Screening of Catalysts for the Subcritical Water Depolymerization of Lignin

Total Page:16

File Type:pdf, Size:1020Kb

Screening of Catalysts for the Subcritical Water Depolymerization of Lignin South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 2020 Screening of Catalysts for the Subcritical Water Depolymerization of Lignin Balawanthrao Jadhav South Dakota State University Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Chemistry Commons Recommended Citation Jadhav, Balawanthrao, "Screening of Catalysts for the Subcritical Water Depolymerization of Lignin" (2020). Electronic Theses and Dissertations. 4993. https://openprairie.sdstate.edu/etd/4993 This Dissertation - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. SCREENING OF CATALYSTS FOR THE SUBCRITICAL WATER DEPOLYMERIZATION OF LIGNIN BY BALAWANTHRAO JADHAV A dissertation submitted in partial fulfilment of the requirements for the Doctor of Philosophy Major in Chemistry South Dakota State University 2020 ii DISSERTATION ACCEPTANCE PAGE Balawanthrao Jadhav This dissertation is approved as a creditable and independent investigation by a candidate for the Doctor of Philosophy degree and is acceptable for meeting the dissertation requirements for this degree. Acceptance of this does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department. Douglas Raynie Advisor Date Douglas Raynie Department Head Date Nicole Lounsbery, PhD Director, Graduate School Date iii ACKNOWLEDGEMENTS I express my deepest gratitude to my advisor, Dr. Douglas E. Raynie, for his continuous support, constant encouragement, and guidance throughout this journey. I thank him for being with me to improve my knowledge and research skills in the field of science through his valuable suggestions. He is not only a research advisor but also a kind nature human in society. He helped me in all difficulty situations in this journey. He is always welcoming everyone with his beautiful smile in the department. I thank my advisory committee members, Dr. Fathi Halaweish, Dr. Cheng Zhang, and Dr. William J. Wood for their invaluable guidance and feedback throughout my graduate study. I extend my sincere thanks to Dr. Ronald Hirko for his motivation and guidance to develop the teaching skills. I would like to thank the Department of Chemistry and Biochemistry, South Dakota State University, staff, and fellow co-workers for supporting and helping me to achieve this milestone in my life. I would like to thank SDSU and Brookings Community to provide us safest environment throughout this journey. I am thankful to the Indian Student Association to allowed me to serve as the President of the Indian Student Association. I am thankful to International Student Affairs to gave me the opportunity to help the international students during the COVID-19 pandemic. I appreciate my lambastes Ranen Roy, Ahsan Ahmed, Shiksha Subedi, Sajjadur Rahman, and Shanmugapriya Dharmarajan for their academic and personal support. I am grateful to Nancy Awasthi, Prachi Pahariya, Kanya Maji, Abhijit Maji, and Ramu K Dasarath for being with us always to support us in every situation like a family member. iv My heartful thanks to my beloved friend Dr. Darmakkolla Srikarrao for his encouragement, motivation, and support to come to United States to pursue my Doctorate. I am greatly indebted to my parents Madhav Rao Jadhav and Rathna Bai Jadhav for their love, blessings, support, prayers, and sacrifice throughout my education. I extend my acknowledgement to my brothers Sainath Jadhav and Vilas Rao Jadhav for their continuous support and encouragement. My acknowledgements to my family members, relatives, and well-wishers for their blessings and encouragement. I express my thanks to my wife Pranitha Jadhav, for being with me always for supporting, caring, and helping me to reach this milestone. My lovely daughter, Sriprajwala Jadhav, you are my strength in this chapter and your presence made every moment is joyful. This study was supported by the National Science Foundation EPSCoR Track II Dakota BioCon project for the North and South Dakota (Grant Nos. IIA-1355466 and IIA- 1330842). Thanks to everyone, who supported me directly, and indirectly throughout this journey. v TABLE OF CONTENT LIST OF ABBREVIATIONS ………………………………………………………. ix LIST OF FIGURES …………………………………………………………………. x LIST OF TABLES …………………………………………………………………. xvi ABSTRACT ………………………………………………………………………… xx CHAPTER ONE: INTRODUCTION AND BACKGROUND …………………. 1 1.1. Introduction ……………………………………………………………….1 1.1.1. Biomass …………………………………………………………1 1.2. Lignocellulosic Biomass ………………………………………………… 2 1.2.1. Introduction ……………………………………………………. 2 1.3. Lignin ……………………………………………………………………. 3 1.3.1. Introduction ……………………………………………………. 3 1.3.2. Lignin structure …………………………………………………3 1.3.3. Lignin sources …………………………………………………. 5 1.4. Lignin monomers applications …………………………………………... 6 1.5. Lignin Extraction ………………………………………………………….6 1.6. Depolymerization of Lignin ………………………………………………10 1.7. Subcritical water ………………………………………………………….12 1.7.1. Introduction ……………………………………………………. 12 1.7.2. Applications of Subcritical water ……………………………… 13 vi CHAPTER TWO: CATALYST SCREENING FOR THE DEPOLYMERIZATION OF LIGNIN IN THE PRESENCE OF SUBCRITICAL WATER …………….24 2.1. Introduction ……………………………………………………………. 24 2.2. Experimental ……………………………………………………………27 2.2.1. Materials and Catalysts ……………………………………….27 2.2.2. Hydrothermal Conversion Process ……………………………28 2.2.3. Separation and Extraction of Phenolic monomers ……………29 2.2.4. GC-MS Analysis ……………………………………………...29 2.3. Results and Discussion …………………………………………………29 2.3.1. Product Analysis and Quantification ………………………….29 2.4. Role of Subcritical water and Catalysts in depolymerization of alkali Lignin…………………………………………………………………...58 2.5. The possible pathways and mechanism of Alkali lignin in the presence of subcritical water and catalysts………………………………………60 2.6. Summary ……………………………………………………………….62 2.7. Conclusion ……………………………………………………………...63 vii CHAPTER THREE: OPTIMIZATION OF REACTION CONDITIONS FOR THE DEPOLYMERIZATION OF ALKALI LIGNIN IN THE PRESENCE OF SUBCRITICAL WATER AND CATALYST …………………………………...65 3.1. Introduction ……………………………………………………………. 65 3.2. Experimental ……………………………………………………………67 3.2.1. Materials ……………………………………………………….67 3.2.2. Method …………………………………………………………67 3.2.3. GC-MS analysis ……………………………………………….68 3.3. Results and Discussion ………………………………………………...68 3.3.1. Identification of Products and Quantification …………………68 3.4. Summary ………………………………………………………………76 3.5. Conclusion …………………………………………………………….77 CHAPTER FOUR: EXTRACTION AND DEPOLYMERIZATION OF LIGNIN FROM PINE SAWDUST AND PISTACHIO SHELLS BIOMASS…………. 78 4.1. Introduction …………………………………………………………. 78 4.2. Materials ……………………………………………………………...80 4.3. Experimental procedure ………………………………………………80 4.3.1. Extraction of lignin from Pine sawdust and Pistachio shells….80 4..3.2. Sample Preparation…………………………………………...81 viii 4.3.3. Experimental setup ………………………………………….82 4.3.4. Depolymerization of lignin from Pistachio Shells …………. 83 4.4. Results and Discussion ……………………………………………...84 4.4.1. Characterization of extracted lignin ……………………...84 4.4.1.1. FT-IR spectroscopy …………………………………….84 4.4.1.2. 1H NMR spectroscopy ………………………………….86 4.4.1.3. Thermogravimetric analysis (TGA) ……………………88 4.4.1.4. Identification of phenolic monomers using GC-MS……89 4.5. Conclusion ………………………………………………………....92 CHAPTER FIVE: CONCLUSIONS AND FUTURE WORK ………………. 93 REFERENCES …………………………………………………………………. 96 ix ABBREVIATIONS AL……………………………………… Alkali Lignin SCW……………………………………. Subcritical Water ASE……………………………………. Accelerated Solvent Extraction MIK……………………………………. Methyl Isobutyl Ketone TGA…………………………………… Thermogravimetric Analysis GC-MS………………………………… Gas Chromatography-Mass Spectrometry FT-IR…………………………………... Fourier Transformation Infrared Spectroscopy ([bmim][Cl]) …………………………... 1-butyl-3-methylimidazolium chloride OPB …………………………………... Oil Palm Biomass ScCO2 ………………………………… Supercritical Carbon dioxide [MMIM]-[MeSO4] ……………………… ….1,3-dimethylimidazolium methyl sulfate DCM …………………………………….......Dichloromethane BSA …………………………………………Bovine Serum Albumin LC-MS/MS ………………………………… Liquid chromatography-tandem mass spectrometry AA ……………………………………….... Anhydrous Ammonia CSS……………………………………. Coriandrum Sativum Seeds PS …………………………………………. Pistachio Shells AADESs ………………………………Amino acid deep eutectic solvents HDO …………………………………. Hydrodeoxygenation HTL …………………………………...Hydrothermal Liquefaction [BMIM]CF3SO3] ………………………1-butyl-3-methylimidazolium trifluoromethanesulfonate x LIST OF FIGURES Figure 1.1. Structure of Lignocellulosic biomass and different types of components …………………………………………………………………………….2 Figure 1.2. The Complex structure of lignin ………………………………………….5 Figure 1.3. Phase diagram of water representing sub-and supercritical region …………………………………………………………………………………...13 Figure 2.1. Phenolic monomers of the lignin ………………………………………… 25 Figure 2.2. Stepwise process for the depolymerization of alkali lignin in the presence of subcritical water and different types of Catalysts……………………………………... 28 Figure 2.3. Standard calibration curves of six phenolic monomers……………………30 Figure 2.4. GC-MS chromatogram of phenolic monomers from the alkali lignin in
Recommended publications
  • Diapositiva 1
    ISSN-2007-8080 REVISTA MEXICANA DE FITOPATOLOGÍA MEXICAN JOURNAL OF PHYTOPATHOLOGY VOLÚMEN 34, NÚMERO 1, 2016 Órgano Internacional de Difusión de la Sociedad Mexicana de Fitopatología, A.C. Revista Mexicana de FITOPATOLOGÍA Sociedad Mexicana de Fitopatología, A. C. Editor en Jefe * Editor in Chief Dr. Gustavo Mora Aguilera Colegio de Postgraduados Editor Técnico * Technical Editor Lic. Ma. Yunuén López Muratalla Composición Web * Web Composition Ing. Eduardo Guzmán Hernández Editoras(es) Adjuntos * Senior Editors Dra. Sylvia Patricia Fernández Pavía UMSNH Dra. Emma Zavaleta Mejía Colegio de Postgraduados Dra. Irasema del Carmen Vargas Arispuro CIAD Dra. Graciela Dolores Ávila Quezada CIAD Dr. Guillermo Fuentes Dávila INIFAP Dr. Ángel Rebollar Alviter Universidad Autonoma Chapingo Comité Editorial Internacional * International Editorial Advisory Board Dra. Lilian Amorim, Universidad de Sao Paulo, Brasil. Dr. Rodrigo Valverde Louisiana State University, USA Dr. Sami Jorge Michereff Universidad Federal Rural de Pernambuco, Brasil Dr. Pedro W. Crous, Pretoia & Free State (SA) Universities, Holland. Editoras(es) Asociados * Associate Editors Dra. Evangelina E. Quiñones Aguilar, CIATEJ A.C. Dra. Emma Zavaleta Mejía, Colegio de Postgraduados Dr. Jairo Cristóbal Alejo, Instituto Tecnologico Agropecuario Conkal Dr. Jesús Ricardo Sánchez Pale, UAEM Dr. Alejandro Tovar Soto, IPN Dr. Ángel Rebollar Alviter, Universidad Autónoma de Chapingo Dr. J. Joel E. Corrales García, Universidad Autónoma de Chapingo Revista Mexicana de FITOPATOLOGÍA Volumen 34, Número 1, 2016 Artículos Científicos * Scientific Articles Caracterización Fenotípica de Mycosphaerella fijiensis y su Relación con la Sensibilidad a Fungicidas 1 en Colombia * Phenotypic Characterization of Mycosphaerella fijiensis and its Relation with Sensitivity to Fungicides in Colombia. Leonardo Sepúlveda. Identificación y alternativas de manejo de la cenicilla del rosal * Identification and management alter- 22 natives of powdery mildew in rosebush.
    [Show full text]
  • Instituto De Investigaciones Químico Biológicas
    UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO INSTITUTO DE INVESTIGACIONES QUÍMICO-BIOLÓGICAS MAESTRÍA EN CIENCIAS QUÍMICAS "SÍNTESIS DE PRECURSORES DE MONOLIGNOLES A PARTIR DE COMPUESTOS ,-INSATURADOS. ESTUDIO DE LA SELECTIVIDAD Y REACTIVIDAD MEDIANTE DFT." TESIS QUE PARA OBTENER EL GRADO DE: MAESTRA EN CIENCIAS QUÍMICAS PRESENTA: Q.F.B ANGELICA ESCAMILLA RAMÍREZ ASESORES D.C. RAFAEL HERRERA BUCIO D.C. PABLO LOPÉZ ALBARRÁN Morelia, Michoacán; Julio de 2015 INDICE RESUMEN ............................................................................................................... i ABSTRACT ............................................................................................................ iii SÍMBOLOS, ABREVIATURAS Y FORMULAS ........................................................ v 1. INTRODUCCIÓN ............................................................................................... 1 1.1 Olefinas ......................................................................................................... 1 1.1.1 Olefinas Captodativas (cd) ....................................................................... 3 1.2 Lignina y Monolignoles .................................................................................. 5 1.3 Reacciones de sustitución electrofílica aromática (SEAr) .............................. 7 1.3.1 Bencenos polisustituidos ........................................................................ 8 1.3.2 Efectos inductivos y de resonancia en anillos aromáticos .................... 10 1.4 Ácidos
    [Show full text]
  • Diseño Y Síntesis De Líquidos Iónicos Para Aplicaciones Específicas
    Facultade de Química Departamento de Química Orgánica Diseño y síntesis de Líquidos Iónicos para aplicaciones específicas Se opta al título de DOCTOR INTERNACIONAL Memoria presentada por Pedro Verdía Barbará por la que se opta al Grado de Doctor por la Universidade de Vigo Agradecimientos: A mi directora, la profesora Emilia Tojo Suárez, por haberme dado la oportunidad de trabajar en su grupo de investigación y por todo el apoyo que me ha dado durante estos años. Al resto de profesores del grupo de investigación QO-2, Yag, Gelu, Men, Marta, Pedro, a todos los compañeros que han pasado por el laboratorio, especialmente a Miguel Vilas, compañero de fatigas, a Manolo, Zoila, Andrea, Tamara, Massene, etc… y a Candi, técnica de laboratorio del departamento de Química Orgánica. A las personas del grupo PROSEPAV del departamento de ingeniería química de la Universidad de Vigo, sobre todo a Emilio y Ana Belen, por su colaboración en la realización de este trabajo. Al centro tecnológico Tekniker por su colaboración en la realización de este trabajo. A la vicerrectoría de investigación de la Universidade de Vigo por la concesión de una beca pre-doctoral. Al ministerio de educación, cultura y deporte del gobierno de España por la concesión de una beca de movilidad. Al profesor Tom Welton del Imperial College London, por haberme dado la oportunidad de realizar una estancia en su grupo de investigación, y a toda la gente de su grupo, especialmente a Agnieszka Brandt y Trang Quynh To, que me guiaron y dieron toda su ayuda. A mi familia y amigos. Y para acabar por el principio, a Hilda y Borja, quienes me empujaron a empezar esto.
    [Show full text]
  • Plant Genetic Engineering for Biofuel Production: Towards Affordable Cellulosic Ethanol
    FOCUS ON GLOBAL CHALLREVIEWSENGes RETRACTED Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol Mariam B. Sticklen Abstract | Biofuels provide a potential route to avoiding the global political instability and environmental issues that arise from reliance on petroleum. Currently, most biofuel is in the form of ethanol generated from starch or sugar, but this can meet only a limited fraction of global fuel requirements. Conversion of cellulosic biomass, which is both abundant and renewable, is a promising alternative. However, the cellulases and pretreatment processes involved are very expensive. Genetically engineering plants to produce cellulases and hemicellulases, and to reduce the need for pretreatment processes through lignin modification, are promising paths to solving this problem, together with other strategies, such as increasing plant polysaccharide content and overall biomass. Finite petroleum reserves and the increasing demands Starch- and sugar-derived ethanol already make a for energy in industrial countries have created inter- relatively small but significant contribution to global national unease. For example, the dependence of the energy supplies. In particular, Brazil produces relatively United States on foreign petroleum both undermines its cheap ethanol from the fermentation of sugarcane sugar economic strength and threatens its national security1. to supply one quarter of its ground transportation fuel. In As highly populated countries such as China and India addition, the United States produces ethanol from corn become more industrialized, they too might face similar grain. However, even if all the corn grain produced in problems. It is also clear that no country in the world the United States were converted into ethanol, this could is untouched by the negative environmental effects of only supply about 15% of that country’s transportation petroleum extraction, refining, transportation and use.
    [Show full text]
  • ( 12 ) United States Patent
    US009988412B2 (12 ) United States Patent ( 10 ) Patent No .: U 8 , 412 B2 Jansen et al. ( 45 ) Date of Patent : Jun . 5 , 2018 (54 ) METHODS FOR PREPARING THERMALLY 58 ) Field of Classification Search STABLE LIGNIN FRACTIONS CPC combination set ( s ) only. See application file for complete search history . Applicant : Virdia , Inc ., Raceland , LA (US ) ( 71) ( 56 ) References Cited ( 72 ) Inventors : Robert Jansen , Collinsville , IL (US ) ; James Alan Lawson , Ellsworth , ME U . S . PATENT DOCUMENTS (US ) ; Noa Lapidot , Mevaseret Zion 2 , 380 , 448 A 7 / 1945 Katzen ( IL ) ; Bassem Hallac, Jerusalem ( IL ) ; 2 , 772 , 965 A 12 / 1956 Gray et al. Perry Rotem , Bazra ( IL ) 3 , 808 , 192 A 4 / 1974 Dimitri M 4 , 111 , 928 A 9 / 1978 Holsopple et al. 4 ,237 , 110 A 12 / 1980 Forster et al. ( 73 ) Assignee : VIRDIA , INC ., Raceland, LA (US ) 4 ,277 ,626 A 7 / 1981 Forss et al . 4 ,470 ,851 A 9 / 1984 Paszner et al. ( * ) Notice : Subject to any disclaimer , the term of this 4 ,520 , 105 A 5 / 1985 Sinner et al. patent is extended or adjusted under 35 4 ,740 , 591 A 4 / 1988 Dilling et al . U . S . C . 154 ( b ) by 0 days. days . 4 ,797 ,457 A 1 / 1989 Guiver et al . 4 , 946 , 946 A 8 / 1990 Fields et al . (21 ) Appl. No. : 15 /593 , 752 ( Continued ) ( 22 ) Filed : May 12 , 2017 FOREIGN PATENT DOCUMENTS 2812685 A1 3 /2012 (65 ) Prior Publication Data 101143881 A 3 / 2008 US 2018 /0079766 A1 Mar . 22 , 2018 ( Continued ) Related U . S . Application Data OTHER PUBLICATIONS (63 ) Continuation of application No .
    [Show full text]
  • Lignin-Based Resistance to Cuscuta Campestris Parasitism in Heinz
    bioRxiv preprint doi: https://doi.org/10.1101/706861; this version posted September 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 RESEARCH ARTICLE 2 Lignin-based resistance to Cuscuta campestris parasitism in 3 Heinz resistant tomato cultivars 4 Min-Yao Jhu1*, Moran Farhi1,2*, Li Wang1,3, Richard N. Philbrook1, Michael S. 5 Belcher4,5, Hokuto Nakayama1, Kristina S. Zumstein1, Steven D. Rowland1, Mily 6 Ron1, Patrick M. Shih1,4,6,7, Neelima R. Sinha1@. 7 1 Department of Plant Biology, University of California, Davis, CA, 95616, United 8 States. 9 2 Research, Archer Daniels Midland Company, 1554 Drew Avenue, Davis, California, 10 95618 USA. 11 3 College of Forestry, Beijing Forestry University, Beijing, 100083, PR China. 12 4 Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States. 13 5 Department of Plant and Microbial Biology, University of California, Berkeley, 14 Berkeley, CA, United States. 15 6 Genome Center, University of California, Davis, Davis, CA, United States. 16 7 Environmental Genomics and Systems Biology Division, Lawrence Berkeley National. 17 @ Corresponding author: Neelima R. Sinha 18 Email: [email protected]. 19 * These authors contributed equally to the work. 20 Short title: Lignin-based resistance blocks dodder entry 21 One-sentence summary: Four key regulators confer lignin accumulation in the tomato 22 stem cortex blocking C. campestris host penetration upon infection. 23 The author responsible for distribution of materials integral to the findings presented in 24 this article in accordance with the policy described in the Instructions for Authors 25 (www.plantcell.org) is: Neelima R.
    [Show full text]
  • Thermochemical Conversion of Lignocellulosic Biomass Into Biofuels with Aspen Plus Simulation
    MASTER THESIS IN CHEMICAL ENGINEERING Thermochemical conversion of lignocellulosic biomass into biofuels with Aspen Plus simulation Author: Ângelo Dinis Simões Nunes Supervisors: António Alberto Torres Garcia Portugal Lino de Oliveira Santos A thesis submitted in fulfilment of the requirements for the degree of Master of Science in the Department of Chemical Engineering September, 2015 “The existing scientific concepts cover always only a very limited part of reality, and the other part that has not yet been understood is infinite." Werner Heisenberg Resumo Nos últimos anos, a escassez de recursos fósseis tornou-se uma realidade importante. Aliada aos efeitos ambientais negativos que advêm com a exploração destes recursos, são necessárias alternativas. Nos últimos anos, houve um foco, liderado em grande parte pela Europa em encontrar alternativas aos combustíveis fósseis que sejam verdadeiramente viáveis, especialmente no sector dos transportes. O mercado dos transportes está a crescer rapidamente, muito devido à China e outros países emergentes, o que significa que a procura ligada aos combustíveis para transportes só irá aumentar. De modo a satisfazer esta procura, alternativas ao petróleo são necessárias e os biocombustíveis surgem como um importante recurso. No entanto, ainda existem muitos problemas associados ao processamento das matérias-primas, nomeadamente a biomass, em combustíveis que possam ser usados. Há também o benefício da valorização dos recursos endógenos ao nível económico, social e ambiental. Esta tese pretende descrever a pirólise de cinco tipos de madeira, que podem ser encontradas dentro de Portugal continental. Dois esquemas reaccionais foram testados para todas as amostras e modificações foram feitas de forma a melhor coincidir com resultados experimentais, tal levou ao estudo de um cenário optimizado.
    [Show full text]
  • Nitric Oxide Induced Modulations in Adventitious Root Growth, Lignin Content and Lignin Synthesizing Enzymes in the Hypocotyls of Vigna Radiata T
    Plant Physiology and Biochemistry 141 (2019) 225–230 Contents lists available at ScienceDirect Plant Physiology and Biochemistry journal homepage: www.elsevier.com/locate/plaphy Research article Nitric oxide induced modulations in adventitious root growth, lignin content and lignin synthesizing enzymes in the hypocotyls of Vigna radiata T ∗ Sangeeta Sharmaa, Harminder Pal Singhb, , Daizy Rani Batisha, Ravinder Kumar Kohlia,c a Department of Botany, Panjab University, Chandigarh, 160014, India b Department of Environment Studies, Panjab University, Chandigarh, 160014, India c Central University of Punjab, Mansa Road, Bathinda, 151001, India ARTICLE INFO ABSTRACT Keywords: The present study evaluated the role of nitric oxide (NO) in mediating adventitious root (AR) growth, lig- Nitric oxide nification and related enzymatic changes in the hypocotyls of Vigna radiata. To meet the objectives, the changes Adventitious rooting in AR growth, lignin content, and the activities of enzymes−peroxidases, polyphenol oxidases, and phenyla- fi Ligni cation lanine ammonia lyases− with NO donor and its scavenger were monitored. Hypocotyls were cultivated in Phenylpropanoid pathway aqueous solution supplemented with different concentrations of SNP (sodium nitroprusside, NO donor com- Phenylalanine ammonia lyases pound) and its scavenging compound (2,4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide; Peroxidases fi Polyphenyl oxidases cPTIO). Speci cally, at low concentrations, SNP induced AR growth, increased the total lignin content and altered the activities of related oxidoreductases- peroxidases, polyphenol oxidases and phenylalanine ammonia lyases- which are involved in lignin biosynthesis pathway. At higher concentrations, a decline in AR growth and lignification was noticed. We analysed the function of NO in AR formation by depleting the endogenous NO using scavenging compound cPTIO.
    [Show full text]
  • Redalyc.Función De La Lignina En La Interacción Planta-Nematodos
    Revista Mexicana de Fitopatología ISSN: 0185-3309 [email protected] Sociedad Mexicana de Fitopatología, A.C. México Lagunes-Fortiz, Erika; Zavaleta-Mejía, Emma Función de la Lignina en la Interacción Planta-Nematodos Endoparásitos Sedentarios Revista Mexicana de Fitopatología, vol. 34, núm. 1, 2016, pp. 43-63 Sociedad Mexicana de Fitopatología, A.C. Texcoco, México Disponible en: http://www.redalyc.org/articulo.oa?id=61243205003 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Revista Mexicana de FITOPATOLOGÍA Función de la Lignina en la Interacción Planta-Nematodos Endoparásitos Sedentarios Role of Lignin in the Plant- Sedentary Endoparasitic Nematodes Interaction Erika Lagunes-Fortiz y Emma Zavaleta-Mejía, Laboratorio de Fisiología y Fitopatología Molecular, Es- pecialidad de Fitopatología, Instituto de Fitosanidad, Colegio de Posgraduados, km 36.5 Carretera México- Texcoco, Montecillo, Texcoco, Estado. México, CP 56230, México. Correspondencia: ([email protected]). Recibido: 1 de Julio, 2015. Aceptado: 16 de Noviembre, 2015. Lagunes-Fortiz E y Zavaleta-Mejía E. 2016. Función de Abstract. Sedentary endoparasitic nematodes la Lignina en la Interacción Planta-Nematodos Endopa- introduce into their host, through its stylet, effector rásitos Sedentarios. Revista Mexicana de Fitopatología molecules that are previously synthesized in their 34, 43-63. esophageal glands, which induce reprogramming of DOI: 10.18781/R.MEX.FIT.1506-7 gene expression in the host cells to promote changes Primera publicación DOI: 26 de Noviembre, 2015.
    [Show full text]
  • Development of Lignin Based Thermoplastic Elastomers and Composite Materials
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2021 Stretching the applications of biomass: Development of lignin based thermoplastic elastomers and composite materials Anthony Stephen Bova [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Polymer and Organic Materials Commons, Polymer Chemistry Commons, and the Polymer Science Commons Recommended Citation Bova, Anthony Stephen, "Stretching the applications of biomass: Development of lignin based thermoplastic elastomers and composite materials. " PhD diss., University of Tennessee, 2021. https://trace.tennessee.edu/utk_graddiss/6634 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Anthony Stephen Bova entitled "Stretching the applications of biomass: Development of lignin based thermoplastic elastomers and composite materials." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Energy Science and Engineering. Amit K. Naskar, Major Professor
    [Show full text]
  • Antioxidant Activity of Lignin -Mannich Bases Synthesised by Amination Reactions
    J. Chem Soc. Nigeria, Vol. 44, No. 7, pp 1276 -1282 [2019] Antioxidant activity of Lignin -Mannich bases Synthesised by Amination reactions G. K. Oloyede,1*, B.O. Ogunsile 2, M.S.Ali 3, and W.A. Ngouonpe 4 1Organic Chemistry Unit, Department of Chemistry, University of Ibadan, Nigeria. 2 Industrial Chemistry Unit, Department of Chemistry, University of Ibadan, Nigeria. 3HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi. 4Department of Chemistry, Higher Teacher Training College, University of Yaounde 1, P.O.Box 47, Yaounde, Cameroon *Correspondents Author’s E-mail: [email protected] Tel: +234 803 562 2238 Received 17 June 2019; accepted 27 September 2019, published online 29 November 2019 ABSTRACT Lignin is a polymer derived from the phenylpropanoid compounds, coniferyl alcohol and related alcohols. It is the second abundant (next to cellulose) and important organic substance in the plant world. Researches on lignin has been in the area of adsorption properties, but this present study is aimed at synthesizing Mannich bases by amination reaction and investigating the antioxidant activities. Lignin was extracted from Nypa fruticans Wurmb. by soda pulping method. The lignin was subjected to Mannich reaction. The Lignin Mannich Bases (LMB) prepared were screened for antioxidant activity using 2,2- diphenylpicryl hydrazyl radical (DPPH) method. Results obtained showed that the Mannich bases prepared had the following monolignol units: methylamine (LMB1), dimethylamine (LMB2), diethylamine (LMB3), aniline (LMB4), 2,6—dimethylaniline (LMB5), 3,4-dimethylaniline (LMB6), 2,5-dimethylaniline (LMB7), 3,4-dichloroaniline (LMB8), 2,6-dichloroaniline (LMB9), and 2- (3,4-dimethoxyphenyl) ethylamine (LMB10), respectively as evidenced in the Proton NMR data.
    [Show full text]
  • National Laboratory
    Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2016 An Approach towards Tailoring Interfacial Structures and Properties of Multiphase Renewable Thermoplastics from Lignin–Nitrile Rubber Tony Bova,1,2 Chau D. Tran,1 Mikhail Y. Balakshin,3 Jihua Chen,4 Ewellyn A. Capanema,3 Amit K. Naskar 1,2 * 1Carbon and Composites Group, Materials Science and Technology Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, United States 2The Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN 37996, United States 3Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina, United States 4Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States *Correspondence should be addressed to: Amit K Naskar, [email protected] +1-865-576-0309 Keywords: lignin, renewable thermoplastic, yield stress, nitrile rubber, multiphase polymer This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05- 00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). 1 Abstract Lignin-derived thermoplastics and elastomers with both versatile performance and commercialization potential have been an elusive pursuit for the past several decades.
    [Show full text]