Skeletal System

Total Page:16

File Type:pdf, Size:1020Kb

Skeletal System SKELETAL SYSTEM INTRODUCTION A bone may appear to be inert because of nonliving material in the extracellular matrix of bone tissue. However, bone also includes active, living tissues: bone tissue, cartilage, dense connective tissue, blood, and nervous tissue. Bones are not only alive, but also multifunctional. Bones, the organs of the skeletal system, support and protect softer tissues, provide points of attachment for muscles, house blood-producing cells, and store inorganic salts. Skeletal system performs several basic functions: 1. Support: The skeleton serves as the structural framework for the body by supporting soft tissues and providing attachment points for the tendons of most skeletal muscles. 2. Protection: The skeleton protects the most important internal organs from injury. For example, cranial bones protect the brain, vertebrae (backbones) protect the spinal cord, and the rib cage protects the heart and lungs. 3. Assistance in movement: Most skeletal muscles attach to bones; when they contract, they pull on bones to produce movement. 4. Mineral homeostasis (storage and release): Bone tissue stores several minerals, especially calcium and phosphorus, which contribute to the strength of bone. Bone tissue stores about 99% of the body’s calcium. On demand, bone releases minerals into the blood to maintain critical mineral balances (homeostasis) and to distribute the minerals to other parts of the body. 5. Blood cell production: Within certain bones, a connective tissue called red bone marrow produces red blood cells, white blood cells, and platelets, a process called hemopoiesis. Red bone marrow consists of developing blood cells, adipocytes, fibroblasts, and macrophages within a network of reticular fibers. It is present in developing bones of the fetus and in some adult bones, such as the hip bones, ribs, breastbone, vertebrae (backbones), skull, and ends of the bones of the arm and thigh. 6. Triglyceride storage: Yellow bone marrow consists mainly of adipose cells, which store triglycerides. The stored triglycerides are a potential chemical energy reserve. In a newborn, all bone marrow is red and is involved in hemopoiesis. With increasing age, much of the bone marrow changes from red to yellow. Bone Structure: The bones of the skeletal system vary greatly in size and shape. However, bones are similar in structure, development, and function. Bone Classification Bones are classified according to their shapes long, short, flat, or irregular. Long bones have long longitudinal axes and expanded ends. Examples of long bones are the forearm and thigh bones. Short bones are cubelike, with roughly equal lengths and widths. The bones of the wrists and ankles are this type. Flat bones are platelike structures with broad surfaces, such as the ribs, scapulae, and some bones of the skull. Irregular bones have a variety of shapes and are usually connected to several other bones. Irregular bones include the vertebrae that comprise the backbone and many facial bones. A typical long bone consists of the following parts: 1. The diaphysis is the bone’s shaft or body—the long, cylindrical, main portion of the bone. 2. The epiphyses (singular is epiphysis) are the proximal and distal ends of the bone. 3. The metaphyses (singular is metaphysis) are the regions between the diaphysis and the epiphyses. In a growing bone, each metaphysis contains an epiphyseal (growth) plate, a layer of hyaline cartilage that allows the diaphysis of the bone to grow in length. When a bone ceases to grow in length at about ages 18–21, the cartilage in the epiphyseal plate is replaced by bone; the resulting bony structure is known as the epiphyseal line. 4. The articular cartilage is a thin layer of hyaline cartilage covering the part of the epiphysis where the bone forms an articulation (joint) with another bone. Articular cartilage reduces friction and absorbs shock at freely movable joints. 5. The periosteum surrounds the external bone surface wherever it is not covered by articular cartilage. It is composed of an outer fibrous layer of dense irregular connective tissue and an inner osteogenic layer that consists of cells. Some of the cells of the periosteum enable bone to grow in thickness, but not in length. 6. The medullary cavity or marrow cavity is a hollow, cylindrical space within the diaphysis that contains fatty yellow bone marrow in adults. 7. The endosteum is a thin membrane that lines the internal bone surface facing the medullary cavity. It contains a single layer of cells and a small amount of connective tissue. Composition: Four types of cells are present in bone tissue: osteogenic cells, osteoblasts, osteocytes, and osteoclasts. 1. Osteogenic cells are unspecialized stem cells derived from mesenchyme, the tissue from which almost all connective tissues are formed. They are the only bone cells to undergo cell division; the resulting cells develop into osteoblasts. Osteogenic cells are found along the inner portion of the periosteum, in the endosteum, and in the canals within bone that contain blood vessels. 2. Osteoblasts (blasts =buds or sprouts) are bone-building cells. They synthesize and secrete collagen fibers and other organic components needed to build the extracellular matrix of bone tissue, and they initiate calcification. As osteoblasts surround themselves with extracellular matrix, they become trapped in their secretions and become osteocytes. (Note: The ending -blast in the name of a bone cell or any other connective tissue cell means that the cell secretes extracellular matrix.) 3. Osteocytes (cytes = cells), mature bone cells, are the main cells in bone tissue and maintain its daily metabolism, such as the exchange of nutrients and wastes with the blood. Like osteoblasts, osteocytes do not undergo cell division. 4. Osteoclasts (clast = break) are huge cells derived from the fusion of as many as 50 monocytes and are concentrated in the endosteum. The osteoclast’s plasma membrane is deeply folded into a ruffled border. Here the cell releases powerful lysosomal enzymes and acids that digest the protein and mineral components of the underlying bone matrix. This breakdown of bone extracellular matrix, termed resorption, is part of the normal development, maintenance, and repair of bone. In response to certain hormones, osteoclasts help regulate blood calcium level. They are also target cells for drug therapy used to treat osteoporosis. The extracellular matrix is about 25% water, 25% collagen fibers, and 50% crystallized mineral salts. The most abundant mineral salt is calcium phosphate. It combines with another mineral salt, calcium hydroxide, to form crystals of hydroxyapatite. As the crystals form, they combine with still other mineral salts, such as calcium carbonate, and ions such as magnesium, fluoride, potassium, and sulfate. As these mineral salts are deposited in the framework formed by the collagen fibers of the extracellular matrix, they crystallize and the tissue hardens. This process, called calcification, is initiated by bone-building cells called osteoblasts. Bone is not completely solid but has many small spaces between its cells and extracellular matrix components. Some spaces serve as channels for blood vessels that supply bone cells with nutrients. Other spaces act as storage areas for red bone marrow. Depending on the size and distribution of the spaces, the regions of a bone may be categorized as compact or spongy. Overall, about 80% of the skeleton is compact bone and 20% is spongy bone. Factors Affecting Bone Growth: Normal bone metabolism; growth in the young depends on several factors. These include adequate dietary intake of minerals and vitamins, as well as sufficient levels of several hormones. 1. Minerals: Large amounts of calcium and phosphorus are needed while bones are growing, as are smaller amounts of magnesium, fluoride, and manganese. These minerals are also necessary during bone remodeling. 2. Vitamins: Vitamin A stimulates activity of osteoblasts. Vitamin C is needed for synthesis of collagen, Vitamin D helps build bone by increasing the absorption of calcium from foods in the gastrointestinal tract into the blood. Vitamins K and B12 are also needed for synthesis of bone proteins. 3. Hormones: During childhood, the hormones most important to bone growth are the insulin like growth factors (IGFs), which are produced by the liver and bone tissue. IGFs stimulate osteoblasts, promote cell division at the epiphyseal plate and in the periosteum, and enhance synthesis of the proteins needed to build new bone. IGFs are produced in response to the secretion of human growth hormone (hGH) from the anterior lobe of the pituitary gland. Thyroid hormones (T3 and T4) from the thyroid gland also promote bone growth by stimulating osteoblasts. In addition, the hormone insulin from the pancreas promotes bone growth by increasing the synthesis of bone proteins. At puberty, the secretion of hormones known as sex hormones causes a dramatic effect on bone growth. The sex hormones include estrogens (produced by the ovaries) and androgens such as testosterone (produced by the testes). Although females have much higher levels of estrogens and males have higher levels of androgens, females also have low levels of androgens, and males have low levels of estrogens. These hormones are responsible for increased osteoblast activity and synthesis of bone extracellular matrix. Divisions of the Skeletal System The adult human skeleton consists of 206 named bones, most of which are paired, with one member of each pair on the right and left sides of the body. Bones of the adult skeleton are grouped into two principal divisions: the axial skeleton (80 bones) and the appendicular skeleton (126 bones). The axial skeleton consists of the bones that lie around the longitudinal axis of the human body, skull bones, auditory ossicles (ear bones), hyoid bone, ribs, sternum, and bones of the vertebral column. Functionally, the auditory ossicles in the middle ear, which vibrate in response to sound waves that strike the eardrum, are not part of either the axial or appendicular skeleton, but they are grouped with the axial skeleton for convenience.
Recommended publications
  • Morfofunctional Structure of the Skull
    N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V.
    [Show full text]
  • Incidence, Number and Topography of Wormian Bones in Greek Adult Dry Skulls K
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Via Medica Journals Folia Morphol. Vol. 78, No. 2, pp. 359–370 DOI: 10.5603/FM.a2018.0078 O R I G I N A L A R T I C L E Copyright © 2019 Via Medica ISSN 0015–5659 journals.viamedica.pl Incidence, number and topography of Wormian bones in Greek adult dry skulls K. Natsis1, M. Piagkou2, N. Lazaridis1, N. Anastasopoulos1, G. Nousios1, G. Piagkos2, M. Loukas3 1Department of Anatomy, Faculty of Health and Sciences, Medical School, Aristotle University of Thessaloniki, Greece 2Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Greece 3Department of Anatomical Sciences, School of Medicine, St. George’s University, Grenada, West Indies [Received: 19 January 2018; Accepted: 7 March 2018] Background: Wormian bones (WBs) are irregularly shaped bones formed from independent ossification centres found along cranial sutures and fontanelles. Their incidence varies among different populations and they constitute an anthropo- logical marker. Precise mechanism of formation is unknown and being under the control of genetic background and environmental factors. The aim of the current study is to investigate the incidence of WBs presence, number and topographical distribution according to gender and side in Greek adult dry skulls. Materials and methods: All sutures and fontanelles of 166 Greek adult dry skulls were examined for the presence, topography and number of WBs. One hundred and nineteen intact and 47 horizontally craniotomised skulls were examined for WBs presence on either side of the cranium, both exocranially and intracranially. Results: One hundred and twenty-four (74.7%) skulls had WBs.
    [Show full text]
  • Model Keys Unit 1
    Model Keys This section will supply you with the keys to several of the models found in the anatomy lab and the learning center. This does not include all the models. After the model keys in this section you will find keys to most of the Nystrom charts. In the anatomy lab there is a reference shelve that contains binders with the keys to most models, torsos and the Nystrom charts. Keys to some of the models are actually attached to the model. Chart keys can also be found either right on the chart or posted next to the chart. Unit 1 Numbered Skull (with colored numbers): g. internal occipital crest a. third molar (inside) b. incisive canal h. clivus (inside) c. infraorbital foramen i. foramen magnum d. infraorbital groove j. jugular foramen e. pterygopalatine fossa k. hypoglossal canal 6. Zygomatic bone l. cerebella fossa (inside) a. zygomaticofacial foramen m. vermain fossa (inside) 7. Sphenoid bone 4. Temporal bone a. medial pterygoid plate a. styloid process b. lateral pterygoid plate b. tympanic part c. lesser wing of sphenoid c. mastoid process (inside) d. mastoid notch d. greater wing of sphenoid 1. Frontal bone e. zygomatic process (inside) a. zygomatic process f. articular tubercle e. chiasmatic groove b. frontal crest (inside) g. stylomastoid foramen (inside) c. orbital part (inside) h. mastoid foramen f. anterior clinoid process d. supraorbital foramen i. external acoustic meatus (inside) e. anterior ethmoidal j. internal acoustic meatus g. posterior clinoid process foramen (inside) (inside) f. posterior ethmoidal k. carotid canal h. hypophyseal fossa foramen l. mandibular fossa (inside) g.
    [Show full text]
  • A 3D Stereotactic Atlas of the Adult Human Skull Base Wieslaw L
    Nowinski and Thaung Brain Inf. (2018) 5:1 https://doi.org/10.1186/s40708-018-0082-1 Brain Informatics ORIGINAL RESEARCH Open Access A 3D stereotactic atlas of the adult human skull base Wieslaw L. Nowinski1,2* and Thant S. L. Thaung3 Abstract Background: The skull base region is anatomically complex and poses surgical challenges. Although many textbooks describe this region illustrated well with drawings, scans and photographs, a complete, 3D, electronic, interactive, real- istic, fully segmented and labeled, and stereotactic atlas of the skull base has not yet been built. Our goal is to create a 3D electronic atlas of the adult human skull base along with interactive tools for structure manipulation, exploration, and quantifcation. Methods: Multiple in vivo 3/7 T MRI and high-resolution CT scans of the same normal, male head specimen have been acquired. From the scans, by employing dedicated tools and modeling techniques, 3D digital virtual models of the skull, brain, cranial nerves, intra- and extracranial vasculature have earlier been constructed. Integrating these models and developing a browser with dedicated interaction, the skull base atlas has been built. Results: This is the frst, to our best knowledge, truly 3D atlas of the adult human skull base that has been created, which includes a fully parcellated and labeled brain, skull, cranial nerves, and intra- and extracranial vasculature. Conclusion: This atlas is a useful aid in understanding and teaching spatial relationships of the skull base anatomy, a helpful tool to generate teaching materials, and a component of any skull base surgical simulator. Keywords: Skull base, Electronic atlas, Digital models, Skull, Brain, Stereotactic atlas 1 Introduction carotid arteries, among others.
    [Show full text]
  • TO ELABORATE CONCEPT of SEVANI with the HELP of MODERN ANATOMY Dr
    Review Article International Ayurvedic Medical Journal ISSN:2320 5091 TO ELABORATE CONCEPT OF SEVANI WITH THE HELP OF MODERN ANATOMY Dr. Budruk Pramod Appasaheb M.D. Sharir Rachna, L.L.B.(spl), Principal- Hon.Shri. Annasaheb Dange Ayurved Medical College, Ashta. Tal- Walwa, Dist- Sangli, Maharashtra, India ABSTRACT Ayurveda gives new Idea about human being in case of Anatomy, Physiology & other subjects also. Ayurvedokth Rachana Sharir describes about various terminology. In fifth chapter of Sharirsthan Susrut described various parts of the body. Not only various parts of the body, but also number of these parts or organs, is nicely given in this Sharir sankhya vyakarana sharir Ad- hayaya. Anaga, Pratnyaga, Twacha, Kala, Sira, Snayu, Dhamani are described with its numbers & distribution of them. Sivani is the one of structure present in the body. There is Sapta-Sevani present in the body. Structure of Sevani & also importance of it is given by Ayurveda. Though Sevani is mentioned in one sloka, but it has very much important.Its importance is given by comparative study with modern Science. Division of the skull is done by these sevani, as given in modern science. Sevani word gives two references. First is a sapt Shivayna available for the sevani & second in case of sandhi sharir. There is confusion regarding various terms as sevani or simant. With the help of this article I am trying to clarify these concepts with the help of mod- ern science. Keywords: Sevani, Septasevani, Sivani, Tunnasevani,Sutures INTRODUCTION We know that structural & functional science, these structures we can easily corre- unit of the body is cell.
    [Show full text]
  • A Study on the Development of Cranial Traction Therapy Program for Facial Non-Symmertric Correction -Utilize Delphi Technique
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2020 doi:10.20944/preprints202010.0537.v1 Article A Study on the Development of Cranial Traction therapy Program for Facial Non-symmertric Correction -Utilize Delphi technique Sung-Yeon Park 1, Hea-Ju Hwang2* Kyu-Nam Park3* 1,2 Graduate School of Medicine, CHA University, Seongnam-si, Gyeonggi-do 13503, Korea 3 Graduate School of Public Health Industry, CHA University, Seongnam-si, Gyeonggi-do 13503, Korea * Correspondence: [email protected] (H.-J.H.); [email protected] (K.-N.P.) Abstract: The purpose of this study is to develop a cranial traction therapy program to help correct facial asymmetry of the hard tissues through the means of the treatment of soft tissues—a non-surgical therapeutic method for the correcting of facial asymmetry. We have formed a group of experts who have agreed to the study. In the primary survey, open questions were used. In the second survey, the results of the first survey were summarized and the degree of agreement was presented to the questions in each category. In the third survey, we conducted a statistical analysis of the degree of agreement on each item of question. All surveys also performed email. The distribution was calculated using the SPSS (ver.23.0) program, and the mean difference between the result and X² was calculated. The significance level was set to p<.05. Most of the questions attained a certain level of consensus by the experts (average of 4.0 or higher), it can be said that most are important and suitable questions.
    [Show full text]
  • FIPAT-TA2-Part-2.Pdf
    TERMINOLOGIA ANATOMICA Second Edition (2.06) International Anatomical Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TA2, PART II Contents: Systemata musculoskeletalia Musculoskeletal systems Caput II: Ossa Chapter 2: Bones Caput III: Juncturae Chapter 3: Joints Caput IV: Systema musculare Chapter 4: Muscular system Bibliographic Reference Citation: FIPAT. Terminologia Anatomica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, 2019 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Anatomica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput II: OSSA Chapter 2: BONES Latin term Latin synonym UK English US English English synonym Other 351 Systemata Musculoskeletal Musculoskeletal musculoskeletalia systems systems
    [Show full text]
  • Immersive Surgical Anatomy of the Craniometric Points
    Open Access Technical Report DOI: 10.7759/cureus.8643 Immersive Surgical Anatomy of the Craniometric Points Vera Vigo 1 , Kimberly Cornejo 1 , Lizbeth Nunez 1 , Adib Abla 1 , Roberto Rodriguez Rubio 1 1. Neurological Surgery, University of California, San Francisco, USA Corresponding author: Roberto Rodriguez Rubio, [email protected] Abstract Craniometric points (CPs) have been used in neurosciences since the 1800s. Localization of the CPs allows for the identification of crucial intracranial structures. Despite the contribution of advanced technology to surgery, the knowledge of these points remains crucial for surgical planning and intraoperative orientation. The understanding of these crucial points can be facilitated with the use of three-dimensional technology combined with anatomical dissections. The present study is part of a stereoscopic collection of volumetric models (VMs) obtained from cadaveric dissections that depict the relevant anatomy of the CPs. Five embalmed heads and two dry skulls have been used to depict these points. After the anatomical dissection, stereoscopic images and VMs were generated to show the correlation between external and internal landmarks. The CPs identified were divided into sutures, suture junctions, prominences and depressions, and cortical surface landmarks. The VMs represent an interactive way to define these points easily and their correlation with different intracranial structures (vascular structure, ventricle cavity, and Brodmann’s areas). Categories: Neurosurgery Keywords: vascular landmarks, ventricular access, craniometric points, keyholes, motor cortex, cerebral cortex, speech area, volumetric models, cranial sutures Introduction Craniometry is a science that utilizes measurements of the skull and facial structures with the aim of analysing specific osseous features in different populations.
    [Show full text]
  • Vol. 78 2019 No. 2
    ISSN 0015–5659 Impact Factor: 0.497 Folia Morphol. Vol. 78, No. 2, May 2019 2018 Vol. 77 No. 2, pp. 171–408 2019, Vol. 78, No. 2, pp. 221–454 CONTENTS ORIGINAL ARTICLES Evaluation of PECAM-1 and p38 MAPK expressions in cerebellum tissue of rats treated with caffeic acid phenethyl ester: a biochemical and immunohistochemical study.........................221 A. Çetin, E. Deveci The effect of prolonged formalin fixation on the staining characteristics of archival human brain tissue ............................................................................................................................230 A. Alrafiah, R. Alshali Aging changes in the retina of male albino rat: a histological, ultrastructural and immunohistochemical study .......................................................................................................237 M.E.I. Mohamed, E.A.A. El-Shaarawy, M.F. Youakim, D.M.A. Shuaib, M.M. Ahmed Anatomical variations and dimensions of arteries in the anterior part of the circle of Willis ..........259 J. Shatri, S. Cerkezi, V. Ademi, V. Reci, S. Bexheti Morphological study of myelinated and unmyelinated fibres in the sacrococcygeal dorsal roots of the rat ........................................................................................................................267 J.-C. Lee, C.-H. Cheng, C.-T. Yen Combination of vitamin E and L-carnitine is superior in protection against isoproterenol-induced cardiac injury: histopathological evidence ....................................................274 E.A. Huwait
    [Show full text]
  • Patterns of Morphological Integration in Modern Human Crania: Evaluating Hypotheses of Modularity Using Geometric Morphometrics
    PATTERNS OF MORPHOLOGICAL INTEGRATION IN MODERN HUMAN CRANIA: EVALUATING HYPOTHESES OF MODULARITY USING GEOMETRIC MORPHOMETRICS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Adam Kolatorowicz Graduate Program in Anthropology The Ohio State University 2015 Dissertation Committee: Jeffrey K. McKee, Advisor Paul W. Sciulli Samuel D. Stout Mark Hubbe Copyrighted by Adam Kolatorowicz 2015 ABSTRACT This project examines patterns of phenotypic integration in modern human cranial morphology using geometric morphometric methods. It is theoretically based in the functional paradigm of craniofacial growth and morphological integration. The hypotheses being addressed are: 1) cranial form is influenced by secular trends, sex, and phylogenetic history of the population and 2) integration patterns wherein the basicranium is the keystone feature best explains the relationships among in cranial modules. Geometric morphometric methods were used to collect and analyze three- dimensional coordinate data of 152 endocranial and ectocranial landmarks from 391 anatomically modern human crania. These crania are derived from temporally historic and recent groups in the United States spanning both sexes and across several ancestral groups. Landmark data were subjected to generalized Procrustes analysis and then areas of shape variation were identified via principal components analysis of shape coordinates. Discriminant function analysis and canonical variate analysis identified regions that can be used to separate groups. Temporal period, ancestry, and sex all have significant effects on mean shape. Age-at-death accounts for a small proportion of the total variation. Modern individuals have higher, narrower vaults with highly arched palates ii and historic individuals have short, wider vaults with shallower palates.
    [Show full text]
  • Anatomical Consideration of Pterion and Its Related References in Thai Dry Skulls for Pterional Surgical Approach
    Anatomical Consideration of Pterion and Its Related References in Thai Dry Skulls for Pterional Surgical Approach Wandee Apinhasmit DDS, PhD*, Supin Chompoopong MS, PhD**, Vipavadee Chaisuksunt MS, PhD***, Paphaphat Thiraphatthanavong MS**, Noppadol Phasukdee MS*** * Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand ** Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand *** Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Objective: Pterion is a crucial surgical landmark for surgical approaches to the middle meningeal artery, particular lesions, and tumors in the brain. The present study aimed to analyze the types of the pterion and its location related with nearby landmarks in dry skulls. In addition, variations of pterion in sex, age, and skull side were compared. Material and Method: Bilateral sides of 268 adult human Thai dry skulls were investigated. Pterion types were classified as sphenoparietal, frontotemporal, epipteric, or stellate. To localize the pterion, linear distances were measured from the center of the pterion to neighboring landmarks. Results: The results showed the two most common types of the pterion, the sphenoparietal (81.2%), and the epiteric (17.4%). Externally, the pterion was commonly located 38.48 + 4.38 mm superior to the zygomatic arch and 31.12 + 4.89 mm posterior to the frontozygomatic suture. Internally, it was located 38.94 + 3.76 mm lateral to the optic canal and 11.70 + 4.83 mm from the sphenoid ridge. Sex influenced the occurrence of the pterion type, while sex, skull side, and age affected its location. Mean skull thickness at the pterion was 5.13 + 1.67 mm.
    [Show full text]
  • Incidence, Number and Topography of Wormian Bones in Greek Adult Dry Skulls K
    Folia Morphol. Vol. 78, No. 2, pp. 359–370 DOI: 10.5603/FM.a2018.0078 O R I G I N A L A R T I C L E Copyright © 2019 Via Medica ISSN 0015–5659 journals.viamedica.pl Incidence, number and topography of Wormian bones in Greek adult dry skulls K. Natsis1, M. Piagkou2, N. Lazaridis1, N. Anastasopoulos1, G. Nousios1, G. Piagkos2, M. Loukas3 1Department of Anatomy, Faculty of Health and Sciences, Medical School, Aristotle University of Thessaloniki, Greece 2Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Greece 3Department of Anatomical Sciences, School of Medicine, St. George’s University, Grenada, West Indies [Received: 19 January 2018; Accepted: 7 March 2018] Background: Wormian bones (WBs) are irregularly shaped bones formed from independent ossification centres found along cranial sutures and fontanelles. Their incidence varies among different populations and they constitute an anthropo- logical marker. Precise mechanism of formation is unknown and being under the control of genetic background and environmental factors. The aim of the current study is to investigate the incidence of WBs presence, number and topographical distribution according to gender and side in Greek adult dry skulls. Materials and methods: All sutures and fontanelles of 166 Greek adult dry skulls were examined for the presence, topography and number of WBs. One hundred and nineteen intact and 47 horizontally craniotomised skulls were examined for WBs presence on either side of the cranium, both exocranially and intracranially. Results: One hundred and twenty-four (74.7%) skulls had WBs. No difference was detected between the incidence of WBs, gender and age.
    [Show full text]