Identification and Characterization of Adenosine A2A Heteromers in the CNS Identificació I Caracterització D'heteròmers

Total Page:16

File Type:pdf, Size:1020Kb

Identification and Characterization of Adenosine A2A Heteromers in the CNS Identificació I Caracterització D'heteròmers Identification and characterization of Adenosine A2A heteromers in the CNS Identificació i caracterització d’heteròmers d’Adenosina A2A al SNC Marc Brugarolas Campillos ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB. No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR o al Repositorio Digital de la UB (framing). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la persona autora. WARNING. On having consulted this thesis you’re accepting the following use conditions: Spreading this thesis by the TDX (www.tdx.cat) service and by the UB Digital Repository (diposit.ub.edu) has been authorized by the titular of the intellectual property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not authorized nor its spreading and availability from a site foreign to the TDX service or to the UB Digital Repository. Introducing its content in a window or frame foreign to the TDX service or to the UB Digital Repository is not authorized (framing). Those rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate the name of the author. FACULTAT DE BIOLOGIA DEPARTAMENT DE BIOQUÍMICA I BIOLOGIA MOLECULAR Identification and characterization of Adenosine A2A heteromers in the CNS. Identificació i caracterització d’heteròmers d’Adenosina A2A al SNC. Memòria presentada pel Llicenciat en Biologia Marc Brugarolas Campillos per a optar al grau de Doctor per la Universitat de Barcelona. Aquesta tesi s’ha adscrit al Departament de Bioquímica i Biologia Molecular de la Universitat de Barcelona, dins del programa de doctorat de Biomedicina. El treball experimental i la redacció de la present memoria han estat realitzats per Marc Brugarolas Campillos sota la direcció del Dr. Rafael Franco Fernández i del Dr. Vicent Casadó Burillo. Dr. Rafael Franco Fernández Dr. Vicent Casadó Burillo Marc Brugarolas Campillos Barcelona, setembre del 2013. 2 INDEX I. Introduction 1. G protein coupled receptors …………………………………………….………17 1.1. GPCR function and structure ………………………………...…………18 1.2. GPCR classification ……………………………………………………..22 1.3. Signaling pathways ………………………………………….…………..25 1.4. GPCR interacting proteins ………………………………….…………..27 2. GPCR oligomerization …………………………………………………...……..29 2.1. GPCR oligomerization evidence …………………………………...……29 2.2. Architecture of the heteromers …………………………….…………….30 2.3. Techniques used to identify GPCR dimers …………………………..….33 2.3.1. Ligand binding in oligomeric receptors ……………………...38 2.4. GPCR heteromerization: functional consequences ……………..………..42 3. Dopamine receptors ………………………………………………………...…..47 3.1. Dopamine receptor characteristics …………………………...………….48 3.2. Dopamine D2 receptor …………………………………………..………51 3.3. Basal ganglia and dopaminergic circuitry ……………………..…………53 4. Adenosine receptor …………………………………………………………..….57 4.1. Adenosine ……………………………………………………….………60 4.2. Adenosine A2A receptors …………………………………………………63 4.3. A2A receptor heteromers ……………………………………...………….68 4.3.1. Postsynaptic A2A receptor heteromers ………………………..68 4.3.2. Presynaptic A2A receptor heteromers ……………….………..73 4.4. Adenosine receptor in Huntington’s disease ……………………………..75 4.4.1. Huntington’s disease and huntingtin ………………………..75 4.4.2. Adenosine A2A receptors in HD ……………………………..81 3 4.4.3. A2A receptor antagonists in HD treatment …………..………84 5. Cannabinoid receptors ………………………………………………………….86 5.1. CB1 receptors ………………………………………………………….86 5.2. CB1 receptor heteromers ………………………………………………90 5.3. CB1 receptors in Huntington’s disease …………………………………92 II. Aims ………………………………………………………………....……………...99 III. Methods …………………………………………………………………………...103 IV. Results and discussion ……………………………........…………………………133 Chapter 1.1: A1R-A2AR heteromers coupled to Gs and Gi/o proteins modulate GABA transport into astrocytes …………………………….133 Chapter 1.2: Adenosine A1R and A2AR heteromers form dynamic but stable tetrameric complexes with two different G proteins ……………..….155 Chapter 2: Agonist and antagonist allosteric interactions between receptors in the A2AR-D2R heteromer ………………………………………….175 Chapter 3: Striatal pre- and postsynaptic profile of adenosine A2AR antagonists ………………………………………………………………193 Chapter 4: Pharmacological and functional characterization of A2AR-CB1R heteromer ………………………………………………………....219 4 Chapter 5: Compound screening of different A2AR antagonists in stable CHO cell lines expressing A2AR, A1R-A2AR, A2AR-D2R or A2AR-CB1R heteromers ………………………………………………………..235 V. Conclusions ………………………………………………………….……………239 VI. Bibliography ………………………………………………………………………245 VII. Resum en català ……………………………………………….………………….301 5 6 LIST OF ABBREVIATIONS [3H]: 3H-labeled [35S]: 35S-labelled 2-AG: 2-Arachidonoylglycerol 5-HT2BR: 5- hydroxytryptamine (serotonin) receptor 2B A1R: Adenosine A1 receptor A2AR: Adenosine A2A receptor A374 A2A R: Adenosine receptor A2A with a mutation in the position 374 of a serine to an alanine. A3R: Adenosine A3 receptor AC: Adenylyl cyclase ADA: Adenosine deaminase ADP: Adenosine diphosphate Ala: Alanine α-MEM: α-Modification of minimum essential medium. AMP: Adenosine monophosphate AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ANOVA: Analysis of variance ATP: Adenosine triphosphate B50: Concentration competing 50% of radioligand binding BAY-59-3074: 3-[2-Cyano-3-(trifluoromethyl) phenoxy] phenyl 4, 4, 4-trifluoro-1- butanesulfonic acid ester BCA: Bicinchoninic acid assay BDNF: Brain-derived neurotrophic factor BiLFC: Bimolecular fluorescence complementation 7 BRET: Bioluminescence resonance energy transfer BSA: Bovine serum albumin CADO: 2-Chloro-adenosine Ca2+: Calcium cAMP: Cyclic adenosine monophosphate CB1R: Cannabinoid CB1 receptor CCPA: 2-Chloro-N-cyclopentyladenosine cDNA: Cyclic deoxyribonucleic acid CDS: Cellular dielectric spectroscopy CGS 21680: 4-[2-[[6-Amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin- yl]amino]ethyl]benzenepropanoic acid hydrochloride CHDI: Curing Huntington’s disease initiative CHO: Chinese hamster ovary cells ChTx: Cholera toxin cm: Centimeter CNS: Central nervous system CP 55,940: (-)-cis-3-[2-Hydroxy-4-(1,1-dimethyl-heptyl)phenyl]-trans-4-(3- hydroxypropyl)cyclohexanol CPA: (N6-Cyclopentyladenosine) CREB: cAMP response element-binding protein cRluc: C-terminus renilla luciferase Cy3: Cyanine 3 cYFP: C-terminus yellow fluorescent protein D2R: Dopamine D2 receptor DAG: Diacylglycerol DARPP-32: Dopamine- and cyclic AMP-regulated phosphoprotein of 32 kDa 8 DAT: Dopamine transporter DCB: Dimer cooperativity index for the competing ligand B ddH2O: Double distilled water Δ9-THC: Δ9-tetrahydrocannabinol DGL: Diacylglycerol lipase DMEM: Dulbeco’s modified Eagle’s medium DMSO: Dimethyl-sulfoxyde DNA: Deoxyribonucleic acid DPCPX: 8-Cyclophenyl-1,3-dipropylxantine DTT: Dithiothreitol ECL: Extracellular EDTA: Ethylenediaminetetraacetic acid eGFP: Enhanced green fluorescent protein Elk1: ETS domain-containing protein 1 EMCCD: Electron multiplying charge-coupled device EMG: Electromyographic ER: Endoplasmic reticulum ERK: Extracellular signal-regulated kinases ETS: E-twenty six transcription factor EYFP: Enhanced yellow fluorescent protein FAD: Flavin adenine dinucleotide FAAH: Fatty acid amide hydrolase FBS: Foetal Bovine Serum Fig.: Figure FITC: Fluorescein isothiocyanate FRAP: Fluorescence recovery after photobleaching 9 FRET: Förster resonance energy transfer FSH: Follicle-stimulating hormone GABA: Gamma-aminobutyric acid GABAergic: Gamma-Aminobutyric-acidergic GAT: Gamma-aminobutyric acid transporter GDP: Guanosine-5’-diphosphate GEF: Guanine nucleotide exchange factor GFAP: Glial fibrillary acidic protein GFP: Green fluorescent protein GPCR: G-protein coupled receptor Gpe: Globus pallidus external segment Gpi: Globus pallidus internal segment GRK: G-protein receptor kinase GTP: Guanosine-5’-triphosphate GTP-γ-S: Guanosine-5’-O-gamma-thiophosphate H: Hour HBSS: Hank’s balanced salt solution HD: Huntington’s disease HEPES: 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic
Recommended publications
  • Supplementary Materials Evodiamine Inhibits Both Stem Cell and Non-Stem
    Supplementary materials Evodiamine inhibits both stem cell and non-stem-cell populations in human cancer cells by targeting heat shock protein 70 Seung Yeob Hyun, Huong Thuy Le, Hye-Young Min, Honglan Pei, Yijae Lim, Injae Song, Yen T. K. Nguyen, Suckchang Hong, Byung Woo Han, Ho-Young Lee - 1 - Table S1. Short tandem repeat (STR) DNA profiles for human cancer cell lines used in this study. MDA-MB-231 Marker H1299 H460 A549 HCT116 (MDA231) Amelogenin XX XY XY XX XX D8S1179 10, 13 12 13, 14 10, 14, 15 13 D21S11 32.2 30 29 29, 30 30, 33.2 D7S820 10 9, 12 8, 11 11, 12 8 CSF1PO 12 11, 12 10, 12 7, 10 12, 13 D3S1358 17 15, 18 16 12, 16, 17 16 TH01 6, 9.3 9.3 8, 9.3 8, 9 7, 9.3 D13S317 12 13 11 10, 12 13 D16S539 12, 13 9 11, 12 11, 13 12 D2S1338 23, 24 17, 25 24 16 21 D19S433 14 14 13 11, 12 11, 14 vWA 16, 18 17 14 17, 22 15 TPOX 8 8 8, 11 8, 9 8, 9 D18S51 16 13, 15 14, 17 15, 17 11, 16 D5S818 11 9, 10 11 10, 11 12 FGA 20 21, 23 23 18, 23 22, 23 - 2 - Table S2. Antibodies used in this study. Catalogue Target Vendor Clone Dilution ratio Application1) Number 1:1000 (WB) ADI-SPA- 1:50 (IHC) HSP70 Enzo C92F3A-5 WB, IHC, IF, IP 810-F 1:50 (IF) 1 :1000 (IP) ADI-SPA- HSP90 Enzo 9D2 1:1000 WB 840-F 1:1000 (WB) Oct4 Abcam ab19857 WB, IF 1:100 (IF) Nanog Cell Signaling 4903S D73G4 1:1000 WB Sox2 Abcam ab97959 1:1000 WB ADI-SRA- Hop Enzo DS14F5 1:1000 WB 1500-F HIF-1α BD 610958 54/HIF-1α 1:1000 WB pAkt (S473) Cell Signaling 4060S D9E 1:1000 WB Akt Cell Signaling 9272S 1:1000 WB pMEK Cell Signaling 9121S 1:1000 WB (S217/221) MEK Cell Signaling 9122S 1:1000
    [Show full text]
  • Synthesis of Ribavirin, Tecadenoson, and Cladribine by Enzymatic Transglycosylation
    catalysts Article Synthesis of Ribavirin, Tecadenoson, and Cladribine by Enzymatic Transglycosylation 1, 2 2,3 2 Marco Rabuffetti y, Teodora Bavaro , Riccardo Semproli , Giulia Cattaneo , Michela Massone 1, Carlo F. Morelli 1 , Giovanna Speranza 1,* and Daniela Ubiali 2,* 1 Department of Chemistry, University of Milan, via Golgi 19, I-20133 Milano, Italy; marco.rabuff[email protected] (M.R.); [email protected] (M.M.); [email protected] (C.F.M.) 2 Department of Drug Sciences, University of Pavia, viale Taramelli 12, I-27100 Pavia, Italy; [email protected] (T.B.); [email protected] (R.S.); [email protected] (G.C.) 3 Consorzio Italbiotec, via Fantoli 15/16, c/o Polo Multimedica, I-20138 Milano, Italy * Correspondence: [email protected] (G.S.); [email protected] (D.U.); Tel.: +39-02-50314097 (G.S.); +39-0382-987889 (D.U.) Present address: Department of Food, Environmental and Nutritional Sciences, University of Milan, y via Mangiagalli 25, I-20133 Milano, Italy. Received: 7 March 2019; Accepted: 8 April 2019; Published: 12 April 2019 Abstract: Despite the impressive progress in nucleoside chemistry to date, the synthesis of nucleoside analogues is still a challenge. Chemoenzymatic synthesis has been proven to overcome most of the constraints of conventional nucleoside chemistry. A purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP) has been used herein to catalyze the synthesis of Ribavirin, Tecadenoson, and Cladribine, by a “one-pot, one-enzyme” transglycosylation, which is the transfer of the carbohydrate moiety from a nucleoside donor to a heterocyclic base. As the sugar donor, 7-methylguanosine iodide and its 20-deoxy counterpart were synthesized and incubated either with the “purine-like” base or the modified purine of the three selected APIs.
    [Show full text]
  • Note: the Letters 'F' and 'T' Following the Locators Refers to Figures and Tables
    Index Note: The letters ‘f’ and ‘t’ following the locators refers to figures and tables cited in the text. A Acyl-lipid desaturas, 455 AA, see Arachidonic acid (AA) Adenophostin A, 71, 72t aa, see Amino acid (aa) Adenosine 5-diphosphoribose, 65, 789 AACOCF3, see Arachidonyl trifluoromethyl Adlea, 651 ketone (AACOCF3) ADP, 4t, 10, 155, 597, 598f, 599, 602, 669, α1A-adrenoceptor antagonist prazosin, 711t, 814–815, 890 553 ADPKD, see Autosomal dominant polycystic aa 723–928 fragment, 19 kidney disease (ADPKD) aa 839–873 fragment, 17, 19 ADPKD-causing mutations Aβ, see Amyloid β-peptide (Aβ) PKD1 ABC protein, see ATP-binding cassette protein L4224P, 17 (ABC transporter) R4227X, 17 Abeele, F. V., 715 TRPP2 Abbott Laboratories, 645 E837X, 17 ACA, see N-(p-amylcinnamoyl)anthranilic R742X, 17 acid (ACA) R807X, 17 Acetaldehyde, 68t, 69 R872X, 17 Acetic acid-induced nociceptive response, ADPR, see ADP-ribose (ADPR) 50 ADP-ribose (ADPR), 99, 112–113, 113f, Acetylcholine-secreting sympathetic neuron, 380–382, 464, 534–536, 535f, 179 537f, 538, 711t, 712–713, Acetylsalicylic acid, 49t, 55 717, 770, 784, 789, 816–820, Acrolein, 67t, 69, 867, 971–972 885 Acrosome reaction, 125, 130, 301, 325, β-Adrenergic agonists, 740 578, 881–882, 885, 888–889, α2 Adrenoreceptor, 49t, 55, 188 891–895 Adult polycystic kidney disease (ADPKD), Actinopterigy, 223 1023 Activation gate, 485–486 Aframomum daniellii (aframodial), 46t, 52 Leu681, amino acid residue, 485–486 Aframomum melegueta (Melegueta pepper), Tyr671, ion pathway, 486 45t, 51, 70 Acute myeloid leukaemia and myelodysplastic Agelenopsis aperta (American funnel web syndrome (AML/MDS), 949 spider), 48t, 54 Acylated phloroglucinol hyperforin, 71 Agonist-dependent vasorelaxation, 378 Acylation, 96 Ahern, G.
    [Show full text]
  • Revealing 29 Sets of Independently Modulated Genes in Staphylococcus Aureus, Their Regulators, and Role in Key Physiological Response
    Revealing 29 sets of independently modulated genes in Staphylococcus aureus, their regulators, and role in key physiological response Saugat Poudela, Hannah Tsunemotob, Yara Seifa, Anand V. Sastrya, Richard Szubina, Sibei Xua, Henrique Machadoa, Connor A. Olsona, Amitesh Ananda, Joe Poglianob, Victor Nizetc,d, and Bernhard O. Palssona,c,1 aDepartment of Bioengineering, University of California San Diego, La Jolla, CA 92093; bDepartment of Biology, University of California San Diego, La Jolla, CA 92093; cCollaborative to Halt Antibiotic-Resistant Microbes, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093; and dSkaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093 Edited by Jeff F. Miller, University of California, Los Angeles, CA, and approved June 1, 2020 (received for review May 6, 2020) The ability of Staphylococcus aureus to infect many different tis- modulated sets of genes (called i-modulons) and calculates the sue sites is enabled, in part, by its transcriptional regulatory net- activity level of each i-modulon in the input expression profile. work (TRN) that coordinates its gene expression to respond to ICA analysis of expression profiles in E. coli have been used to different environments. We elucidated the organization and activ- describe undefined regulons, link strain-specific mutations with ity of this TRN by applying independent component analysis to a changes in gene expression, and understand rewiring of TRN compendium of 108 RNA-sequencing expression profiles from two during adaptive laboratory evolution (ALE) (7, 9). Given the S. aureus clinical strains (TCH1516 and LAC). ICA decomposed the deeper insights it provided into the TRN of E.
    [Show full text]
  • Research Article Evodiamine Induces Transient Receptor Potential Vanilloid-1-Mediated Protective Autophagy in U87-MG Astrocytes
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2013, Article ID 354840, 9 pages http://dx.doi.org/10.1155/2013/354840 Research Article Evodiamine Induces Transient Receptor Potential Vanilloid-1-Mediated Protective Autophagy in U87-MG Astrocytes Ann-Jeng Liu,1,2 Sheng-Hao Wang,3 Sz-Ying Hou,3,4 Chien-Ju Lin,3 Wen-Ta Chiu,1,5 Sheng-Huang Hsiao,2 Thay-Hsiung Chen,6,7 and Chwen-Ming Shih3,4,8 1 Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan 2 Department of Neurosurgery, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan 3 Department of Biochemistry, School of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan 4 Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan 5 Department of Neurosurgery, Taipei Municipal Wan-Fang Hospital, Taipei, Taiwan 6 Department of Surgery, College of Medicine, Taipei Medical University, Taiwan 7 Division of Cardiac Surgery, Cathy General Hospital, Taipei, Taiwan 8 Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan Correspondence should be addressed to Thay-Hsiung Chen; [email protected] and Chwen-Ming Shih; [email protected] Received 21 October 2013; Accepted 23 November 2013 Academic Editor: Joen-Rong Sheu Copyright © 2013 Ann-Jeng Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Cerebral ischemia is a leading cause of mortality and morbidity worldwide, which results in cognitive and motor dysfunction, neurodegenerative diseases, and death.
    [Show full text]
  • Cphi & P-MEC China Exhibition List展商名单version版本20180116
    CPhI & P-MEC China Exhibition List展商名单 Version版本 20180116 Booth/ Company Name/公司中英文名 Product/产品 展位号 Carbosynth Ltd E1A01 Toronto Research Chemicals Inc E1A08 SiliCycle Inc. E1A10 SA TOURNAIRE E1A11 Indena SpA E1A17 Trifarma E1A21 LLC Velpharma E1A25 Anuh Pharma E1A31 Chemclone Industries E1A51 Hetero Labs Limited E1B09 Concord Biotech Limited E1B10 ScinoPharm Taiwan Ltd E1B11 Dongkook Pharmaceutical Co., Ltd. E1B19 Shenzhen Salubris Pharmaceuticals Co., Ltd E1B22 GfM mbH E1B25 Leawell International Ltd E1B28 DCS Pharma AG E1B31 Agno Pharma E1B32 Newchem Spa E1B35 APEX HEALTHCARE LIMITED E1B51 AMRI E1C21 Aarti Drugs Limited E1C25 Espee Group Innovators E1C31 Ruland Chemical Co., Ltd. E1C32 Merck Chemicals (Shanghai) Co., Ltd. E1C51 Mediking Pharmaceutical Group Ltd E1C57 珠海联邦制药股份有限公司/The United E1D01 Laboratories International Holdings Ltd. FMC Corporation E1D02 Kingchem (Liaoning) Chemical Co., Ltd E1D10 Doosan Corporation E1D22 Sunasia Co., Ltd. E1D25 Bolon Pharmachem Co., Ltd. E1D26 Savior Lifetec Corporation E1D27 Alchem International Pvt Ltd E1D31 Polish Investment and Trade Agency E1D57 Fischer Chemicals AG E1E01 NGL Fine Chem Limited E1E24 常州艾柯轧辊有限公司/ECCO Roller E1E25 Linnea SA E1E26 Everlight Chemical Industrial Corporation E1E27 HARMAN FINOCHEM E1E28 Zhechem Co Ltd E1F01 Midas Pharma GmbH Shanghai Representativ E1F03 Supriya Lifescience Ltd E1F10 KOA Shoji Co Ltd E1F22 NOF Corporation E1F24 上海贺利氏工业技术材料有限公司/Heraeus E1F26 Materials Technology Shanghai Ltd. Novacyl Asia Pacific Ltd E1F28 PharmSol Europe Limited E1F32 Bachem AG E1F35 Louston International Inc. E1F51 High Science Co Ltd E1F55 Chemsphere Technology Inc. E1F57a PharmaCore Biotech Co., Ltd. E1F57b Rockwood Lithium GmbH E1G51 Sarv Bio Labs Pvt Ltd E1G57 抗病毒类、抗肿瘤类、抗感染类和甾体类中间体、原料药和药物制剂及医药合约研发和加工服务 上海创诺医药集团有限公司/Shanghai Desano APIs and Finished products of ARV, Oncology, Anti-infection and Hormone drugs and E1H01 Pharmaceuticals Co., Ltd.
    [Show full text]
  • University of Groningen Ccpa Ensures Optimal Metabolic Fitness
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Groningen University of Groningen CcpA Ensures Optimal Metabolic Fitness of Streptococcus pneumoniae Carvalho, Sandra M.; Kloosterman, Tomas G.; Kuipers, Oscar P.; Neves, Ana Rute Published in: PLoS ONE DOI: 10.1371/journal.pone.0026707 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2011 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Carvalho, S. M., Kloosterman, T. G., Kuipers, O. P., & Neves, A. R. (2011). CcpA Ensures Optimal Metabolic Fitness of Streptococcus pneumoniae. PLoS ONE, 6(10), [26707]. https://doi.org/10.1371/journal.pone.0026707 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 12-11-2019 CcpA Ensures Optimal Metabolic Fitness of Streptococcus pneumoniae Sandra M.
    [Show full text]
  • Adenosine A1 Receptor Activation Attenuates Lung Ischemia–Reperfusion Injury
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE CARDIOTHORACIC TRANSPLANTATION provided by Elsevier - Publisher Connector Adenosine A1 receptor activation attenuates lung ischemia–reperfusion injury Lucas G. Fernandez, MD, DSc, Ashish K. Sharma, PhD, MBBS, Damien J. LaPar, MD, MSc, Irving L. Kron, MD, and Victor E. Laubach, PhD Objectives: Ischemia–reperfusion injury contributes significantly to morbidity and mortality in lung transplant patients. Currently, no therapeutic agents are clinically available to prevent ischemia–reperfusion injury, and treatment strategies are limited to maintaining oxygenation and lung function. Adenosine can modulate inflam- matory activity and injury by binding to various adenosine receptors; however, the role of the adenosine A1 re- ceptor in ischemia–reperfusion injury and inflammation is not well understood. The present study tested the hypothesis that selective, exogenous activation of the A1 receptor would be anti-inflammatory and attenuate lung ischemia–reperfusion injury. Methods: Wild-type and A1 receptor knockout mice underwent 1 hour of left lung ischemia and 2 hours of re- perfusion using an in vivo hilar clamp model. An A1 receptor agonist, 2-chloro-N6-cyclopentyladenosine, was administered 5 minutes before ischemia. After reperfusion, lung function was evaluated by measuring airway resistance, pulmonary compliance, and pulmonary artery pressure. The wet/dry weight ratio was used to assess edema. The myeloperoxidase and cytokine levels in bronchoalveolar lavage fluid were measured to determine the presence of neutrophil infiltration and inflammation. Results: In the wild-type mice, 2-chloro-N6-cyclopentyladenosine significantly improved lung function and at- tenuated edema, cytokine expression, and myeloperoxidase levels compared with the vehicle-treated mice after ischemia–reperfusion.
    [Show full text]
  • Anti-Inflammatory Effects of Adenosine N1-Oxide
    Kohno et al. Journal of Inflammation (2015) 12:2 DOI 10.1186/s12950-014-0045-0 RESEARCH Open Access Anti-inflammatory effects of adenosine N1-oxide Keizo Kohno1*†, Emiko Ohashi1†, Osamu Sano1†, Hajime Kusano2†, Toshio Kunikata1†, Norie Arai3†, Toshiharu Hanaya1†, Toshio Kawata2†, Tomoyuki Nishimoto1† and Shigeharu Fukuda1,3† Abstract Background: Adenosine is a potent endogenous anti-inflammatory and immunoregulatory molecule. Despite its promise, adenosine’s extremely short half-life in blood limits its clinical application. Here, we examined adenosine N1-oxide (ANO), which is found in royal jelly. ANO is an oxidized product of adenosine at the N1 position of the adenine base moiety. We found that it is refractory to adenosine deaminase-mediated conversion to inosine. We further examined the anti-inflammatory activities of ANO in vitro and in vivo. Methods: The effect of ANO on pro-inflammatory cytokine secretion was examined in mouse peritoneal macrophages and the human monocytic cell line THP-1, and compared with that of adenosine, synthetic adenosine receptor (AR)-selective agonists and dipotassium glycyrrhizate (GK2). The anti-inflammatory activity of ANO in vivo was examined in an LPS-induced endotoxin shock model in mice. Results: ANO inhibited secretion of inflammatory mediators at much lower concentrations than adenosine and GK2 when used with peritoneal macrophages and THP-1 cells that were stimulated by LPS plus IFN-γ. The potent anti-inflammatory activity of ANO could not be solely accounted for by its refractoriness to adenosine deaminase. ANO was superior to the synthetic A1 AR-selective agonist, 2-chloro-N6-cyclopentyladenosine (CCPA), A2A AR-selective agonist, 2-[p-(2-carboxyethyl)phenethylamino]-5’-N-ethylcarboxamideadenosine hydrochloride (CGS21680), and A3 AR-selective agonist, N6-(3-iodobenzyl)adenosine-5’-N-methyluronamide (IB-MECA), in suppressing the secretion of a broad spectrum of pro-inflammatory cytokines by peritoneal macrophages.
    [Show full text]
  • The Effects of Evodiamine on Serum Total Cholesterol
    Arch Biol Sci. 2016;68(3):561-566 DOI:10.2298/ABS150904046Y THE EFFECTS OF EVODIAMINE ON SERUM TOTAL CHOLESTEROL AND TRIGLYCERIDE LEVELS ARE ASSOCIATED WITH THE ACTIVATION OF THE AMPK SIGNALING PATHWAY IN RATS WITH HYPERLIPEMIA Hui Yu1, Hai Hu2, Wuzhuang Gong3, Li Yang3, Zhanli Wang3,4,* and Cuifeng Wang3,* 1 The Second Affiliated Hospital, Baotou Medical College, Baotou 014030, China 2 Department of Pathophysiology, Baotou Medical College, Baotou 014060, China 3 The First Affiliated Hospital, Baotou Medical College, Baotou 014010, China 4 School of Public Health, Baotou Medical College, Baotou 014060, China *Corresponding authors: [email protected]; [email protected] Received: September 4, 2015; Revised: October 14, 2015; Accepted: October 26, 2015; Published online: May 9, 2016 Abstract: Evodiamine, a naturally occurring indole alkaloid, has been reported to have numerous biological activities, including antitumor, antimicrobial and anti-inflammatory effects. Previous studies also suggest that evodiamine prevents obesity. In this study, we confirmed that evodiamine lowered the levels of serum total cholesterol (TC) and triglycerides (TG) in rats with hyperlipemia. Furthermore, our findings suggest that the activation of the AMP-activated protein kinase (AMPK) pathway might contribute in part to the effect of evodiamine on the serum levels of TC and TG. Key words: evodiamine; AMP-activated protein kinase; total cholesterol; triglycerides INTRODUCTION evodiamine inhibited neuropeptide Y (NPY) mRNA and peptide levels in the arcuate nucleus (ARC) of Evodiamine is a bioactive compound present in the the hypothalamus, which might be one of the mecha- fruit of Evodia rutaecarpa (Juss.) Benth [1]. Initially, it nisms by which evodiamine exerted its anti-obesity was identified as a vanilloid receptor 1 (TRPV1) ago- effects.
    [Show full text]
  • Transient Receptor Potential Channels As Drug Targets: from the Science of Basic Research to the Art of Medicine
    1521-0081/66/3/676–814$25.00 http://dx.doi.org/10.1124/pr.113.008268 PHARMACOLOGICAL REVIEWS Pharmacol Rev 66:676–814, July 2014 Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics ASSOCIATE EDITOR: DAVID R. SIBLEY Transient Receptor Potential Channels as Drug Targets: From the Science of Basic Research to the Art of Medicine Bernd Nilius and Arpad Szallasi KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.) Abstract. ....................................................................................679 I. Transient Receptor Potential Channels: A Brief Introduction . ...............................679 A. Canonical Transient Receptor Potential Subfamily . .....................................682 B. Vanilloid Transient Receptor Potential Subfamily . .....................................686 C. Melastatin Transient Receptor Potential Subfamily . .....................................696 Downloaded from D. Ankyrin Transient Receptor Potential Subfamily .........................................700 E. Mucolipin Transient Receptor Potential Subfamily . .....................................702 F. Polycystic Transient Receptor Potential Subfamily . .....................................703 II. Transient Receptor Potential Channels: Hereditary Diseases (Transient Receptor Potential Channelopathies). ......................................................704
    [Show full text]
  • Sleep Promoting Effect of Luteolin in Mice Via Adenosine A1 and A2A Receptors
    Original Article Biomol Ther 27(6), 584-590 (2019) Sleep Promoting Effect of Luteolin in Mice via Adenosine A1 and A2A Receptors Tae-Ho Kim1, Raly James Custodio2, Jae Hoon Cheong2, Hee Jin Kim2,* and Yi-Sook Jung1,3,* 1College of Pharmacy, Ajou University, Suwon 16499, 2Uimyoung Research Institute in Neuroscience, Sahmyook University, Seoul 01795, 3College of Pharmacy, Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea Abstract Luteolin, a widespread flavonoid, has been known to have neuroprotective activity against various neurologic diseases such as epilepsy, and Alzheimer’s disease. However, little information is available regarding the hypnotic effect of luteolin. In this study, we evaluated the hypnotic effect of luteolin and its underlying mechanism. In pentobarbital-induced sleeping mice model, luteolin (1, and 3 mg/kg, p.o.) decreased sleep latency and increased the total sleep time. Through electroencephalogram (EEG) and electromyogram (EMG) recording, we demonstrated that luteolin increased non-rapid eye movement (NREM) sleep time and decreased wake time. To evaluate the underlying mechanism, we examined the effects of various pharmacological antagonists on the hypnotic effect of luteolin. The hypnotic effect of 3 mg/kg of luteolin was not affected by flumazenil, a GABAA receptor- benzodiazepine (GABAAR-BDZ) binding site antagonist, and bicuculine, a GABAAR-GABA binding site antagonist. On the other hand, the hypnotic effect of 3 mg/kg of luteolin was almost completely blocked by caffeine, an antagonist for both adenosine A1 and A2A receptor (A1R and A2AR), 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), an A1R antagonist, and SCH-58261, an A2AR antagonist.
    [Show full text]