …………………………………………….. 131 ANNEX II Map of global SMR technology development ………………………………. 135 ANNEX III Bibliography ..………………………………………………………………... 137 ANNEX IV Acronyms …………………………………………………………………… 139 INTRODUCTION Small and medium sized reactors (SMRs) include a large variety of designs and technologies and in general, consist of: advanced SMRs, including modular reactors and integrated PWRs; innovative SMRs, including small-sized Gen-IV reactors with non-water coolant/ moderator; converted or modified SMRs, including barge mounted floating NPP and seabed-based reactors; conventional SMRs, those of Gen-II technologies and still being deployed. Advanced SMRs having an equivalent electric power of less than 700 MW(e) or even less than 300 MW(e) are part of a new generation of nuclear power plant designs being developed to provide a flexible, cost-effective energy for various applications. Advanced SMR designs include water-cooled reactors, high-temperature gas cooled reactors, as well as liquid-metal cooled reactors with fast neutron spectrum. The trend of development has been towards design certification of small modular reactors, which are defined as advanced reactors that produce equivalent electric power less than 300 MW(e) designed to be built in factories and shipped to utilities for installation as demand arises. The SMR systems adopt modularization, by which the structures, systems and components are shop-fabricated then shipped and assembled onsite, thus the construction time for SMRs can be substantially reduced. Some of the SMRs are to be deployed as multiple-module power plants allowing utilities to add additional reactor and power conversion modules as demand for local power increases. Advanced SMRs will use different approaches from large reactors for achieving a high level of safety and reliability in their systems, structures, components, and that will be the result of a complex
Recommended publications
  • E-Mail: [email protected]
    ATOMENERGOMASH JSC Nuclear and Power Engineering Address: 28/3 Ozerkovsakaya nab., Moscow, 115184 Telephone: +7(495) 668-20-93 Fax: +7(495) 668-20-95 Website: http://www.aem-group.ru/en/ E-mail: [email protected] www.aem-group.ru/en/ 3 JSC Atomenergomash ABOUT US Аtomenergomash JSC (AEM, Сompany, Group) is a machine building division of ROSATOM State Atomic Energy Corporation. One of the leading Russian power engineering companies, a supplier of efficient integrated solutions for nuclear and thermal power plants, natural gas and petrochemical industry, shipbuilding, hydroelectricity, demineralization, water treatment, water purification and special steel market. FIGURES AND FACTS ATOMENERGOMASH • The key developer and equipment manu- • AEM was established in 2006 as part of facturer for the reactor facility of the ROSATOM State Atomic Energy Corporation. water-water energetic reactor (VVER). • The Holding includes about 20 • The key developer and equipement man- power engineering companies, R&D, ufacturer of fast nuclear reactors (FNR). manufacturing, construction and • Equipment manufacturer for the turbine construction companies located in Russia, island of NPP with VVER. Ukraine, the Czech Republic, and Hungary. • The only Russian manufacturer of steam • The Holding’s equipment is installed in generators and main circulation pumps more than 20 countries. for Russian-built NPPs. • 14% of global Nuclear Power Plants (NPP) • The key developer and manufacturer of and 40% of Thermal Power Plants (TPP) marine reactor plants for the Navy and in Russia and the former Soviet Union nuclear icebreakers. countries run our equipment. • One of the largest manufacturers of power plant boilers and Heat Recovery Steam Generator (HRSG) for medium and large Combined Cycle Gas Turbine (CCGT) units.
    [Show full text]
  • Small Modular Reactor Design and Deployment
    INL/MIS-15-34247 Small Modular Reactor Design and Deployment Curtis Wright Symposium xx/xx/xxxx www.inl.gov INL SMR Activities • INL works with all vendors to provide fair access to the laboratory benefits • INL works with industry on SMR technology and deployment • INL is supporting multiple LWR SMR vendors – Small, <300MWe reactors and less expensive reactors compared to current LWR reactors (Small) – Often, but not always, multiple reactors at the same site that can be deployed as power is needed (Modular) – Primary cooling system and reactor core in a single containment structure, but not always (Reactors) – Factory built, usually, which improves quality and costs • Integrated PWR SMR’s are closest to deployment – designed to be inherently safer and simple – primary reactor system inside a single factory built containment vessel – Higher dependence on passive systems to simplify operation and design Reactor Power Nuclear Plant Power Los Angeles Class Submarine -26 MW 5000 Enterprise Class Aircraft Carrier 8x 4000 Unit Power Nimitz Class Aircraft Carrier 2x97MW, 194MW 3000 Plant Power NuScale Reactor 12 x 150MW, 1800MW 2000 Cooper BWR, 1743MW PowerThermal MW 1000 Westinghouse AP-1000, 3000MW 0 European Pressurized Reactor, 4953MW SMRs are Smaller VC Summer • Power less than 300MWe. Dearater – Current Plants 1000MWe – Physically smaller – Fewer inputs – Fits on power grid with less infrastructure – Built in a factory – Simplified designs VC Summer • Passive systems Core • Fewer components NuScale Reactor Multiple Units • SMR Nuclear
    [Show full text]
  • Deployability of Small Modular Nuclear Reactors for Alberta Applications Report Prepared for Alberta Innovates
    PNNL-25978 Deployability of Small Modular Nuclear Reactors for Alberta Applications Report Prepared for Alberta Innovates November 2016 SM Short B Olateju (AI) SD Unwin S Singh (AI) A Meisen (AI) DISCLAIMER NOTICE This report was prepared under contract with the U.S. Department of Energy (DOE), as an account of work sponsored by Alberta Innovates (“AI”). Neither AI, Pacific Northwest National Laboratory (PNNL), DOE, the U.S. Government, nor any person acting on their behalf makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by AI, PNNL, DOE, or the U.S. Government. The views and opinions of authors expressed herein do not necessarily state or reflect those of AI, PNNL, DOE or the U.S. Government. Deployability of Small Modular Nuclear Reactors for Alberta Applications SM Short B Olateju (AI) SD Unwin S Singh (AI) A Meisen (AI) November 2016 Prepared for Alberta Innovates (AI) Pacific Northwest National Laboratory Richland, Washington 99352 Executive Summary At present, the steam requirements of Alberta’s heavy oil industry and the Province’s electricity requirements are predominantly met by natural gas and coal, respectively. On November 22, 2015 the Government of Alberta announced its Climate Change Leadership Plan to 1) phase out all pollution created by burning coal and transition to more renewable energy and natural gas generation by 2030 and 2) limit greenhouse gas (GHG) emissions from oil sands operations.
    [Show full text]
  • A Comparison of Advanced Nuclear Technologies
    A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D MARCH 2017 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us at energypolicy.columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D* MARCH 2017 *Andrew C. Kadak is the former president of Yankee Atomic Electric Company and professor of the practice at the Massachusetts Institute of Technology. He continues to consult on nuclear operations, advanced nuclear power plants, and policy and regulatory matters in the United States. He also serves on senior nuclear safety oversight boards in China. He is a graduate of MIT from the Nuclear Science and Engineering Department.
    [Show full text]
  • 2014 Integrated Annual Report Jsc Atomenergomash Capacity Building
    Capacity building 2014 INTEGRATED ANNUAL REPORT Short version 2014 INTEGRATED ANNUAL REPORT JSC ATOMENERGOMASH CAPACITY BUILDING THE COMPANY IN BRIEF ............................................................................ 2 2014 PERFORMANCE HIGHLIGHTS ........................................................... 3 KEY EVENTS IN 2014 ................................................................................... 4 MESSAGE FROM COMPANY MANAGEMENT ............................................. 6 BUSINESS MODEL .................................................................................... 12 BUSINESS GEOGRAPHY ........................................................................... 16 KEY PROJECTS .......................................................................................... 18 STRATEGIC VISION AND OBJECTIVES ..................................................... 19 ECONOMIC PERFORMANCE .................................................................... 20 COMMERCIAL ACTIVITIES ........................................................................ 22 INNOVATION ACTIVITIES .......................................................................... 23 ar2014.aem-group.ru RESULTS OF PRODUCTION ACTIVITIES .................................................. 24 OPTIMIZATION OF PRODUCTION PROCESSES ....................................... 25 JSC Atomenergomash provides access to the integrated interactive ENVIRONMENTAL IMPACT ....................................................................... 26 version of the annual
    [Show full text]
  • Core Design and Optimization of the High Conversion Small Modular Reactor
    Technische Universität München Fakultät für Maschinenwesen Lehrstuhl für Nukleartechnik Core Design and Optimization of the High Conversion Small Modular Reactor Denis Janin Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Prof. Phaedon-Stelios Koutsourelakis, PhD Prüfer der Dissertation: 1. Prof. Rafael Macián-Juan, PhD 2. Prof. Dr. Jean-Baptiste Thomas Die Dissertation wurde am 08.05.2018 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 01.11.2018 angenommen. ABSTRACT This research work investigates the design and optimization of the high conversion small modular reactor (HCSMR) core. The HCSMR has a thermal output of 600 MW for 200 MW electrical. It is an integrated PWR with a tightened fuel assembly lattice. The rod-to-rod pitch is 1.15 cm in a hexagonal fuel assembly geometry. As a result the moderation ratio (1.0) is reduced compared to large PWRs (around 2.0) and the HCSMR has an improved ability to convert 238U into 239Pu and use plutonium isotopes more efficiently. The core is loaded with MOX fuel. The HCSMR concept finds its roots both in large high conversion light water reactors and small modular reactor (SMR) concepts. The reduced core size results in an increased neutron leakage rate compared to large cores. This intrinsically supports the core behavior in voided situations. The necessity to introduce fertile fuel materials in the core to keep negative void coefficients is reduced, contributing to the HCSMR safety and limited core heterogeneity.
    [Show full text]
  • Nuclear Power Industry
    JSC ATOMENERGOMASH RESULTS OF 20161 1 The brochure data are valid as of April 26, 2017. JSC ATOMENERGOMASH RESULTS OF 2016 The pilot fast neutron reactor After a long interruption, JSC Atomenergomash with primary sodium CEFR the nuclear industry equipment reinforces the key 3,668 developed under the order manufacture was resumed at business areas – nuclear from Chinese Nuclear Power “Atommash” plant. In particular, power industry, gas and Corporation. The developer the activities were commenced petrochemical industry, of the reactor plant was for the manufacture of the main shipbuilding and general 10 YEARS OF PROGRESS OJSC Afrikantov OKBM, the equipment of the reactor island industry. steam generator developer of the Power units 1 and 2 of was OJSC OKB GIDROPRESS. Belarusian NPP. THE HISTORY OF JSC ATOMENERGOMASH, THE mechanical ENGINEERING DIVISION OF ROSATOM STATE CORPORATION (THE «DIVISION») STARTED FROM TWO 2,947 OJSC Atomenergomash The complete cycle of steam COMPANIES. TODAY THE DIVISION IS ONE OF THE LEADING mechanical ENGINEERING COMPANIES IN RUSSIA. IT COMPRISES OVER 20 LEADING ENGINEERING manufactured a core catcher generators manufacture was at the Atommash plant in mastered – from semi-products JSC TsKBM completed the BUREAUS, MAJOR MACHINE BUILDERS, RESEARCH INSTITUTIONS. THE DIVISION IS INVOLVED IN THE KEY PROJECTS IMPLEMENTED BY ROSATOM, WIDENS unprecedentedly short time (PJSC Energomashspetsstal) to test of the new MCP design – and supplied it to the Baltic body manufacture (OJSC PZM), single-shaft configuration 2,414 Labor productivity per employee, thousand rubles THE COMPETENCES AND ACTIVELY MASTERS NEW MARKETS AND TECHNOLOGIES. 2,397 NPP. assembly of in-vessel components with water cooling of motor and shipment to client and bearing assemblies that (OJSC ZiO-Podolsk).
    [Show full text]
  • Status of Small and Medium Sized Reactor Designs
    STATUS OF SMALL AND MEDIUM SIZED REACTOR DESIGNS A Supplement to the IAEA Advanced Reactors Information System (ARIS) http://aris.iaea.org @ September 2012 STATUS OF SMALL AND MEDIUM SIZED REACTOR DESIGNS A Supplement to the IAEA Advanced Reactors Information System (ARIS) http://aris.iaea.org FOREWORD There is renewed interest in Member States grids and lower rates of increase in demand. in the development and application of small They are designed with modular technology, and medium sized reactors (SMRs) having an pursuing economies of series production, factory equivalent electric power of less than 700 MW(e) fabrication and short construction times. The or even less than 300 MW(e). At present, most projected timelines of readiness for deployment new nuclear power plants under construction of SMR designs generally range from the present or in operation are large, evolutionary designs to 2025–2030. with power levels of up to 1700 MW(e), The objective of this booklet is to provide building on proven systems while incorporating Member States, including those considering technological advances. The considerable initiating a nuclear power programme and those development work on small to medium sized already having practical experience in nuclear designs generally aims to provide increased power, with a brief introduction to the IAEA benefits in the areas of safety and security, non- Advanced Reactors Information System (ARIS) proliferation, waste management, and resource by presenting a balanced and objective overview utilization and economy, as well as to offer a of the status of SMR designs. variety of energy products and flexibility in This report is intended as a supplementary design, siting and fuel cycle options.
    [Show full text]
  • Core Melt Stabilization Concepts for Existing and Future Lwrs and Associated R&D Needs
    Core melt stabilization concepts for existing and future LWRs and associated R&D needs Manfred Fischer (corresponding author) AREVA GmbH, Severe Accident Analysis Dept. Paul Gossen Str. 100, 91052 Erlangen, Germany [email protected] Sevostian V. Bechta KTH Royal Institute of Technology, Division of Nuclear Power Safety, Physics Dept. Roslagstullsbacken 21, S-106 91 Stockholm, Sweden [email protected] Vladimir V. Bezlepkin ATOMPROECT Enterprise of ROSATOM State Corporation 82, Savushkina St., Saint Petersburg, Russia 197183 [email protected] Ryoichi Hamazaki Toshiba Corporation, Nuclear Safety System Design & Engineering Dept. 8 ShinSugita-Cho, Isogo-Ku, Yokohama 235-8523, Japan [email protected] Alexei Miassoedov Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany [email protected] ABSTRACT In the event of a severe accident with core melting in a NPP the stabilization of the molten corium is an important mitigation issue, as it can avoid late containment failure caused by basemat penetration, overpressure, or severe damage of internal structures. The related failure modes may result in significant long-term radiological consequences and high related costs. Because of this, the licensing framework of several countries now includes the request to implement mitigative core melt stabilization measures. This does not only apply to new builds but also to existing LWR plants. The paper gives an overview of the ex-vessel core melt stabilization strategies developed during the last decades. These strategies are based on a variety of physical principles like: melt fragmentation in a deep water pool or during molten core concrete interaction with top-flooding, water injection from the bottom (COMET concept), and retention in an outside-cooled crucible structure.
    [Show full text]
  • Design of Nuclear Plants
    Design of nuclear plants Reactor technology Lecture 1 Ildikó Boros Assistant lecturer Budapest University of Technology and Economics Institute of Nuclear Techniques (BME NTI) 24/10/2018 Reactor technology 1 Contents Operation of nuclear reactors (lecturer: …. Mr. Szabolcs Czifrus) Reactor technology (lecturer: I. Boros) 1. Main NPP types, reactor generations. Advanced NPP types 2. Fuel, reactor core, pressure vessel 3. PWR main systems (primary, secondary systems), safety systems 4. Containment systems 5. Cooling of NPPs 6. BWR, PHWR, other types 7. exotic reactors (fast breeders, etc.) 24/10/2018 Reactor technology 2 Nuclear energy at present • Share of nuclear in electricity production (2011 -> 2014): world 16% → 11% EU 35% → 27% Hungary 36% → 53% • 448 NPP units operate worldwide Source: WNA • 57 units under construction • Design lifetime of most units expires between 2015 and 2030 24/10/2018 Reactor technology 3 Nuclear energy at present • Share of nuclear in electricity production (2011 -> 2014): world 16% → 11% 13% EU 35% → 27% Hungary 36% → 53% • 448 NPP units operate 51% worldwide Source: WNA • 57 units under construction • Design lifetime of most units expires between 2015 and 2030 24/10/2018 Reactor technology 4 Trends in nuclear industry 24/10/2018 Source: WNA Reactor technology 5 Trends in nuclear industry Source: IAEA Power reactors under construction 24/10/2018 Reactor technology 6 BASICS OF NUCLEAR TECHNOLOGY 24/10/2018 Reactor technology 7 Nuclear fission • In certain isotopes, spontaneous or induced fission of the nucleus
    [Show full text]
  • Behavioral Determinants of Russian Nuclear State-Owned Enterprises in Central and Eastern European Region
    International Journal of Energy Economics and Policy ISSN: 2146-4553 available at http: www.econjournals.com International Journal of Energy Economics and Policy, 2015, 5(4), 910-917. Behavioral Determinants of Russian Nuclear State-Owned Enterprises in Central and Eastern European Region Tomas Vlcek1*, Martin Jirusek2 1Department of International Relations and European Studies, Energy Security Program, Faculty of Social Studies, Masaryk University, Jostova 10, 602 00, Brno, Czech Republic, 2Department of International Relations and European Studies, Energy Security Program, Faculty of Social Studies, Masaryk University, Jostova 10, 602 00, Brno, Czech Republic. *Email: [email protected] ABSTRACT Rosatom State Nuclear Corporation play a substantial role in the energy sector of the Central and Eastern European (CEE) region and the behavioral characteristics of the company forms the basis of this article. Rosatom is positioned as the dominant provider of nuclear technology and fuel supplies to the region, in large part stemming from the Soviet legacy in CEE countries. Compounding this challenge, nuclear energy is one of the major sources of power generation in CEE. Given the long-time, near monopoly of Russian nuclear technology/design in the region and plans to expand further the nuclear capacity of select CEE countries, the sector requires careful monitoring from both a technical and security-minded perspective. Keywords: Power Generation, Nuclear Energy, Central and Eastern Europe, Russian Federation, Rosatom State Nuclear Corporation JEL Classifications: H760, Q310, Q380, Q400, Q410, Q480, Q490 1. RESEARCH AIM AND METHODOLOGY The nuclear energy sector has a number of structural differences when compared to crude oil, natural gas or coal; most typically The goal of the research was to identify the behavioral determinants it is not dependent on certain infrastructure and the uninterrupted of these Russian nuclear state-owned enterprises (SOEs), how flow of energy supplies.
    [Show full text]
  • Conference Full Paper Template
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio della Ricerca - Università di Pisa Proceedings of the 12th International Conference of the Croatian Nuclear Society Zadar, Croatia, 3-6 June 2018 Paper No. 110 Conversion of Small Modular Reactors Fuel to Use Mixed (U-Th)O2 Fuel Reza Akbari, Jose R. Maiorino Department of Energy Engineering & Physics, Amirkabir University of Technology Tehran, Iran Center of Engineering, Federal University of ABC Santo André, SP, Brazil [email protected], [email protected] Francesco D'Auria, Dariush Rezaei GRNSPG/DESTEC, University of Pisa Pisa, Italy Department of Energy Engineering & Physics, Amirkabir University of Technology Tehran, Iran [email protected], [email protected] ABSTRACT The concept of Integral Small Modular Reactor (SMR) isn’t new but it seems that the proper time for using this idea has been coming. According to the International Atomic Energy Agency (IAEA), the reactors with electrical power lower than 300 MW have been defined as small reactors, although SMRs are categorized by this fact that more advantages and design features are attained when intentionally make reactors small. In fact, these reactors use their size as advantage to attain more design purposes. The scalability, modularity, improved safety characteristics and more important than other, lower up-front cost of the SMRs, offer great advantages over large common nuclear power plants. According to the IAEA reports there are many interests all over the world to move toward using of these kinds of reactors. There are many different type of SMRs under various stages of design, licensing and construction.
    [Show full text]