Machine Key Features

Total Page:16

File Type:pdf, Size:1020Kb

Machine Key Features BOX 232 • MINNEAPOLIS, KS • 67467 HUYETT.COM • 785-392-3017 [email protected] • FAX 785-392-2845 MACHINE KEY FEATURES Machine keys are removable machine elements installed between shaft key seats and hub key ways The terms Shaft to transmit torque in power transmission assemblies. They can be machined; finished in a variety of Keys and Machine shapes, sizes, and materials; and tumbled by the thousands for automated assembly lines or just about Keys are used any application. Though simple in design, they are a necessity in the transfer of power. interchangeably To describe the same thing Design Considerations FORM FIT FUNCTION Machine Keys are An efficient undersize keys fit loosely, Machine ke ys may shear under solution for applications others fit snuggly, and oversize stress to protect people and requiring the transmission of keys can be filed to fit expensive equipmen t torque in an assembly See Page 8 for more de tails EASE OF USE LOCATION CORNER DESIGNS Tabbed and tapered Gib head Depending on the application, Key Sharp, square corners provide keys secure pulleys and gears ways are located at the end or the most surface con tact while tightly while allowing for quick along the length of the shaft radiused or chamfered corners removal during disassembly are a little easier to install and location can impact key design fully seat in a key way Keys for every application Top fitting gib head Parallel keys located in key Key ways located along Woodruff Keys are frequently keys ease assembly ways at the end of a shaft the length of a shaft allow used with tapered shafts. and disassembly. may protrude for full contact for full contact in assembly Although more difficult to between key and shaft. with no way for the key to install, they can not fall out work itself out. of an assembly. Prices, materials, dimensions, tolerances, designs, and grades subject to change without notice. © 2016 G.L. Huyett 48 HUYETT.COM • 785-392-3017 MACHINE KEY TYPES Form B Form A Gib Head Form B machine keys with both ends square More common in Europe than the U.S., Gib head keys are tapered machine keys feature straight, 90º parallel sides and form A machine keys have rounded end that are hammered in place to secure provide the most surface contact with both profiles so the key fully fills a milled key pulleys and gears tightly on the shaft. the key seat and the hub of a sprocket, way. Some users suggest that the round The added feature of a head provides for gear, pulley, or cog. design eases installation into the key way. easy removal. Page 56 Page 56 Page 70 Woodruff Hi-Pro Woodruff keys are used to avoid milling a A variation of the woodruff key is the high- key way near stress concentration prone profile or hi-pro key. These keys have “feet” shaft shoulders at the end of a shaft. With a that prevent the key from rocking and limit woodruff key, the key way does not extend movement in a rounded key way. Broad Selection to the end of the shaft so a stronger design is realized. Convenient, Easy Ordering 24/7 Manage Your Account Online Complete Order History Page 78 Page 84 Also Available... Oversize or Undersize? OVERSIZE UNDERSIZE The actual size of oversize The actual size of undersize material will be at least material will be at least the the specified size and may specified size and may be be slightly larger than the slightly smaller than the specified size within the specified size within the acceptable tolerance range. acceptable tolerance range. Hex and round Machine keys are available as a special order see pages 40 – 45 for Hex and round Key stock Prices, materials, dimensions, tolerances, designs, and grades subject to change without notice. © 2016 G.L. Huyett 49 BOX 232 • MINNEAPOLIS, KS • 67467 HUYETT.COM • 785-392-3017 [email protected] • FAX 785-392-2845 The terms Key Way and key DESIGN & USE seat are used interchangeably To describe the Machine Key Forms & MILLING KEY WAYS same thing Form B End mill enters End mill proceeds axially surface area of down the shaft surface Shaft creating a radiused end Upon exit, the end mill forms Form A another radiused end The profile of machine keys affect installation, bearing stresses, Because key ways are milled into the side of shafts using a and wear. While parts with square ends are more difficult to rotating cutter, the entry and exit points of the cutter into the install, round-end keys yield a greater coefficient of friction shaft form a radius or slot. Form A keys match the pattern of the with the key way, which reduces bearing stresses. key way which eases installation. Types of key ways SECONDARY PROCESS: HEAT TREATING OUR STANDARD MATERIALS POSSESS A TYPICAL HARDNESS OF HRB-80 PROFILE OR CLOSED Milled Along length of the shaft, but does not extend to end of the shaft HRB-80 SLED RUNNER NEED SOMETHING HARDER Look like the runners of a sled with a round taper on one end THAN HRB-80? CONTACT [email protected] or call 785-392-3017 For best results, enlist the help of a reliable WOODRUFF OR HI-PRO design engineer When Is cut along the length of the shaft with an designing new applications arbor cutting tool Prices, materials, dimensions, tolerances, designs, and grades subject to change without notice. © 2016 G.L. Huyett 50 HUYETT.COM • 785-392-3017 DESIGN & USE Cutting corners Square key way with Radiused key way with Radiused key way with square key stock square key stock radiused key stock Key ways may have filleted (rounded) corners to decrease stress concentration Key stock with square corners will not fully seat in filleted key ways Hold on Loosely Interference Fit Over-radiused machine keys with “rolled” corners fit A tight, interference fit, is produced when the machine looser in a key way and can lead to “rattling.” key is slightly larger than the key way it is installed in. See page 8 for more details. Shear Analysis Fretting Shear Plane Force A machine key may wear out or get distorted from high pressure and/or constant load bearing. Catastrophic Failure Torque Keys may fail if they are crushed due to excessive compression, bearing forces, or shear off in catastrophic failure. Keys can also wear out or get distorted through fretting If an application fails a machine key may shear or be from high pressure and constant load. crushed on load and will need to be replaced. Prices, materials, dimensions, tolerances, designs, and grades subject to change without notice. © 2016 G.L. Huyett 51 BOX 232 • MINNEAPOLIS, KS • 67467 HUYETT.COM • 785-392-3017 [email protected] • FAX 785-392-2845 SELECTING THE RIGHT KEY A number of considerations contribute to machine key design. Some designs are based on how the parts are used, while others look at how the parts are manufactured or enhance efficiency in assembly. For best results, consult with a design engineer when developing a new application. Parallel keys Gib head keys SQUARES AND RECTANGLES Square and rectangle profiles are the most common forms for Gib head keys are designed for applications that require periodic parallel keys. They are often referred to as straight keys. maintenance or removal during disassembly. Parallel or straight keys are more common in the U.S. and cost Typically the height is less than width. Gib head keys fit in the key less to produce than feathered keys. They are “side fitting” way with “top and side fitting” which bears load on all sides. which means they fit edge to edge in the key way. FEATHERED Rise Run Tapers are expressed in terms of rise over run. In other words, the amount of taper is stated per linear units of measure. A 1/8" taper per foot means that for every 12" in linear distance (run) the thickness of the part (rise) decreases by 0.125". Metric taper is 1:100. Feathered keys are parallel keys with round ends. They are more common in Europe. The round end design allows for the key to fully seat in the key way. Oversize or Undersize? OVERSIZE UNDERSIZE The actual size of oversize The actual size of undersize material will be at least material will be at least the the specified size and may specified size and may be in order to be slightly larger than the slightly smaller than the remove a gib specified size within the specified size within the head key with an extraction tool, A acceptable tolerance range. acceptable tolerance range. gap must be left between the head and the assembly Both the gib key and the Hub key way are tapered Prices, materials, dimensions, tolerances, designs, and grades subject to change without notice. © 2016 G.L. Huyett 52 HUYETT.COM • 785-392-3017 SELECTING THE RIGHT KEY Woodruff keys HI-PRO keys Woodruff keys, sometimes referred to as “half-moon” keys Hi-pro keys perform like woodruff keys, but have the added because of their shape, are designed to install and pivot in the benefit of “feet” that aid in installation by eliminating the key way and will not fall out once assembled. potential for the key to rock in the key way. Allows for increased strength Near the end of the shaft W.N. WOODRUFF Also Available... Woodruff keys were invented by W.N. Woodruff of Connecticut in 1888. The main purpose of the woodruff key is to avoid milling a key way near the stress concentrated end of a shaft.
Recommended publications
  • Design and Development of Keyway Milling Attachmentfor Lathe Machine
    International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 10, Number 1 (2017) © International Research Publication House http://www.irphouse.com Design and Development of Keyway Milling Attachmentfor Lathe Machine Indrajeet Baburao Shedbale Master Student, School of Mechanical and Building Sciences, VIT University, Vellore, Katpadi Road, Tamil Nadu, India. Amar S. Bhandare Assistant Professor, Department of Mechanical Engineering, ATS’s Sanjay Bhokare Group Of Institute, Miraj, India. Abstract axis of shaft and the vertical axis of end mill cutter are In manufacturing industry there are different types of perpendicular to each other; also the vertical axis of shaft and machining processes are required to convert raw material in to vertical axis of tool are coinciding with each other. final product. Some of machining process required separate machine to carry out machining of product. It means not only consumption of space and overall time increases but also expenses will increases. By developing the special attachment for machine will reduces consumption of time and space. Various operations like Turning, Drilling, Facing, slotting will be done on single machine. Instead of milling machine we are using the special attachment for lathe machine to machining of key way slot. In thispaperdiscussed aboutthemilling attachment for lathe machine through whichwe eliminated cost of slotting and milling. Machine operates through lathe machine. It consist of lathe machine slide, electric motor, power chuck, end mill cutter, dowel pin etc. Keywords:lathe machine, milling operations, end mill cutter, lathe machine slide, key way. Figure 1: Axis of Shaft and Axis of End mill cutter both are Introduction coincide with each other.
    [Show full text]
  • IMTS 2018 Booth Previews
    feature IMTS 2018 Booth Previews Affolter Technologies production North Hall, Booth 237223 machine with Affolter Technologies, in partnership with its U.S. representative, high precision Rotec Tools, will showcase their innovative gear hobbing center and efficiency,” AF110 plus at IMTS 2018. Ivo Straessle, The AF110 plus is the most advanced machine offered by president of Affolter Technologies. It convinces with its versatility, precision, Rotec Tools, power, rigidity and ease of use. The AF110 plus has eight axes, a said. “The simplicity cutter-spindle speed of up to 12,000 rpm capable to make gears of these machines is with a maximum DP17 and minimum of DP1270. Different remarkable. The user- automation systems for part loading and unloading are avail- friendly controls with able, such as universal grippers, drum loader or robot loading step-by-step and easy- as well as options such as deburring, dry cutting, centering to-follow functions will microscope and oil mist aspiration. simplify the gear-making “The loader system AF71 with two grippers ensures 24 hours process. With a relatively automatic production,” Vincent Affolter, managing director small investment, customers can keep know-how and technol- of Affolter Technologies, said. “While a gear is in the hobbing ogy in-house.” process, the other gripper already reaches out for the next part For more information: to load.” Affolter Technologies The AF110 plus can cut spur, helical, frontal, bevel, and Phone: +41 32 491-70-62 www.affelec.ch crown gears. Rotec Tools Worm Screw Power Skiving, a cutting-edge technology Phone: (845) 621-9100 developed by the Affolter engineers, is available as an option.
    [Show full text]
  • 1. Hand Tools 3. Related Tools 4. Chisels 5. Hammer 6. Saw Terminology 7. Pliers Introduction
    1 1. Hand Tools 2. Types 2.1 Hand tools 2.2 Hammer Drill 2.3 Rotary hammer drill 2.4 Cordless drills 2.5 Drill press 2.6 Geared head drill 2.7 Radial arm drill 2.8 Mill drill 3. Related tools 4. Chisels 4.1. Types 4.1.1 Woodworking chisels 4.1.1.1 Lathe tools 4.2 Metalworking chisels 4.2.1 Cold chisel 4.2.2 Hardy chisel 4.3 Stone chisels 4.4 Masonry chisels 4.4.1 Joint chisel 5. Hammer 5.1 Basic design and variations 5.2 The physics of hammering 5.2.1 Hammer as a force amplifier 5.2.2 Effect of the head's mass 5.2.3 Effect of the handle 5.3 War hammers 5.4 Symbolic hammers 6. Saw terminology 6.1 Types of saws 6.1.1 Hand saws 6.1.2. Back saws 6.1.3 Mechanically powered saws 6.1.4. Circular blade saws 6.1.5. Reciprocating blade saws 6.1.6..Continuous band 6.2. Types of saw blades and the cuts they make 6.3. Materials used for saws 7. Pliers Introduction 7.1. Design 7.2.Common types 7.2.1 Gripping pliers (used to improve grip) 7.2 2.Cutting pliers (used to sever or pinch off) 2 7.2.3 Crimping pliers 7.2.4 Rotational pliers 8. Common wrenches / spanners 8.1 Other general wrenches / spanners 8.2. Spe cialized wrenches / spanners 8.3. Spanners in popular culture 9. Hacksaw, surface plate, surface gauge, , vee-block, files 10.
    [Show full text]
  • Key Machines & Parts
    ORDER ONLINE www.SouthernLock.com KEY MACHINES & PARTS SECTION 8 Section Table of Contents C KEY MACHINES & PARTS Code Cards .................................. 407 For Key Programming Systems D see Section 1 - Automotive Deburring Brush ............................. 419 F Futura Pro ................................... 412 I ITL Key Machines ........................... 420 K Key Cutters ................ 411, 413, 419, 426 Key Machines ........................... 420–426 Key Punch .................. 402, 408, 423, 425 M Marking Devices.... 401–402, 404-412, 421-426 P Punch Machines ........... 402, 408, 423, 425 T Tubular Key Machines .......... 402, 403, 410 Vendors Bianchi ................................ 421–422 Framon ............................... 402–404 HPC .................................... 404–413 Ilco .................................... 401–402 Intralock ................................... 420 Keyline ..................................... 421 Laser Key Products ...................... 422 Medeco ............................... 420–421 Mul-T-Lock ................................ 423 Pro-Lok ............................... 423–424 Rytan .................................. 424–425 KEY MACHINES & PARTS Call, Toll Free Prices may not reflect recent price increases or manufacturer’s surcharges 1.800.282.2837 Section 8 - 400 Call, Toll Free 1.800.282.2837 KEY MACHINES & PARTS KEY MARKING DEVICES ™ ™ Engrave•It Engrave•It PRO Engrave-It is the perfect complement to This unit is capable of marking keys, typical lock cylinders (in- key
    [Show full text]
  • Selecting the 'Perfect'
    MWF | Special Section BEST PRACTICES Jerry P. Byers, CMFS Selecting the ‘perfect’ metalworking fluid In addition to fully understanding the operating conditions, be sure to question all assumptions about MWFs. Many of them are the tribological equivalent of old fairy tales. etalworking fluids (MWFs) are a key production Maid in the manufacture of metal parts, from seem- ingly simple items such as coins and wire, to complex objects such as medical devices and engines for aero- space applications. These fluids are used because it is more cost effective to run most operations with a fluid than without. The benefits include more high quality finished parts by the end of the shift with lower tool wear, reduced grinding wheel usage and less machine downtime. MWFs help maintain a constant temperature for the metal part, the tool and the machine—improving di- mensional stability of the parts produced. Temperature control is achieved through (1.) lubricants that reduce heat generation and (2.) the cooling action of the fluid that removes heat. The fluid is also used to carry metal particles (chips) away from the cutting zone to an area where they are separated and collected. The benefit for tool life is shown in Figure 1, a graph of tool wear vs. machining time for a turning operation where 390 aluminum is being machined with polycrys- talline diamond tooling under two conditions: either dry or with a semisynthetic MWF being applied. Notice that tool wear is greatly reduced and the time between Metalworking fluids are a key tool changes is dramatically extended when the fluid is applied.
    [Show full text]
  • STANDARD OPERATING PROCEDURES for COMMON
    Faculty of Engineering Workshop Services STANDARD OPERATING PROCEDURES for COMMON TOOL & MACHINING EQUIPMENT [Type here] [Type here] [Type here] The information in this booklet is provided as a guide for the minimum safety training that shall be provided to personnel prior to being authorized to use of any of the following machining tools or pieces of equipment: Mill, Lathe, Planer, Drill Press, Pedestal Grinder, & Band Saw. GENERAL SAFETY TIPS • Safety glasses with side shields must be worn at all times. • Do not wear loose clothing, loose neckwear or exposed jewelry while operating machinery. • Do not work alone in a machine shop. (Implement the "buddy" system.) • Long sleeves on shirts should be rolled up above the elbows. • Pull back and secure long hair. • Do not wear thin fabric shoes, sandals, open-toed shoes, and high-heeled shoes. • A machinist's apron tied in a quick release manner should be worn. • Always keep hands and other body parts a safe distance away from moving machine parts, work pieces, and cutters. • Use hand tools for their designed purposes only. • Report defective machinery, equipment or hand tools to the Technician. McGill Workshop Safety policy: www.mcgill.ca/ehs/programs-and-services/workshop Workshop Rules: www.mcgill.ca/ehs/programs-and-services/workshop/rules [Type here] [Type here] [Type here] FACULTY WORKSHOP SERVICES Safe Use of Machine Shop Equipment MACHINE SHOP SAFETY Machine Shop Safety August 2014 1 FACULTY WORKSHOP SERVICES Safe Use of Machine Shop Equipment WORKSHOP MACHINES - LATHE • All stock must be properly secured in the lathe chuck or mounted prior to the machining process taking place.
    [Show full text]
  • Operating Instructions for Medeco ® Key Machines
    OPERATING INSTRUCTIONS FOR MEDECO® KEY MACHINES FOR MEDECO ORIGINAL, BIAXIAL®, MEDECO3®, KEYMARK® CLASSIC & KEYMARK X4® PRODUCTS MEDECO® HIGH SECURITY LOCKS ASSUMES NO RESPONSIBILITY FOR INJURY OR PROPERTY DAMAGE AS A RESULT OF IMPROPER USE OF MEDECO® KEY MACHINES. READ AND UNDERSTAND ALL INSTRUCTIONS AND SAFETY PRECAUTIONS BEFORE INSTALLING OR OPERATING ANY MEDECO® KEY MACHINE. CONTENTS Introduction……………………………………………………………… 3 Potential Hazards………………………………………………………….. 4 Installation Procedure…………………………………………………… 5 Operating Instructions………………………………………………….. 6 Original Key Machine……………………………………………. 6 Biaxial Key Machine………………………………………………. 7 Universal Key Machine (Original Product)…………….. 8 Universal Key Machine (Biaxial Product)……………….. 9 KeyMark Classic & KeyMark x4 Key Machine……………… 10 Maintenance and Adjustment………………………………………. 11 Adjusting Lever Resistance………………………………. 11 Checking Accuracy of Cut…………………………………. 11 Adjusting Cutter………………………………………………. 14 Adjusting Depth of Cut…………………………………….. 14 Adjusting Shoulder Spacing……………………………… 14 Changing Cutter……………………………………………….. 15 Cleaning Vise Jaw……………………………………………… 16 Installing Quick Change Pin……………………………….. 16 Ordering Instructions……………………………………………………. 17 Key Machine Parts…………………………………………….. 18 2 INTRODUCTION The Medeco and KeyMark key machines are designed and built to precision standards at Medeco solely for cutting Medeco or KeyMark keys; they do this by means of a rotating cutter powered by an integral motor. The cutter is positioned for each cut by a precision ground dial to determine the depth, and on angled-cut machines, the angle of each cut is set by an angling lever. The key machine is a high quality, extra heavy duty piece of equipment and incorporates many safety and mechanical features to ensure easy, hazard free operation. Several models are available: the original key machine cuts Medeco original keys and Medeco3 keys on original keyways, and the Biaxial key machine (with prefix B on the serial number) cuts Medeco Biaxial and Medeco3 Biaxial keys.
    [Show full text]
  • Metalworking Standards
    METALWORKING STANDARDS This document was prepared by: Office of Career, Technical and Adult Education Nevada Department of Education 755 N. Roop Street, Suite 201 Carson City, NV 89701 Adopted by the State Board of Education / State Board for Career and Technical Education on December 14, 2012 The State of Nevada Department of Education is an equal opportunity/affirmative action agency and does not discriminate on the basis of race, color, religion, sex, sexual orientation, gender identity or expression, age, disability, or national origin. METALWORKING STANDARDS 2012 NEVADA STATE BOARD OF EDUCATION NEVADA STATE BOARD FOR CAREER AND TECHNICAL EDUCATION Stavan Corbett ................................................................ President Adriana Fralick ...................................................... Vice President Annie Yvette Wilson............................................................ Clerk Gloria Bonaventura ......................................................... Member Willia Chaney ................................................................. Member Dave Cook ...................................................................... Member Dr. Cliff Ferry ................................................................. Member Sandy Metcalf ................................................................. Member Christopher Wallace.........................................................Member Craig Wilkinson .............................................................. Member Aquilla Ossian .........................................
    [Show full text]
  • Principles and Characteristics of Different EDM Processes in Machining Tool and Die Steels
    applied sciences Review Principles and Characteristics of Different EDM Processes in Machining Tool and Die Steels Jaber E. Abu Qudeiri 1,* , Aiman Zaiout 1 , Abdel-Hamid I. Mourad 1 , Mustufa Haider Abidi 2 and Ahmed Elkaseer 3,4 1 Mechanical Engineering Department, College of Engineering, United Arab Emirate University, Al Ain 15551, UAE; [email protected] (A.Z.); [email protected] (A-H.I.M.) 2 Raytheon Chair for Systems Engineering (RCSE), Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia; [email protected] 3 Department of Production Engineering and Mechanical Design, Faculty of Engineering, Port Said University, Port Said 42526, Egypt; [email protected] 4 Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany * Correspondence: [email protected] Received: 29 January 2020; Accepted: 10 March 2020; Published: 19 March 2020 Abstract: Electric discharge machining (EDM) is one of the most efficient manufacturing technologies used in highly accurate processing of all electrically conductive materials irrespective of their mechanical properties. It is a non-contact thermal energy process applied to a wide range of applications, such as in the aerospace, automotive, tools, molds and dies, and surgical implements, especially for the hard-to-cut materials with simple or complex shapes and geometries. Applications to molds, tools, and dies are among the large-scale initial applications of this process. Machining these items is especially difficult as they are made of hard-to-machine materials, they have very complex shapes of high accuracy, and their surface characteristics are sensitive to machining conditions. The review of this kind with an emphasis on tool and die materials is extremely useful to relevant professions, practitioners, and researchers.
    [Show full text]
  • Vises, Live Centers, Boring & Facing Heads
    VISES, LIVE CENTERS, BORING & FACING HEADS GS GS Precision Milling Machine Vises 139-140 GS Modular Vises & Accessories/Parts 140-142 GS Multi-tasking 5th Axis Vises 143 GS Double Clamp Vises 144-145 Machinable Fixture Jaws & Steel Jaw Sets 146 STM Toolmaker Vises 147 Free Style Vises 147 Bench Vises 147-148 Milling Machine Vise For Round Workpieces 148 Drill Press Vises 148-150 EDM Tool Maker Vises 150 LIVE CENTERS Skoda & STM Heavy Duty Live Centers 152 Skoda Extra Heavy Duty Live Centers 153 Skoda Precision CNC Live Centers 154 Skoda Extended Point Live Centers 155 Skoda Bull Nose Live Centers 155 Skoda Live Center Parts 156 Narex Universal Boring & 157-164 Facing Heads & Accessories www.sowatool.com 1-800-265-8221 www.SowaTool.com 137 VISES Precision Clamping High Quality Systems and Accuracy s r for all e & t n s e e C s i e V Applications v i L 138 1-800-265-8221 www.SowaTool.com VISES GS 6” Precision Milling Machine Vises • Vises are Matched • An integral key and large fasteners reduce deflection by 50% • 4 jaw plate positions allow extra capacity with the jaw plates in the outside position • The swivel base is graduated 360° in one degree increments • Chip cover protects leadscrew from damage • The quality movable jaw does not lift off the bed, and the deflection o f the stationary jaw is minimized (Inch) Jaw Jaw Plain Width Open Ship Model AB CO.A.L. b cdefWt Code No. Price $ GS675 6 7.5 1.77 17.2 9.13 4.6 12 1.65 .39 80lbs 327-275M 662.20 GS890 6 8.9 1.5 17.2 8.3 4.6 12 1.7 .2 80lbs 327-290M 741.30 Jaw Plates for GS675 & GS890
    [Show full text]
  • Speed 044 Manual
    D B C D B C D B C D B C C A B C A B D B C D B C SPEED 040 044 045 046 Operating Manual Original Instructions D446306XA vers. 2.0 EN © 2016 SILCA S.p.A - Vittorio Veneto This manual has been drawn up by SILCA S.p.A. All rights reserved. No part of this publication may be reproduced or used in any form or by any means (photocopying, microfi lm or other) without the written permission of SILCA S.p.A. Edition: June 2016 Printed in India by MINDA SILCA Engineering Ltd. Plot no.37, Toy City, GREATER NOIDA (U.P.) - 201308 The Manufacturer declines any responsibility for possible inaccuracies in this document due to printing or transcription errors. The Manufacturer reserves the right to alter the information without prior notice, except when they affect safety. This document or any of its parts cannot be copied, altered or reproduced without written authorization from the Manufacturer. Keep the manual and look after it for the entire life cycle of the machine. The information has been drawn up by the manufacturer in his own language (Italian) to provide users with the necessary indications to use the key-cutting machine independently, economically and safely. IMPORTANT NOTE: in compliance with current regulations relating to industrial property, we hereby state that the trade-marks or trade names mentioned in our documentation are the exclusive property of authorized manufacturers of locks and users. Said trade-marks or trade names are nominated only for the purposes of information so that any lock for which our keys are made can be rapidly identifi ed.
    [Show full text]
  • Career Directions
    career directions MACHINIST Machinists use machine tools, such as lathes, milling machines, and grinders, to produce precision metal parts. Although they may produce Personal large quantities of one part, precision machinists often produce small batch- Characteristics/ es or one-of-a-kind items. They use their knowledge of the working proper- Skills ties of metals and skill with machine tools to plan and carry out the opera- Mechanically inclined tions needed to make machined products that meet precise specifications. Skilled at working with tools The parts that machinists make range from bolts to automobile pistons. Excellent hand-to-eye coordination Because the technology of machining is changing rapidly, machinists must learn to operate a wide range of machines. Newer machines use lasers, Good troubleshooter water jets, or electrified wires to cut the workpiece. As engineers create new Must be a safety freak (ask any types of machine tools and materials to machine, machinists must constant- machinist how easy it is to lose a ly learn new machining properties and techniques. finger!) Education High School Math Computer courses Earnings $$$$ English Technology education Wages vary depending on the type of shop and Metalworking Blueprint reading geographic area. According the 2010 U.S. Bureau of Four years of math is highly recommended, espe- Labor Statistics, workers in machine shops earned, cially trigonometry and geometry. Positions in the air- on average, $18.39 per hour; workers in the auto- craft manufacturing industry require the use of applied mobile industry earned $19.28 per hour; and aero- calculus and physics. space industry workers earned $21.07 per hour.
    [Show full text]