A 1A9, A431 and A549 Cell Lines, 3478 12Α,13Α-Aziridinyl Epothilone

Total Page:16

File Type:pdf, Size:1020Kb

A 1A9, A431 and A549 Cell Lines, 3478 12Α,13Α-Aziridinyl Epothilone Index A Acanthoscelides obtectus, 4091 1A9, A431 and A549 cell lines, 3478 Acanthostrongylophora, 1293 12a,13a-Aziridinyl epothilone derivatives, 990 Acari, 4070, 4083 Aaptos ciliata, 1292 Acaricides, 4070, 4076, 4083 AATs. See Anthocyanin acyltransferases Accelerated solvent extraction (ASE), 1017, (AATs) 2017, 2021–2023, 2032, 2037, 2111 Ab (1-42), 2287 p-Acceptors, 692 ABA biosynthesis, 1736 Accretion, 2405 Ab aggregation, 2286 Accumulation, 2321 Abdominal troubles, 3477 Acetaldehyde (ATL), 2902 Aberrant behavior, 1375 Acetaldehyde acid, 1783 Aberrant estrous cycles, 2421 Acetate, 50, 59 Abies alba, 2980 Acetate-mevalonate (Ac-MEV), 2943 Abietadiene synthase, 2725 Acetate pathway, 2314 Abiotic and biotic elicitors, 2783 Acetic acid (ACE), 851, 1608, 2884 Abiotic factor, 1697 Acetogenic bacteria, 2443 Abiotic stresses, 2930 Acetone, 3371 Ab neuropathology, 2285 Acetonitrile, 691, 1170, 1175 Ab oligomerization, 2285 3-Acetylaconitine, 1508 Ab oligomers, 2283 Acetyl-ACP, 963 Ab peptides, 1308, 2285 Acetyl-and butyrylcholinesterase inhibitors, Ab polymerization, 2287 3488 Abrin, 296 Acetylcholine (ACh), 1241, 1306, 1333, 1526, Abscisic acid (ABA), 2860, 3591 1527, 1529, 1530, 3710 Absolute configuration, 930, 3320 Acetylcholine esterase, 51, 52 Absolute configuration of monosaccharides, Acetylcholine esterase inhibitor activity, 2906 3319 Acetylcholinesterase (AChE), 41, 1246, 1308, Absorbance (A), 3334, 3380 1334, 1527, 1529–1533, 1535, 4097 Absorbance spectrum, 3929, 3933, 3934 Acetyl-CoA, 61, 584 Absorption, 1230, 2321, 2470–2476, Acetyl-CoA carboxylase (ACC), 1658, 1825 2478–2481, 3134, 3377, 3616, 4024 3-Acetyldeoxynivalenol, 3127, 3145 coefficient, 3380 15-Acetyl deoxynivalenol (15ADON), and metabolism, 1428 3127, 3145 wavelength, 4028 Acetylerucifoline, 1061 Abusive correlations, 2410 Acetylgaertneroside, 3054 Acacetin, 1830 60-O-Acetylgeniposide, 3058 Acacia, 865 8-O-Acetylharpagide, 3055 a2C adrenergic, 4124 Acetylintermedine, 1061 Acanthaceae, 801 Acetyllycopsamine, 1061 K.G. Ramawat, J.M. Me´rillon (eds.), Handbook of Natural Products, 4161 DOI 10.1007/978-3-642-22144-6, # Springer-Verlag Berlin Heidelberg 2013 4162 Index Acetyl/malonyl conjugates, 2391 Acute paw oedema in mice, 3217 Acetyl NIV, 3125, 3134, 3136, 3144, 3149 Acute rheumatism, 1507 10-Acetylpatrinoside, 3025 Acutissimin A, 1999 N-Acetylphenylethylamine (N-ACPEA), Acutissimins, 1993 28, 1208 Acyclic, 3369 13-O-Acetylplumieride, 3026 Acyclic bisbibenzyls, 1921 Acetyltransferase, 3131 Acyl carrier protein (ACP), 50, 61 N-Acetyltyramine (N-ACTYR), 28, 1208 Acyl-cholesterol O-acyltransferase 2 Acevaltrate, 3049 (ACAT-2), 3446 ACh. See Acetylcholine (ACh) Acyl halides, 1077 AChE. See Acetylcholinesterase (AChE) Acyrthosiphon pisum, 4094 Achillea millefolium, 2988 AD. See Alzheimer’s disease (AD) Achnatherum inebrians, 165 Adaptive tolerance, 1373 a-Acid, 2343 Adaptogen, 3503 Acid anhydrides, 1077 Adaptogenic plants, 3648 Acid-butanol assay, 2074 ADAS–Cog. See Alzheimer’s disease Acidic potassium permanganate, 1087 Assessment Scale–Cognitive Acidity, 2109, 2111 Section (ADAS–Cog) Acidocalcisome, 1277 AD clinical trials, 1257 Acids (“necic acids”), 361 Addiction, 1207, 1375 Acids (AC), 2886, 2904, 2906 Additive, 3983, 3984 Ac-MEV. See Acetate-mevalonate (Ac-MEV) A-delta fibers, 1371 Acnistin, 3470, 3471 Adenocarcinoma, 2421 Acnistin ramiflorus, 3470 Adenosine A2A receptor, 2682, 4115 Acnistus, 3467 Adenosine monophosphate-activated protein Acnistus arborescens, 3478 kinase (AMPK), 1304 Aconine, 1517 Adenosine receptor, 946 Aconite, 1504 Adenosine triphosphate (ATP), 3706 Aconitine, 1170, 1188, 1506, 1508 Adenylation protein, 51 Aconitine-induced arrhythmia, 1511 Adenylyl cyclase, 3327 Aconitine type, 933 Adhatoda, 802 Aconitorientaline, 935 Adhatoda vasica, 4095 Aconitum, 1188, 1505 ADHD. See Attention deficit and hyperactivity A. carmichaelii, 1505 disorder (ADHD) A. columbianum, 1505 Adipocytes, 3812 A. ferox, 1505 Adipose tissues, 2420 A. karakolicum, 1512 Adiposity, 1444 A. lycoctonum, 1505 ADL. See Activities of daily living (ADL) A. napellus, 1505 Adlercreutzia, 2444 Acorus calamus, 4095 A-domain, 703 Acquired resistance, 3976 Adrenal hormones, 1374 Acridone, 717 Adrenergic, 3709 Acronychia, 723 Adrenergic receptors, 686 Acrosiphonia centralis (Acrosiphonia arcta), b-Adrenergic receptors, 1226 2901 a2-Adrenoceptor, 599 Acrylic acid (ACR), 2884, 2906 b Adrenoceptors, 3709 ACT. See Artemisinin-based combination a-Adrenoreceptors, 1516 therapy (ACT) b-Adrenoreceptors, 1516 Actinidine, 930 ADS. See Amorphadiene synthase (ADS) Actinomadura madurae, 986, 988 Adsorbents, 1699, 3329, 3376 Activated charcoal, 3329 Adsorption, 3331 Activities of daily living (ADL), 1253 AD1-8-tax, 2803 Acute pain, 1379 Adulteration, 294, 1084 Index 4163 Advantages/drawbacks, 2959 Ailanthone, 3778 Adventitious root cultures, 188 Airlift bioreactors, 2778 Adverse effects, 2410, 2417 Ajmalicine, 88, 94, 96, 98, 103–110, 576–578, Advertizing campaign, 2423 584, 587–588, 591–594, 596, 1126, Advise, 2416 2774 Aedes aegypti, 4071 Ajmaline, 94, 108 Aegle, 718 Ajoene, 3668, 3678, 3680, 3681, 3683 Aeration, 1702, 2776 Ajugol, 3017 Aeromonas salmonesida, 980 Ajulemic acid, 3429 Aescin, 2955 Akt, 2187 Aesculus hippocastanum, 2951 Akt/NF-kB/Bcl-2 pathway, 3485 Affinity, 2388, 2413, 2417 Akt phosphorylation, 2191 Aflatoxin, 4113 Alanine aminotransferase, 1387 AFP, 2417 Alariaceae, 2898 Afraegle, 732 Alaria crassifolia, 2898 Agaricus silvaticus, 979 Albertisia papuana, 1287 Agastache rugosa, 2982 Albomitomycin A, 985 Agathosma, 753 Alcaline phosphatase, 2405 Aged garlic, AGE, 3666–3668, 3671, 3675, AlCl3 toxicity, 3653 3676, 3679, 3681, 3684 Alcohols (ALC), 2884, 2886, 4065, 4077 Ageladine, 270 Aldehydes (AL), 2884, 2886, 2904, 2907 Agelastatin, 268 Alectra, 3585 Ageliferins, 268 Alectrol, 3585 Agents, 978, 982, 984, 990, 994 Algae, 3252–3254, 3257, 3258, 3264, 3265 Ageotropism, 2950 Alkaline phosphate, 536 Age-related macular degeneration (AMD), Alkaloids, 27, 41, 87–89, 92, 100, 103, 106, 3937–3941, 3943–3948 109, 123, 149–167, 215, 216, Age-related macular disease, 3933, 218–220, 224, 225, 228–233, 3940, 3941 235–240, 242, 243, 245, 416, Age-related maculopathy (ARM), 3939, 3941, 462–476, 977–1002, 1072, 1279, 3942, 3946, 3947 1289, 1527, 1529, 1530, 1532, Age-related maculopathy disease (ARMD), 1533, 1535 3930, 3939–3943, 3948 content, 323, 331, 527 Aging, 1471, 1485, 1490–1491, fingerprint, 386 2266, 2267, 2349, 3477, 3703, 3707, production, 215, 228–231, 236, 238, 242, 3711, 3712, 3722, 3727 243, 245 Aglycones, 2473, 2475, 2478, 2479, 2481, profiles, 202 3227 Alkannin, 1552 Agonist, 2404 Alkylaryquinolin, 834 Agriculture, 3978 Alkylboronates, 1057 Agrobacterium Alkylphosphocholine, 1275 A. rhizogenes, 189, 231, 918, 2774, 2948, 2955 Allamancin, 3027 A. tumefaciens, 2774 Allelochemical character, 1830 Agroclavine synthase, 701 Allelochemicals, 2925, 3533 Agrocybe, 526 Allelopathic, 965, 3509 Agronomic factors, 2645 Allelopathic effects, 4098 118A > G SNP, 1377 Allelopathy, 151, 154, 166, 1566, 3533 Ahnfeltia Allergens, 3295, 4008 A. paradoxa,29 Allergic reactions, 3686 A. plicata, 2887 Allethrin, 4063, 4065, 4077 Ahnfeltiaceae, 2887 Alliaceae, 979 Ahnfeltiales, 2887 Allicin, 3666–3668, 3670, 3671, 3674, 3675, AhR. See Aryl hydrocarbon receptor (AhR) 3677, 3681, 3683, 3684 4164 Index Alliinase, 3666, 3677, 3684 Amidinotransferase, 61 Alliosterol, 3233 Amination, 416 Allium Amine (AM), 2884, 2886, 2904 A. cepa, 979 Amino, 412 A. sativum, 3664, 3665, 3678 Amino acids, 884, 979, 3665 Allodynia, 1374 Aminoalcohols (“necines”), 361 Allograft rejection, 1834 (E)-(S)-4-Amino-7-guanidino-hept-2-enoic Allomelanins, 1564 acid, 986, 987 Allophylus edulis, 4094 4-Amino-2H benzo[h]chromen-2-one (ABO), All-trans-b-carotene, 3588 3566 Almazolone (ALM), 29 (3S,4S)-4-Amino-3-hydroxy-6- ALM E,29 methylheptanoic acid, 986, 987 Almeidea, 731 4-Amino-hydroxyvaline, 988 ALM Z,29 Aminoisobutyric acid, 840 Alnus, 1553 4-Amino-3-oxo-guanidinoheptane, 61 Aloe-emodin, 1554 4-Aminopyridine, 64 Alpha-cypermethrin, 4070 8-Aminoquinoline, 1277 Alpha-fetoprotein, 2208 4-Amino-7,8,9,10-tetrahydro-2H-benzo[h] Alpha-ionol, 4095 chromen 2-one analogues (ATBO), Alpha-pinene, 4098 3566 Alpha-secretase, 3714 Ammonium sulfate, 3333 Alteromonas, 788 Amnesic, 129 Alumina, 3331, 3332 Amniotic fluid, 2417 Aluminium, 3645 Amorphadiene, 3108 Aluminium oxide, 692 Amorphadiene synthase (ADS), 2832, Alyosia triphylla, 2982 3082, 3083 Alzheimer’s disease (AD), 315, 332, 335, 337, AMPA/kainite receptors, 41 338, 510, 589, 848, 1244, 1307, AMPc, 4096 1333, 1471, 1475–1480, 1485, 1486, Ampelopsin, 2281 1526, 1527, 1529, 1531, 2283, 2313, Amphiroa anceps, 2889 2619, 2621, 2622, 3219, 3488, 3627, Amphotericin B (AmB), 1274, 1289 3646, 3713, 3967 AMPK. See Adenosine monophosphate- Alzheimer’s disease Assessment activated protein kinase (AMPK) Scale–Cognitive Amycolatopsis sulphurea, 988 Section (ADAS–Cog), 1256 a-Amylase, 1780 AM. See Arbuscular mycorrhizal (AM) Amyloid, 2622, 2626 Amanita, 526 Amyloid beta (Ab), 2283, 3712–3716, 3220 Amanita muscaria, 1343 Amyloid plaques, 2283 Amaryllidaceae, 1335 Amyloid precursor protein (APP), 3714, 3715 Amaryllidoideae, 481 Amyotrophic lateral sclerosis-Parkinsonism Amaryllis, 480 dementia, 41 Amastigotes, 845, 1266 Amyris, 722 Amastigote-specific, 1291 Anabaena, 47, 58 Ambrosia maritima, 2782 A. circinalis,59 Amenorrhea, 1374 A. crassa,52 American method, 4043 A. flos-aquae, 42, 52 AMF. See Arbuscular mycorrhizal fungi A. lemmermannii,52 (AMF) Anabaseine, 1347 AMH. See Anti-Mullerian Hormone Anaerobic conditions,
Recommended publications
  • Chemical Structures of Lignans and Neolignans Isolated from Lauraceae
    Review Chemical Structures of Lignans and Neolignans Isolated from Lauraceae Ya Li 1,*, Shuhan Xie 2, Jinchuan Ying 1, Wenjun Wei 1 and Kun Gao 1,* 1 State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; [email protected] (J.Y.); [email protected] (W.W.) 2 Lanzhou University High School, Lanzhou 730000, China; [email protected] * Correspondences: [email protected] (Y.L.); [email protected] (K.G.); Tel.: +86-931-8912500 (Y.L.) Academic Editor: David Barker Received: 09 November 2018; Accepted: 29 November 2018; Published: 30 November 2018 Abstract: Lauraceae is a good source of lignans and neolignans, which are the most chemotaxonomic characteristics of many species of the family. This review describes 270 naturally occurring lignans and neolignans isolated from Lauraceae. Keywords: lignans; neolignans; Lauraceae; chemical components; chemical structures 1. Introduction Lignans are widely distributed in the plant kingdom, and show diverse pharmacological properties and a great number of structural possibilities. The Lauraceae family, especially the genera of Machilus, Ocotea, and Nectandra, is a rich source of lignans and neolignans, and neolignans represent potential chemotaxonomic significance in the study of the Lauraceae. Lignans and neolignans are dimers of phenylpropane, and conventionally classified into three classes: lignans, neolignans, and oxyneolignans, based on the character of the C–C bond and oxygen bridge joining the two typical phenyl propane units that make up their general structures [1]. Usually, lignans show dimeric structures formed by a β,β’-linkage (8,8’-linkage) between two phenylpropanes units. Meanwhile, the two phenylpropanes units are connected through a carbon–carbon bond, except for the 8,8’-linkage, which gives rise to neolignans.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.468,645 B2 Owoc (45) Date of Patent: Oct
    USOO9468645B2 (12) United States Patent (10) Patent No.: US 9.468,645 B2 OWOc (45) Date of Patent: Oct. 18, 2016 (54) HIGHLY SOLUBLE PURINE BOACTIVE (2013.01); A61K 9/0019 (2013.01); A61 K COMPOUNDS AND COMPOSITIONS 9/0095 (2013.01); A61K 9/4858 (2013.01); THEREOF A61 K3I/00 (2013.01); A61K 45/06 (2013.01); A23 V 2002/00 (2013.01) (71) Applicant: JHO Intellectual Property Holdings, (58) Field of Classification Search LLC, Davie, FL (US) CPC ..................... A23V 2002/00; A23V 2200/31; (72) Inventor: Jack Owoc, Weston, FL (US) A23V 2250/062: A23V 2250/21: A23V 2250/5108: A23V 2250/5118: A23V (*) Notice: Subject to any disclaimer, the term of this 2250/54246; A23V 2250/54252: A23V patent is extended or adjusted under 35 2250/704; A23V 2250/712: A61K 31/522; U.S.C. 154(b) by 3 days. A61K 2300/00; A61K 45/06; A61 K9/00 See application file for complete search history. (21) Appl. No.: 14/628,626 (56) References Cited (22) Filed: Feb. 23, 2015 U.S. PATENT DOCUMENTS (65) Prior Publication Data 837,282 A * 12/1906 Owoc ....................... EO1B 9/60 US 2015/O238494 A1 Aug. 27, 2015 238,292 5,973,005 A * 10/1999 D'Amelio, Sr. ... CO7C 277/08 514,565 Related U.S. Application Data 2006/0236421 A1* 10, 2006 Pennell ................ C12N 9/1007 800,278 (60) Provisional application No. 61/944,528, filed on Feb. 2009,0257997 A1* 10, 2009 Owoc .................. A61K9/0014 25, 2014. 424/94.1 (51) Int. C. * cited by examiner A6 IK3I/522 (2006.01) A6 IK 45/06 (2006.01) Primary Examiner – Debbie K Ware A2.3L 2/52 (2006.01) (74) Attorney, Agent, or Firm — David W.
    [Show full text]
  • Identification and Characterization of N 9-Methyltransferase Involved In
    ARTICLE https://doi.org/10.1038/s41467-020-15324-7 OPEN Identification and characterization of N9- methyltransferase involved in converting caffeine into non-stimulatory theacrine in tea Yue-Hong Zhang1,2,3,6, Yi-Fang Li1,2,3,6, Yongjin Wang1,3,6, Li Tan1,3, Zhi-Qin Cao1,2,3, Chao Xie1,2,3, Guo Xie4, Hai-Biao Gong1,2,3, Wan-Yang Sun1,2,3, Shu-Hua Ouyang1,2,3, Wen-Jun Duan1,2,3, Xiaoyun Lu1,3, Ke Ding 1,3, ✉ ✉ ✉ ✉ Hiroshi Kurihara1,2,3, Dan Hu 1,2,3 , Zhi-Min Zhang 1,3 , Ikuro Abe 5 & Rong-Rong He 1,2,3 1234567890():,; Caffeine is a major component of xanthine alkaloids and commonly consumed in many popular beverages. Due to its occasional side effects, reduction of caffeine in a natural way is of great importance and economic significance. Recent studies reveal that caffeine can be converted into non-stimulatory theacrine in the rare tea plant Camellia assamica var. kucha (Kucha), which involves oxidation at the C8 and methylation at the N9 positions of caffeine. However, the underlying molecular mechanism remains unclear. Here, we identify the theacrine synthase CkTcS from Kucha, which possesses novel N9-methyltransferase activity using 1,3,7-trimethyluric acid but not caffeine as a substrate, confirming that C8 oxidation takes place prior to N9-methylation. The crystal structure of the CkTcS complex reveals the key residues that are required for the N9-methylation, providing insights into how caffeine N-methyltransferases in tea plants have evolved to catalyze regioselective N-methylation through fine tuning of their active sites.
    [Show full text]
  • Pharmacokinetics of Caffeine: a Systematic Analysis of Reported Data
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.12.452094; this version posted August 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Pharmacokinetics of caffeine: A systematic analysis of reported data for application in metabolic phenotyping and liver function testing Jan Grzegorzewski 1, Florian Bartsch 1, Adrian Koller¨ 1, and Matthias Konig¨ 1;∗ 1Institute for Theoretical Biology, Humboldt-University Berlin, Invalidenstraße 110, 10115 Berlin, Germany Correspondence*: Matthias Konig¨ [email protected] ABSTRACT Caffeine is by far the most ubiquitous psychostimulant worldwide found in tea, coffee, cocoa, energy drinks, and many other beverages and food. Caffeine is almost exclusively metabolized in the liver by the cytochrome P-450 enzyme system to the main product paraxanthine and the additional products theobromine and theophylline. Besides its stimulating properties, two important applications of caffeine are metabolic phenotyping of cytochrome P450 1A2 (CYP1A2) and liver function testing. An open challenge in this context is to identify underlying causes of the large inter-individual variability in caffeine pharmacokinetics. Data is urgently needed to understand and quantify confounding factors such as lifestyle (e.g. smoking), the effects of drug-caffeine interactions (e.g. medication metabolized via CYP1A2), and the effect of disease. Here we report the first integrative and systematic analysis of data on caffeine pharmacokinetics from 148 publications and provide a comprehensive high-quality data set on the pharmacokinetics of caffeine, caffeine metabolites, and their metabolic ratios in human adults. The data set is enriched by meta-data on the characteristics of studied patient cohorts and subjects (e.g.
    [Show full text]
  • Supplementary Materials Evodiamine Inhibits Both Stem Cell and Non-Stem
    Supplementary materials Evodiamine inhibits both stem cell and non-stem-cell populations in human cancer cells by targeting heat shock protein 70 Seung Yeob Hyun, Huong Thuy Le, Hye-Young Min, Honglan Pei, Yijae Lim, Injae Song, Yen T. K. Nguyen, Suckchang Hong, Byung Woo Han, Ho-Young Lee - 1 - Table S1. Short tandem repeat (STR) DNA profiles for human cancer cell lines used in this study. MDA-MB-231 Marker H1299 H460 A549 HCT116 (MDA231) Amelogenin XX XY XY XX XX D8S1179 10, 13 12 13, 14 10, 14, 15 13 D21S11 32.2 30 29 29, 30 30, 33.2 D7S820 10 9, 12 8, 11 11, 12 8 CSF1PO 12 11, 12 10, 12 7, 10 12, 13 D3S1358 17 15, 18 16 12, 16, 17 16 TH01 6, 9.3 9.3 8, 9.3 8, 9 7, 9.3 D13S317 12 13 11 10, 12 13 D16S539 12, 13 9 11, 12 11, 13 12 D2S1338 23, 24 17, 25 24 16 21 D19S433 14 14 13 11, 12 11, 14 vWA 16, 18 17 14 17, 22 15 TPOX 8 8 8, 11 8, 9 8, 9 D18S51 16 13, 15 14, 17 15, 17 11, 16 D5S818 11 9, 10 11 10, 11 12 FGA 20 21, 23 23 18, 23 22, 23 - 2 - Table S2. Antibodies used in this study. Catalogue Target Vendor Clone Dilution ratio Application1) Number 1:1000 (WB) ADI-SPA- 1:50 (IHC) HSP70 Enzo C92F3A-5 WB, IHC, IF, IP 810-F 1:50 (IF) 1 :1000 (IP) ADI-SPA- HSP90 Enzo 9D2 1:1000 WB 840-F 1:1000 (WB) Oct4 Abcam ab19857 WB, IF 1:100 (IF) Nanog Cell Signaling 4903S D73G4 1:1000 WB Sox2 Abcam ab97959 1:1000 WB ADI-SRA- Hop Enzo DS14F5 1:1000 WB 1500-F HIF-1α BD 610958 54/HIF-1α 1:1000 WB pAkt (S473) Cell Signaling 4060S D9E 1:1000 WB Akt Cell Signaling 9272S 1:1000 WB pMEK Cell Signaling 9121S 1:1000 WB (S217/221) MEK Cell Signaling 9122S 1:1000
    [Show full text]
  • Universita' Degli Studi Di Napoli Federico Ii
    UNIVERSITA’ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI AGRARIA Dottorato di Ricerca in Scienze e Tecnologie delle Produzioni Agroalimentari XXVI Ciclo Effect of size and toasting degree of oak chips on the ellagitannins content and on acutissimin formation in wine model solution and in red wine Coordinatore Prof. Giancarlo Barbieri Tutor Candidata: Prof. Raffaele Romano Dott.sa Laura Le Grottaglie 1 1 UNIVERSITA’ DEGLI STUDI DI NAPOLI FEDERICO II XXVI DOTTORATO IN SCIENZE E TECNOLOGIE DELLE PRODUZIONI AGRO-ALIMENTARI UNIVERSITA’ DEGLI STUDI DI NAPOLI FEDERICO II XXVI DOTTORATO IN SCIENZE E TECNOLOGIE DELLE PRODUZIONI AGRO-ALIMENTARI Guardai il cielo: la via Lattea si stendeva sopra di me, mostrando l’immenso cammino che dovevamo percorrere. In un altro momento, questa immensità avrebbe suscitato in me una grande angoscia, una paura terribile di non poter ottenere niente, di essere troppo piccolo per quell’impresa. Ma quel giorno io ero una semente ed ero nato di nuovo. Avevo scoperto che, nonostante il conforto della terra e del sonno che stavo dormendo, la vita “lassù in cima” era molto più bella. E avrei potuto nascere sempre, ogni volta che avessi voluto, finché le mie braccia fossero diventate abbastanza grandi da stringere tutta la terra da cui provenivo. Paulo Coelho, Il cammino di Santiago 2 UNIVERSITA’ DEGLI STUDI DI NAPOLI FEDERICO II XXVI DOTTORATO IN SCIENZE E TECNOLOGIE DELLE PRODUZIONI AGRO-ALIMENTARI Contents Abstract .......................................................................................................................................
    [Show full text]
  • 615.9Barref.Pdf
    INDEX Abortifacient, abortifacients bees, wasps, and ants ginkgo, 492 aconite, 737 epinephrine, 963 ginseng, 500 barbados nut, 829 blister beetles goldenseal blister beetles, 972 cantharidin, 974 berberine, 506 blue cohosh, 395 buckeye hawthorn, 512 camphor, 407, 408 ~-escin, 884 hypericum extract, 602-603 cantharides, 974 calamus inky cap and coprine toxicity cantharidin, 974 ~-asarone, 405 coprine, 295 colocynth, 443 camphor, 409-411 ethanol, 296 common oleander, 847, 850 cascara, 416-417 isoxazole-containing mushrooms dogbane, 849-850 catechols, 682 and pantherina syndrome, mistletoe, 794 castor bean 298-302 nutmeg, 67 ricin, 719, 721 jequirity bean and abrin, oduvan, 755 colchicine, 694-896, 698 730-731 pennyroyal, 563-565 clostridium perfringens, 115 jellyfish, 1088 pine thistle, 515 comfrey and other pyrrolizidine­ Jimsonweed and other belladonna rue, 579 containing plants alkaloids, 779, 781 slangkop, Burke's, red, Transvaal, pyrrolizidine alkaloids, 453 jin bu huan and 857 cyanogenic foods tetrahydropalmatine, 519 tansy, 614 amygdalin, 48 kaffir lily turpentine, 667 cyanogenic glycosides, 45 lycorine,711 yarrow, 624-625 prunasin, 48 kava, 528 yellow bird-of-paradise, 749 daffodils and other emetic bulbs Laetrile", 763 yellow oleander, 854 galanthamine, 704 lavender, 534 yew, 899 dogbane family and cardenolides licorice Abrin,729-731 common oleander, 849 glycyrrhetinic acid, 540 camphor yellow oleander, 855-856 limonene, 639 cinnamomin, 409 domoic acid, 214 rna huang ricin, 409, 723, 730 ephedra alkaloids, 547 ephedra alkaloids, 548 Absorption, xvii erythrosine, 29 ephedrine, 547, 549 aloe vera, 380 garlic mayapple amatoxin-containing mushrooms S-allyl cysteine, 473 podophyllotoxin, 789 amatoxin poisoning, 273-275, gastrointestinal viruses milk thistle 279 viral gastroenteritis, 205 silibinin, 555 aspartame, 24 ginger, 485 mistletoe, 793 Medical Toxicology ofNatural Substances, by Donald G.
    [Show full text]
  • Note: the Letters 'F' and 'T' Following the Locators Refers to Figures and Tables
    Index Note: The letters ‘f’ and ‘t’ following the locators refers to figures and tables cited in the text. A Acyl-lipid desaturas, 455 AA, see Arachidonic acid (AA) Adenophostin A, 71, 72t aa, see Amino acid (aa) Adenosine 5-diphosphoribose, 65, 789 AACOCF3, see Arachidonyl trifluoromethyl Adlea, 651 ketone (AACOCF3) ADP, 4t, 10, 155, 597, 598f, 599, 602, 669, α1A-adrenoceptor antagonist prazosin, 711t, 814–815, 890 553 ADPKD, see Autosomal dominant polycystic aa 723–928 fragment, 19 kidney disease (ADPKD) aa 839–873 fragment, 17, 19 ADPKD-causing mutations Aβ, see Amyloid β-peptide (Aβ) PKD1 ABC protein, see ATP-binding cassette protein L4224P, 17 (ABC transporter) R4227X, 17 Abeele, F. V., 715 TRPP2 Abbott Laboratories, 645 E837X, 17 ACA, see N-(p-amylcinnamoyl)anthranilic R742X, 17 acid (ACA) R807X, 17 Acetaldehyde, 68t, 69 R872X, 17 Acetic acid-induced nociceptive response, ADPR, see ADP-ribose (ADPR) 50 ADP-ribose (ADPR), 99, 112–113, 113f, Acetylcholine-secreting sympathetic neuron, 380–382, 464, 534–536, 535f, 179 537f, 538, 711t, 712–713, Acetylsalicylic acid, 49t, 55 717, 770, 784, 789, 816–820, Acrolein, 67t, 69, 867, 971–972 885 Acrosome reaction, 125, 130, 301, 325, β-Adrenergic agonists, 740 578, 881–882, 885, 888–889, α2 Adrenoreceptor, 49t, 55, 188 891–895 Adult polycystic kidney disease (ADPKD), Actinopterigy, 223 1023 Activation gate, 485–486 Aframomum daniellii (aframodial), 46t, 52 Leu681, amino acid residue, 485–486 Aframomum melegueta (Melegueta pepper), Tyr671, ion pathway, 486 45t, 51, 70 Acute myeloid leukaemia and myelodysplastic Agelenopsis aperta (American funnel web syndrome (AML/MDS), 949 spider), 48t, 54 Acylated phloroglucinol hyperforin, 71 Agonist-dependent vasorelaxation, 378 Acylation, 96 Ahern, G.
    [Show full text]
  • Research Article Evodiamine Induces Transient Receptor Potential Vanilloid-1-Mediated Protective Autophagy in U87-MG Astrocytes
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2013, Article ID 354840, 9 pages http://dx.doi.org/10.1155/2013/354840 Research Article Evodiamine Induces Transient Receptor Potential Vanilloid-1-Mediated Protective Autophagy in U87-MG Astrocytes Ann-Jeng Liu,1,2 Sheng-Hao Wang,3 Sz-Ying Hou,3,4 Chien-Ju Lin,3 Wen-Ta Chiu,1,5 Sheng-Huang Hsiao,2 Thay-Hsiung Chen,6,7 and Chwen-Ming Shih3,4,8 1 Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan 2 Department of Neurosurgery, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan 3 Department of Biochemistry, School of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan 4 Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan 5 Department of Neurosurgery, Taipei Municipal Wan-Fang Hospital, Taipei, Taiwan 6 Department of Surgery, College of Medicine, Taipei Medical University, Taiwan 7 Division of Cardiac Surgery, Cathy General Hospital, Taipei, Taiwan 8 Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan Correspondence should be addressed to Thay-Hsiung Chen; [email protected] and Chwen-Ming Shih; [email protected] Received 21 October 2013; Accepted 23 November 2013 Academic Editor: Joen-Rong Sheu Copyright © 2013 Ann-Jeng Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Cerebral ischemia is a leading cause of mortality and morbidity worldwide, which results in cognitive and motor dysfunction, neurodegenerative diseases, and death.
    [Show full text]
  • Comprehensive Review on the Interaction Between Natural Compounds and Brain Receptors: Benefits and Toxicity
    European Journal of Medicinal Chemistry 174 (2019) 87e115 Contents lists available at ScienceDirect European Journal of Medicinal Chemistry journal homepage: http://www.elsevier.com/locate/ejmech Review article Comprehensive review on the interaction between natural compounds and brain receptors: Benefits and toxicity * Ana R. Silva a, Clara Grosso b, , Cristina Delerue-Matos b,Joao~ M. Rocha a, c a Centre of Molecular and Environmental Biology (CBMA), Department of Biology (DB), University of Minho (UM), Campus Gualtar, P-4710-057, Braga, Portugal b REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politecnico do Porto, Rua Dr. Antonio Bernardino de Almeida, 431, P-4249-015, Porto, Portugal c REQUIMTE/LAQV, Grupo de investigaçao~ de Química Organica^ Aplicada (QUINOA), Laboratorio de polifenois alimentares, Departamento de Química e Bioquímica (DQB), Faculdade de Ci^encias da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n, P-4169-007, Porto, Portugal article info abstract Article history: Given their therapeutic activity, natural products have been used in traditional medicines throughout the Received 6 December 2018 centuries. The growing interest of the scientific community in phytopharmaceuticals, and more recently Received in revised form in marine products, has resulted in a significant number of research efforts towards understanding their 10 April 2019 effect in the treatment of neurodegenerative diseases, such as Alzheimer's (AD), Parkinson (PD) and Accepted 11 April 2019 Huntington (HD). Several studies have shown that many of the primary and secondary metabolites of Available online 17 April 2019 plants, marine organisms and others, have high affinities for various brain receptors and may play a crucial role in the treatment of diseases affecting the central nervous system (CNS) in mammalians.
    [Show full text]
  • NIDA Drug Supply Program Catalog, 25Th Edition
    RESEARCH RESOURCES DRUG SUPPLY PROGRAM CATALOG 25TH EDITION MAY 2016 CHEMISTRY AND PHARMACEUTICS BRANCH DIVISION OF THERAPEUTICS AND MEDICAL CONSEQUENCES NATIONAL INSTITUTE ON DRUG ABUSE NATIONAL INSTITUTES OF HEALTH DEPARTMENT OF HEALTH AND HUMAN SERVICES 6001 EXECUTIVE BOULEVARD ROCKVILLE, MARYLAND 20852 160524 On the cover: CPK rendering of nalfurafine. TABLE OF CONTENTS A. Introduction ................................................................................................1 B. NIDA Drug Supply Program (DSP) Ordering Guidelines ..........................3 C. Drug Request Checklist .............................................................................8 D. Sample DEA Order Form 222 ....................................................................9 E. Supply & Analysis of Standard Solutions of Δ9-THC ..............................10 F. Alternate Sources for Peptides ...............................................................11 G. Instructions for Analytical Services .........................................................12 H. X-Ray Diffraction Analysis of Compounds .............................................13 I. Nicotine Research Cigarettes Drug Supply Program .............................16 J. Ordering Guidelines for Nicotine Research Cigarettes (NRCs)..............18 K. Ordering Guidelines for Marijuana and Marijuana Cigarettes ................21 L. Important Addresses, Telephone & Fax Numbers ..................................24 M. Available Drugs, Compounds, and Dosage Forms ..............................25
    [Show full text]
  • Maculine: a Furoquinoline Alkaloid from the Family Rutaceae: Sources, Syntheses and Biological Activities
    The Free Internet Journal Review for Organic Chemistry Archive for Arkivoc 2020, part __, 0-0 Organic Chemistry to be inserted by editorial office Maculine: a furoquinoline alkaloid from the family Rutaceae: sources, syntheses and biological activities Eslam R. El-Sawy,a,b Ahmed B. Abdelwahab,c and Gilbert Kirsch*a a Laboratoire Lorrain de Chimie Moleculaire (L.2.C.M.), Universite de Lorraine, Metz, France b Chemistry of Natural Compounds Department, National Research Centre, Dokki, Cairo, Egypt c Plant Advanced Technologies (PAT), Vandoeuvre-les-Nancy, France Email: [email protected] This paper is dedicated to Prof Jan Bergman for his 80th birthday and his involvement in organic chemistry, and with deep appreciation for over 40 years of friendship Received mm-dd-yyyy Accepted mm-dd-yyyy Published on line mm-dd-yyyy Dates to be inserted by editorial office Abstract Maculine is one of the furoquinolines which are characteristic of the family Rutaceae. Its chemical name is 9-methoxy[1,3]dioxolo[4,5-g]furo[2,3-b]quinoline and it was isolated from several genera of Rutaceae. The present mini- review covers the different sources of maculine, its methods of separation, synthetic pathways and biological activities. Keywords: Maculine, furoquinoline, Rutaceae, alkaloids DOI: https://doi.org/10.24820/ark.5550190.p011.200 Page 1 ©AUTHOR(S) Arkivoc 2020, part _, 0-0 El-Sawy, E. R. et al. Table of Contents 1. Introduction 2. Botanical Sources 3. Organic Synthesis 4. Biological Activity 5. Conclusions References 1. Introduction The Rutaceae family has about 140 genera,1–4 consisting of herbs, shrubs and small trees which grow in all parts of the world, Moluccas, New Guinea, Australia, New Caledonia, Brazil, Cameroon.
    [Show full text]