Faculty Report 08/09
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Classification of Living and Fossil Genera of Decapod Crustaceans
RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. -
Catalog of the Encarsia of the World (2007)
Catalog of the Encarsia of the World (2007) John Heraty, James Woolley and Andrew Polaszek (a work in progress) Note: names in parentheses refer to species groups, not subgenera. Encarsia Foerster, 1878. Type species: Encarsia tricolor Foerster, by original designation. Aspidiotiphagus Howard, 1894a. Type species: Coccophagus citrinus Craw, by original designation. Synonymy by Viggiani & Mazzone, 1979[144]: 44. Aspidiotiphagus Howard, 1894a. Type species: Coccophagus citrinus Craw, by original designation. Synonymy by Viggiani & Mazzone, 1979[144]: 44. Prospalta Howard, 1894b. Type species: Coccophagus aurantii Howard. Subsequently designated by ICZN, Opinion 845, 1968: 12-13. Homonym; discovered by ??. Encarsia of the World 2 Prospalta Howard, 1894b. Type species: Coccophagus aurantii Howard. Homonym of Prospalta Howard; discovered by ??. Encarsia; Howard, 1895b. Subsequent description. Prospaltella Ashmead, 1904[238]. Replacement name; synonymy by Viggiani & Mazzone, 1979[144]: 44. Prospaltella Ashmead, 1904[238]. Replacement name for Prospalta Howard Viggiani & Mazzone, 1979[144]: 44. Mimatomus Cockerell, 1911. Type species: Mimatomus peltatus Cockerell, by monotypy. Synonymy by Girault, 1917[312]: 114. Doloresia Mercet, 1912. Type species: Prospaltella filicornis Mercet, by original designation. Synonymy by Mercet, 1930a: 191. Aspidiotiphagus; Mercet, 1912a. Subsequent description. Encarsia; Mercet, 1912a. Subsequent description. Prospaltella; Mercet, 1912a. Subsequent description. Prospaltoides Bréthes, 1914. Type species: Prospaltoides -
Life-History Parameters of Encarsia Formosa, Eretmocerus Eremicus and E
Eur. J. Entomol. 101: 83–94, 2004 ISSN 1210-5759 Life-history parameters of Encarsia formosa, Eretmocerus eremicus and E. mundus, aphelinid parasitoids of Bemisia argentifolii (Hemiptera: Aleyrodidae) YU TONG QIU, JOOP C. VAN LENTEREN, YVONNE C. DROST and CONNIE J.A.M. POSTHUMA-DOODEMAN Laboratory of Entomology, Wageningen University; P.O.Box 8031, 6700 EH Wageningen, The Netherlands e-mails: [email protected]; [email protected] Key words. Hymenoptera, Aphelinidae, Homoptera, Aleyrodidae, whiteflies, Encarsia formosa, Eretmocerus eremicus, Eretmocerus mundus, biological control, life history, longevity, development time Abstract. Life-history parameters (juvenile development time, adult longevity, host instar preference and rate of parasitism) of four parasitoids of Bemisia argentifolii (two strains of Encarsia formosa (D and B), Eretmocerus eremicus and Eretmocerus mundus) were studied in the laboratory. At 15°C juvenile development time was the shortest for E. formosa B (48 days), longest for E. ere- micus (79.3 days) and intermediate for E. formosa D (62.8 days) and E. mundus (64 days) at 15°C. With increase in temperature, development time decreased to around 14 days for all species/strains at 32°C. The lower developmental threshold for development was 11.5, 8.1, 13.0 and 11.5°C for E. formosa D, E. formosa B, E. eremicus and E. mundus, respectively. E. formosa D and B, and E. mundus all appeared to prefer to parasitize 3rd instar nymphs. The presence of hosts shortened adult longevity in most of the para- sitoids, with the exception of E. formosa B, which lived longer than other species/strains irrespective of the presence of hosts. -
A Summary List of Fossil Spiders
A summary list of fossil spiders compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2010. A summary list of fossil spiders. In Platnick, N. I. (ed.) The world spider catalog, version 10.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2009 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the spider fossil record and numerous new taxa have been described. As part of a larger project to catalog the diversity of fossil arachnids and their relatives, our aim here is to offer a summary list of the known fossil spiders in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list follows the names and sequence of families adopted in the Catalog. For this reason some of the family groupings proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities. Genus and species names were compiled from established lists and cross-referenced against the primary literature. -
AMCS Bulletin 5 Reprint a REPORT on CAVE SPIDERS FROM
!"#$%&'(()*+,%-%.)/0+,* A REPORT ON CAVE SPIDERS FROM MEXICO AND CENTRAL AMERICA 1 Willis J. Gertsch2 Curator Emeritus, American Museum of Natural History, New York About one hundred species of spiders have so far can caves. been reported from cave habitats in Mexico and in- The obligate cavernicoles are always of special tensive collecting surveys will eventually enlarge this interest because of deep commitment to cave exist- list several times. In an earlier paper Gertsch (1971) ence. Six additional species from Mexico and Central cited 86 species, most of them new, and the present America enlarge this total to 19 from the 13 Mexican report further enlarges the Mexican fauna by addition taxa noted in the earlier paper. Two additional fami- of 20 species of which 16 are herein described for the lies, Telemidae and Ochyroceratidae, are now repre- first time. In addition, eight new species are reported sented as listed below. from caves in Guatemala, Belize (British Honduras), Family Dipluridae and Panama of Central America, the larger area con- Euagrus anops, new species sidered in this paper. Additional records with full Cueva de la Porra, San Luis POtOSI: Mexico. collecting data are presented for some species noted Family Theraphosidae on earlier lists, and I look forward to future considera- Schizopelma reddelli, new species tion of spider families not mentioned here. Cueva del Nacimiento del RIO San Antonio, Spiders are important predators of crawling and Oaxaca, Mexico. flying invertebrates and penetrate into all parts of Family Pholcidae caves where prey is present. The regional cave fauna is Metagonia martha, new species derived from local taxa and comprises distinctive ele- Cueva del Nacimiento del RIO San Antonio, ments. -
Control Biológico De Insectos: Clara Inés Nicholls Estrada Un Enfoque Agroecológico
Control biológico de insectos: Clara Inés Nicholls Estrada un enfoque agroecológico Control biológico de insectos: un enfoque agroecológico Clara Inés Nicholls Estrada Ciencia y Tecnología Editorial Universidad de Antioquia Ciencia y Tecnología © Clara Inés Nicholls Estrada © Editorial Universidad de Antioquia ISBN: 978-958-714-186-3 Primera edición: septiembre de 2008 Diseño de cubierta: Verónica Moreno Cardona Corrección de texto e indización: Miriam Velásquez Velásquez Elaboración de material gráfico: Ana Cecilia Galvis Martínez y Alejandro Henao Salazar Diagramación: Luz Elena Ochoa Vélez Coordinación editorial: Larissa Molano Osorio Impresión y terminación: Imprenta Universidad de Antioquia Impreso y hecho en Colombia / Printed and made in Colombia Prohibida la reproducción total o parcial, por cualquier medio o con cualquier propósito, sin autorización escrita de la Editorial Universidad de Antioquia. Editorial Universidad de Antioquia Teléfono: (574) 219 50 10. Telefax: (574) 219 50 12 E-mail: [email protected] Sitio web: http://www.editorialudea.com Apartado 1226. Medellín. Colombia Imprenta Universidad de Antioquia Teléfono: (574) 219 53 30. Telefax: (574) 219 53 31 El contenido de la obra corresponde al derecho de expresión del autor y no compromete el pensamiento institucional de la Universidad de Antioquia ni desata su responsabilidad frente a terceros. El autor asume la responsabilidad por los derechos de autor y conexos contenidos en la obra, así como por la eventual información sensible publicada en ella. Nicholls Estrada, Clara Inés Control biológico de insectos : un enfoque agroecológico / Clara Inés Nicholls Estrada. -- Medellín : Editorial Universidad de Antioquia, 2008. 282 p. ; 24 cm. -- (Colección ciencia y tecnología) Incluye glosario. Incluye bibliografía e índices. -
Orange Spiny Whitefly, Aleurocanthus Spiniferus (Quaintance) (Insecta: Hemiptera: Aleyrodidae)1 Jamba Gyeltshen, Amanda Hodges, and Greg S
EENY341 Orange Spiny Whitefly, Aleurocanthus spiniferus (Quaintance) (Insecta: Hemiptera: Aleyrodidae)1 Jamba Gyeltshen, Amanda Hodges, and Greg S. Hodges2 Introduction Africa (Van den Berg et al. 1990). More recently, orange spiny whitefly was reported from Italy (2008), Croatia Orange spiny whitefly, Aleurocanthus spiniferus Quaintance, (2012), and Montenegro (2013) (Radonjic et al. 2014). is a native pest of citrus in tropical Asia. In the early 1920s, Established populations of orange spiny whitefly are not yet pest outbreak infestation levels caused Japan to begin a known to occur in the continental US. biological control program. Primarily, orange spiny whitefly affects host plants by sucking the sap but it also causes indirect damage by producing honeydew and subsequently Description and Life History promoting the growth of sooty mold. Sooty mold is a Whiteflies have six developmental stages: egg, crawler (1st black fungus that grows on honeydew. Heavy infestations instar), two sessile nymphal instars (2nd and 3rd instars), of orange spiny whitefly, or other honeydew-producing the pupa (4th instar), and adult. Identification of the insects such as scales, mealybugs, aphids, and other whitefly Aleyrodidae is largely based upon characters found in the species, can cause sooty mold to completely cover the leaf pupal (4th instar) stage. The duration of the life cycle and surface and negatively affect photosynthesis. the number of generations per year are greatly influenced by the prevailing climate. A mild temperature with high Distribution relative humidity provides ideal conditions for growth and development. About four generations per year have The orange spiny whitefly has spread to Africa, Australia, been recorded in Japan (Kuwana et al. -
Review of the West Indian Arachnocoris Scott, 1881 (Hemiptera: Nabidae), with Descriptions of Two New Species, and a Catalog of the Species1
Life: The Excitement of Biology 4(1) 32 Review of the West Indian Arachnocoris Scott, 1881 (Hemiptera: Nabidae), with Descriptions of Two New Species, and a Catalog of the Species1 Javier E. Mercado2, Jorge A. Santiago-Blay3, and Michael D. Webb4 Abstract: We review the West Indian species of Arachnocoris, a genus of spider-web dwelling kleptoparasitic nabids. We recognize five species: A. berytoides Uhler from Grenada, A. darlingtoni n. sp. from Hispaniola, A. karukerae Lopez-Moncet from Guadeloupe, A. portoricensis n. sp. from Puerto Rico, and A. trinitatis Bergroth from Trinidad. West Indian Arachnocoris antennal and profemoral color banding patterns are useful diagnostic characters and may have evolved to mimic their spider hosts, which are often island endemic spiders in the family Pholcidae. We provide a simplified and illustrated key to the species based on external characters. A catalog for the 16 recognized species of Arachnocoris is presented. Keywords: Hemiptera, Nabidae, Arachnocoris, new species, Neotropical, West Indies Introduction The Nabidae are a relatively small family in the insect order Hemiptera with approximately 20-30 genera and 400-500 described species (Henry 2009, Faúndez and Carvajal 2014). All described species are terrestrial predators. Some species are considered beneficial to humans as these help control populations of agricultural pests. Several species of Nabis have been reported as biting humans (Faúndez 2015). Within the Nabidae Arachnocoris is one of two genera in the tribe Arachnocorini. The arachnophilic genus5 Arachnocoris Scott is a small and little-known group of specialized kleptoparasitic nabids that spend their life- stages living in a relatively treacherous habitat, namely a spider’s web, particularly non-sticky portions of it (Henry 1999; Mercado-Santiago-Blay 2015; Figure 1, this paper). -
Review of the West Indian Arachnocoris Scott, 1881 (Hemiptera: Nabidae), with Descriptions of Two New Species, and a Catalog of the Species1
Life: The Excitement of Biology 4(1) 32 Review of the West Indian Arachnocoris Scott, 1881 (Hemiptera: Nabidae), with Descriptions of Two New Species, and a Catalog of the Species1 Javier E. Mercado2, Jorge A. Santiago-Blay3, and Michael D. Webb4 Abstract: We review the West Indian species of Arachnocoris, a genus of spider-web dwelling kleptoparasitic nabids. We recognize five species: A. berytoides Uhler from Grenada, A. darlingtoni n. sp. from Hispaniola, A. karukerae Lopez-Moncet from Guadeloupe, A. portoricensis n. sp. from Puerto Rico, and A. trinitatis Bergroth from Trinidad. West Indian Arachnocoris antennal and profemoral color banding patterns are useful diagnostic characters and may have evolved to mimic their spider hosts, which are often island endemic spiders in the family Pholcidae. We provide a simplified and illustrated key to the species based on external characters. A catalog for the 16 recognized species of Arachnocoris is presented. Keywords: Hemiptera, Nabidae, Arachnocoris, new species, Neotropical, West Indies Introduction The Nabidae are a relatively small family in the insect order Hemiptera with approximately 20-30 genera and 400-500 described species (Henry 2009, Faúndez and Carvajal 2014). All described species are terrestrial predators. Some species are considered beneficial to humans as these help control populations of agricultural pests. Several species of Nabis have been reported as biting humans (Faúndez 2015). Within the Nabidae Arachnocoris is one of two genera in the tribe Arachnocorini. The arachnophilic genus5 Arachnocoris Scott is a small and little-known group of specialized kleptoparasitic nabids that spend their life- stages living in a relatively treacherous habitat, namely a spider’s web, particularly non-sticky portions of it (Henry 1999; Mercado-Santiago-Blay 2015; Figure 1, this paper). -
94: Frank & Mccoy Intro. 1 INTRODUCTION to INSECT
Behavioral Ecology Symposium ’94: Frank & McCoy Intro. 1 INTRODUCTION TO INSECT BEHAVIORAL ECOLOGY : THE GOOD, THE BAD, AND THE BEAUTIFUL: NON-INDIGENOUS SPECIES IN FLORIDA INVASIVE ADVENTIVE INSECTS AND OTHER ORGANISMS IN FLORIDA. J. H. FRANK1 AND E. D. MCCOY2 1Entomology & Nematology Department, University of Florida, Gainesville, FL 32611-0620 2Biology Department and Center for Urban Ecology, University of South Florida, Tampa, FL 33620-5150 ABSTRACT An excessive proportion of adventive (= “non-indigenous”) species in a community has been called “biological pollution.” Proportions of adventive species of fishes, am- phibia, reptiles, birds and mammals in southern Florida range from 16% to more than 42%. In Florida as a whole, the proportion of adventive plants is about 26%, but of in- sects is only about 8%. Almost all of the vertebrates were introduced as captive pets, but escaped or were released into the wild, and established breeding populations; few arrived as immigrants (= “of their own volition”). Almost all of the plants also were in- troduced, a few arrived as immigrants (as contaminants of shipments of seeds or other cargoes). In contrast, only 42 insect species (0.3%) were introduced (all for bio- logical control of pests, including weeds). The remainder (about 946 species, or 7.6%) arrived as undocumented immigrants, some of them as fly-ins, but many as contami- nants of cargoes. Most of the major insect pests of agriculture, horticulture, human- made structures, and the environment, arrived as hitchhikers (contaminants of, and stowaways in, cargoes, especially cargoes of plants). No adventive insect species caus- ing problems in Florida was introduced (deliberately) as far as is known. -
Freshwater Crabs As Predators and Prey: the Case of Ptychophallus Uncinatus Campos & Lemaitre, 1999 (Brachyura, Pseudothelphusidae) from Costa Rica, Central America
Latin American Journal of Aquatic Research, 47(1): 18Ptychophallus-26, 2019 uncinatus from Costa Rica 1 DOI: 10.3856/vol47-issue1-fulltext-3 Research Article Freshwater crabs as predators and prey: the case of Ptychophallus uncinatus Campos & Lemaitre, 1999 (Brachyura, Pseudothelphusidae) from Costa Rica, Central America Ingo S. Wehrtmann1,2, Dayan Hernández-Díaz3 & Neil Cumberlidge4 1Museo de Zoología, Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica 2Unidad de Investigación Pesquera y Acuicultura (UNIP), Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San José, Costa Rica 3Escuela de Biología, Universidad Latina de Costa Rica, Sede San Pedro, Costa Rica 4Department of Biology, Northern Michigan University, Marquette, MI, USA Corresponding author: Ingo S. Wehrtmann ([email protected]) ABSTRACT. Primary freshwater crabs are an important component of the food web in aquatic ecosystems, but our knowledge about the role of these decapods as predators and as prey is far from complete. Here we report observations of the feeding habits of the pseudothelphusid crab Ptychophallus uncinatus Campos & Lemaitre, 1999, made in 2013 during exploratory observations after sunset in the dusk and darkness of the early evening within the Veragua Rainforest Research & Adventure Park, Limón Province, in the Atlantic drainage of Costa Rica. We observed a case of cannibalism where an adult P. uncinatus was feeding on a smaller crab. Furthermore, P. uncinatus was observed to prey on an insect larva, a frog, and a lizard on three separate occasions. Additionally, a spider of the family Ctenidae was discovered feeding on a specimen of P. -
IBEITR.ARANEOL.,L(2004)
I BEITR.ARANEOL.,l(2004) I PART 111 a (TEil 111 a) - Descriptions of selected taxa THE FOSSil MYGAlOMORPH SPIDERS (ARANEAE) IN BAl TIC AND DOMINICAN AMBER AND ABOUT EXTANT MEMBERS OF THE FAMllY MICROMYGALIDAE J. WUNDERLICH, 75334 Straubenhardt, Germany. Abstract: The fossil mygalomorph spiders (Araneae: Mygalomorpha) in Baltic and Do- minican amber are listed, a key to the taxa is given. Two species of the genus Ummidia THORELL 1875 (Ctenizidae: Pachylomerinae) in Baltic amber are redescribed, Clos- thes priscus MENGE 1869 (Dipluridae) from Baltic amber is revised, two gen. indet. (Dipluridae) fram Baltic amber are reported. The first fossil member of the family Micro- stigmatidae: Parvomygale n. gen., Parvomygale distineta n. sp. (Parvomygalinae n. subfarn.) in Dominican amber is described. - The taxon Micramygalinae PLATNICK & FORSTER 1982 is raised to family rank, revised diagnoses of the families Micromyga- lidae (no fossil record) and Micrastigmatidae are given. Material: CJW = collection J. WUNDERLICH, GPIUH = Geological and Palaeontologi- cal Institute of the University Hamburg, IMGPUG = Institute and Museum for Geology and Paleontology of the Georg-August-University Goettingen in Germany. 595 ---~-~-~~~--~~--~-'----------~--------~-~~~=-~~--.., INTRODUCTION The first fossil member of the suborder Mygalomorpha (= Orthognatha) in Baltic amber has been described by MENGE 1869 as Glostes priscus (figs. 1-2; comp. the book of WUNDERLICH (1986: Fig. 291)). This spider is a member of the family Dipluridae (Funnelweb Mygalomorphs) and is redescribed in this paper; only juveniles are known. Two further species of Mygalomorpha are described from this kind of amber, these are members of the family Ctenizidae (Trapdoor spiders). - Fossil members of the Mygalo- morphae in Dominican amber were described by WUNDERLICH (1988).