Hyperplane Arrangements an Introduction Universitext Universitext

Total Page:16

File Type:pdf, Size:1020Kb

Hyperplane Arrangements an Introduction Universitext Universitext Universitext Alexandru Dimca Hyperplane Arrangements An Introduction Universitext Universitext Series editors Sheldon Axler San Francisco State University, San Francisco, CA, USA Carles Casacuberta Universitat de Barcelona, Barcelona, Spain Angus MacIntyre Queen Mary University of London, London, UK Kenneth Ribet University of California, Berkeley, CA, USA Claude Sabbah École polytechnique, CNRS, Université Paris-Saclay, Palaiseau, France Endre Süli University of Oxford, Oxford, UK Wojbor A. Woyczyński Case Western Reserve University, Cleveland, OH, USA Universitext is a series of textbooks that presents material from a wide variety of mathematical disciplines at master’s level and beyond. The books, often well class-tested by their author, may have an informal, personal, even experimental approach to their subject matter. Some of the most successful and established books in the series have evolved through several editions, always following the evolution of teaching curricula, into very polished texts. Thus as research topics trickle down into graduate-level teaching, first textbooks written for new, cutting-edge courses may make their way into Universitext. More information about this series at http://www.springer.com/series/223 Alexandru Dimca Hyperplane Arrangements An Introduction 123 Alexandru Dimca Université Côte d’Azur Nice France ISSN 0172-5939 ISSN 2191-6675 (electronic) Universitext ISBN 978-3-319-56220-9 ISBN 978-3-319-56221-6 (eBook) DOI 10.1007/978-3-319-56221-6 Library of Congress Control Number: 2017935563 Mathematics Subject Classification (2010): 32S22, 32S55, 32S35, 14F35, 14F40, 14F45, 52C35 © Springer International Publishing AG 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Preface Hyperplane arrangement theory is a very active area of research, combining ideas from combinatorics, algebraic topology and algebraic geometry in a blend that is both tasty and useful. The classical textbook was written by Orlik and Terao [180] about 25 years ago, when the subject was already vast and mature. A continuation by the same authors was produced 10 years later, to discuss important progress involving local systems and twisted cohomology, see [183]. On the combinatorial side, the book by Stanley [213] is an excellent introduc- tion, see also the monograph [29] by Björner, Las Vergnas, Sturmfels, White, Ziegler, as well as Cartier’s report [40]. The recent and detailed monograph by De Concini and Procesi [58] adds new important directions to the subject, by looking at polytopes and polyhedra, matroids and root systems, splines and num- bers of integral points in polytopes. The results continued to accumulate over recent years, and a number of leading experts in the area joined efforts to produce a rather complete survey of the current situation, but their book is still a project, see [50] for a preliminary version. Our aim in writing these notes was more modest: We intended to write an introduction to hyperplane arrangement theory which is both accessible and motivating. On the accessibility side, we have recalled in the first few chapters many of the basic results from the book by Orlik and Terao [180], choosing to avoid the proofs that are long and technical. As for the motivating side, our choice of topics in the latter chapters was inspired by the current frontiers of research and includes both new results and open problems. As a result, some important topics are not treated at all, e.g., the Lie algebras attached to arrangements, which have a whole chapter devoted to them in [50]. Other subjects, such as free arrangements, are treated from a very personal viewpoint. One of our main concerns was to keep the book at a reasonable size, so that the resulting text is more an invitation to explore a beautiful area of mathematics and/or to embark on a related research project, rather than a reference monograph. The exercises at the end of each chapter are a good test of the understanding of the material and should make the book (or parts of it) readily usable in a graduate course. v vi Preface We describe the contents of this book in more detail. Chapter 1 is a brief introduction, in which we point out the interplay between combinatorics, topology, geometry and arithmetic in the realm of line arrangements in the plane, where the reader’s intuition can be strongly supported by drawings. Each of the themes introduced here is developed fully in a later chapter. We include a discussion of the Sylvester–Gallai property for real line arrangements, both the classical projective version in Theorem 1.5 and an affine version in Theorem 1.4. The proof of both results is inspired by Hirzebruch’s approach in [135]. In Chap. 2, we collect the basic definitions and results involving the intersection lattice LðAÞ of a hyperplane arrangement A; we explain the key induction tech- nique based on triples of hyperplane arrangements (A,A0,A00) and apply it to deduce the main properties of the characteristic polynomial v(A; t) and of the Poincaré polynomial p(A; t). The characteristic polynomial enters into Zaslavsky’s Theorem 2.8, expressing the number of regions (resp. bounded regions) of the complement of a real arrangement A in terms of v(A, Æ1). These numbers are also related to the number of singularities of the polynomial Q on the complement MðAÞ, for any essential affine arrangement A : QðxÞ¼0, see Theorem 2.9.We also introduce the supersolvable arrangements and state the factorization property of their Poincaré polynomials in Theorem 2.4. In the last section, we define the graphic arrangements and state the fact that the chromatic polynomial of a simple graph C coincides with the characteristic polynomial of the associated hyperplane arrangement AC, see Theorem 2.10. Finally, we discuss the reflection arrangements and introduce the main arrangements in this class, namely the monomial arrange- ments Aðr; r; nÞ in Example 2.24 and the full monomial arrangements Aðr; 1; nÞ in Example 2.23. The purely combinatorial definition of the Orlik–Solomon algebra AÃðAÞ of a hyperplane arrangement A is given in Chap. 3, and the fundamental result stating that this algebra is isomorphic to the cohomology algebra of the complex hyper- plane arrangement complement MðAÞ is proved in Theorem 3.5. To do this, we assume a technical result on the behavior of the Orlik–Solomon algebras with respect to triples, see Theorem 3.1. In this chapter, we also mention a tensor product decomposition of the Orlik–Solomon algebra of a supersolvable arrangement, see Theorem 3.3, as well as an alternative definition of the Orlik–Solomon algebra of a projective hyperplane arrangement, see Theorem 3.4. In Chap. 4, we discuss the minimality of the complement MðAÞ and its relation to the degree of the gradient mapping of the defining equation for A, see Theorem 4.4. In Remark 4.2, we collect some basic results on the topology of the n union of the hyperplanes in A, namely on the hypersurface NðAÞ¼fx 2 C : QðxÞ¼0g. Then, we mention two beautiful results of June Huh, the first on the log-concavity of the coefficients of the Poincaré polynomial pðA; tÞ, see Theorem 4.6, and the second on the relation between the degree of the gradient mapping of a projective hypersurface V and the multiplicities of its singularities, see Theorem 4.7. When V is a line arrangement, we give an elementary new proof of a more precise version of the latter result in Theorem 4.8. In this chapter, we also discuss the fundamental group of the complement MðAÞ and the arrangements Preface vii whose complements are Kðp; 1Þ-spaces. We state Deligne’s result which says that real simplicial hyperplane arrangements give rise to such Kðp; 1Þ-spaces, see Theorem 4.12, as well as Bessis’ result which says that the same holds for the complex reflection arrangements, see Theorem 4.15. We introduce the fiber type arrangements, show their relation to the Kðp; 1Þ-spaces in Theorem 4.15, and then state the surprising fact that a central arrangement is supersolvable if and only if it is fiber type, see Theorem 5.3. This is another deep connection between combinatorics and topology in this subject. Some very interesting groups occur as fundamental group of complements MðAÞ, for instance the Stallings group and the Bestvina– Brady groups are discussed in Remark 4.11. In Chap. 5, we start our discussion of the Milnor fiber F associated to a central hyperplane arrangement A, the monodromy action on the cohomology HÃðFÞ and the relation between monodromy eigenspaces and the twisted cohomology of the complement MðA0Þ, where A0 is the projective arrangement associated to A, see Proposition 5.4.
Recommended publications
  • Finite Projective Geometries 243
    FINITE PROJECTÎVEGEOMETRIES* BY OSWALD VEBLEN and W. H. BUSSEY By means of such a generalized conception of geometry as is inevitably suggested by the recent and wide-spread researches in the foundations of that science, there is given in § 1 a definition of a class of tactical configurations which includes many well known configurations as well as many new ones. In § 2 there is developed a method for the construction of these configurations which is proved to furnish all configurations that satisfy the definition. In §§ 4-8 the configurations are shown to have a geometrical theory identical in most of its general theorems with ordinary projective geometry and thus to afford a treatment of finite linear group theory analogous to the ordinary theory of collineations. In § 9 reference is made to other definitions of some of the configurations included in the class defined in § 1. § 1. Synthetic definition. By a finite projective geometry is meant a set of elements which, for sugges- tiveness, are called points, subject to the following five conditions : I. The set contains a finite number ( > 2 ) of points. It contains subsets called lines, each of which contains at least three points. II. If A and B are distinct points, there is one and only one line that contains A and B. HI. If A, B, C are non-collinear points and if a line I contains a point D of the line AB and a point E of the line BC, but does not contain A, B, or C, then the line I contains a point F of the line CA (Fig.
    [Show full text]
  • A Note on Fibered Quadrangles
    Konuralp Journal of Mathematics Volume 3 No. 2 pp. 185{189 (2015) c KJM A NOTE ON FIBERED QUADRANGLES S. EKMEKC¸ I_ & A. BAYAR Abstract. In this work, the fibered versions of the diagonal triangle and the quadrangular set of a complete quadrangle in fibered projective planes are introduced. And then some related theorems with them are given. 1. Introduction Fuzzy set theory was introduced by Zadeh [10] and this theory has been applied in many areas. One of them is projective geometry, see for instance [1,2,5,7,8,9]. A first model of fuzzy projective geometries was introduced by Kuijken, Van Maldeghem and Kerre [7,8]. Also, Kuijken and Van Maldeghem contributed to fuzzy theory by introducing fibered geometries, which is a particular kind of fuzzy geometries [6]. They gave the fibered versions of some classical results in projective planes by using minimum operator. Then the role of the triangular norm in the theory of fibered projective planes and fibered harmonic conjugates and a fibered version of Reidemeister's condition were given in [3]. The fibered version of Menelaus and Ceva's 6-figures was studied in [4]. It is well known that triangles and quadrangles have an important role in projec- tive geometry. A complete quadrangle is a system of geometric objects consisting of any four points in a plane, no three of which are on a common line, and of the six lines connecting each pair of points. The free completion of a configuration containing either a quadrangle or a quadrilateral is a projective plane.
    [Show full text]
  • 1. Math Olympiad Dark Arts
    Preface In A Mathematical Olympiad Primer , Geoff Smith described the technique of inversion as a ‘dark art’. It is difficult to define precisely what is meant by this phrase, although a suitable definition is ‘an advanced technique, which can offer considerable advantage in solving certain problems’. These ideas are not usually taught in schools, mainstream olympiad textbooks or even IMO training camps. One case example is projective geometry, which does not feature in great detail in either Plane Euclidean Geometry or Crossing the Bridge , two of the most comprehensive and respected British olympiad geometry books. In this volume, I have attempted to amass an arsenal of the more obscure and interesting techniques for problem solving, together with a plethora of problems (from various sources, including many of the extant mathematical olympiads) for you to practice these techniques in conjunction with your own problem-solving abilities. Indeed, the majority of theorems are left as exercises to the reader, with solutions included at the end of each chapter. Each problem should take between 1 and 90 minutes, depending on the difficulty. The book is not exclusively aimed at contestants in mathematical olympiads; it is hoped that anyone sufficiently interested would find this an enjoyable and informative read. All areas of mathematics are interconnected, so some chapters build on ideas explored in earlier chapters. However, in order to make this book intelligible, it was necessary to order them in such a way that no knowledge is required of ideas explored in later chapters! Hence, there is what is known as a partial order imposed on the book.
    [Show full text]
  • Self-Dual Harmonicity: the Planar Case
    SELF-DUAL HARMONICITY: THE PLANAR CASE P.L. ROBINSON Abstract. We present a manifestly geometrically self-dual version of the Fano harmonicity axiom for the projective plane. Introduction In a recent sequence of papers, we have explored manifestly self-dual formulations of three- dimensional projective space: [2] begins the sequence, basing projective space on lines and their abstract incidence, from which points and planes are derived as secondary elements; [4] pursues the complementary approach, taking points and planes to be primary elements from which lines are derived. The most recent paper [6] addresses the axioms (or assumptions) of harmonicity and projectvity: traditionally, harmonicity asserts (with Fano) that ‘the diagonal points of a complete quadrangle are noncollinear’ while projectivity asserts that ‘if a projectivity leaves each of three distinct points of a line invariant, it leaves every point of the line invariant’; see [7] Section 18 and [7] Section 35 respectively. In keeping with our aim to present projective space in a formulation that is manifestly self- dual, it is desirable to express projectivity and harmonicity in manifestly self-dual forms. The axiom of projectivity is so expressed in [3] and [6]: indeed, [7] Section 103 contains a self-dual expression of projectivity in its discussion of reguli. In [5] and [6] our versions of the axiom of harmonicity are self-dual only in being the conjunction of a pair of dual statements, each of which implies the other; we might say that these versions are self-dual in rather a logical sense. Our purpose in the present paper and its sequel is to offer expressions of harmonicity that are more geometrically self-dual: the present paper deals with harmonicity in the plane; its sequel deals with the more elaborate spatial harmonicity.
    [Show full text]
  • Quadrangular Sets in Projective Line and in Moebius Space, and Geometric Interpretation of the Non-Commutative Discrete Schwarzian Kadomtsev–Petviashvili Equation
    QUADRANGULAR SETS IN PROJECTIVE LINE AND IN MOEBIUS SPACE, AND GEOMETRIC INTERPRETATION OF THE NON-COMMUTATIVE DISCRETE SCHWARZIAN KADOMTSEV{PETVIASHVILI EQUATION ADAM DOLIWA AND JAROSLAW KOSIOREK Abstract. We present geometric interpretation of the discrete Schwarzian Kadomtsev{Petviashvili equation in terms of quadrangular set of points of a projective line. We give also the corresponding interpretation for the projective line considered as a Moebius chain space. In this way we incorporate the conformal geometry interpretation of the equation into the projective geometry approach via Desargues maps. 1. Introduction In the present paper we address two questions concerning geometric interpretation of the following discrete integrable system −1 −1 −1 (1) (φ(jk) − φ(k))(φ(jk) − φ(j)) (φ(ij) − φ(j))(φ(ij) − φ(i)) (φ(ik) − φ(i))(φ(ik) − φ(k)) = 1; where φ: ZN ! F is a map from N-dimensional integer lattice to a division ring F, and indices in brackets denote shifts in the corresponding variables, i.e. φ(i)(n1; : : : ; nN ) = φ(n1; : : : ; ni + 1; : : : nN ): The above equation appeared first as the generalized lattice spin equation in [36], and was called the non-commutative discrete Schwarzian Kadomtsev{Petviashvili (SKP) equation in [10, 30]. As being one of various forms of the discrete Kadomtsev-Petviashvili (KP) system [25, 32], equation (1) plays pivotal role in the theory of integrable systems and its applications. Relation between geometry of submanifolds and integrable systems is an ongoing research subject which can be dated back to second half of XIX-th century [14]. In fact, geometric approach to discrete integrable systems initiated in [8, 22, 28], see also [9] for a review, demonstrates that the basic principles of the theory are encoded in incidence geometry statements, some of them known in antiquity.
    [Show full text]
  • Introduction to Projective Geometry
    Introduction to Projective Geometry George Voutsadakis1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 400 George Voutsadakis (LSSU) Projective Geometry August 2020 1 / 31 Outline 1 Triangles and Quadrangles Axioms Simple Consequences of the Axioms Perspective Triangles Quadrangular Sets Harmonic Sets George Voutsadakis (LSSU) Projective Geometry August 2020 2 / 31 Triangles and Quadrangles Axioms Subsection 1 Axioms George Voutsadakis (LSSU) Projective Geometry August 2020 3 / 31 Triangles and Quadrangles Axioms The Axioms We assume the three primitive concepts point, line, and incidence. We have already defined the words plane, quadrangle, and projectivity in terms of the primitive concepts. Axiom 1 There exist a point and a line that are not incident. Axiom 2 Every line is incident with at least three distinct points. Axiom 3 Any two distinct points are incident with just one line. Axiom 4 If A,B,C ,D are four distinct points such that AB meets CD, then AC meets BD. Axiom 5 If ABC is a plane, there is at least one point not in the plane ABC. Axiom 6 Any two distinct planes have at least two common points. Axiom 7 The three diagonal points of a complete quadrangle are never collinear. Axiom 8 If a projectivity leaves invariant each of three distinct points on a line, it leaves invariant all points on the line. George Voutsadakis (LSSU) Projective Geometry August 2020 4 / 31 Triangles and Quadrangles Axioms Illustration of Axioms 4 and 7 Axiom 4 If A,B,C ,D are four distinct points such that AB meets CD, then AC meets BD.
    [Show full text]
  • Foundations of Projective Geometry
    Foundations of Projective Geometry Robin Hartshorne 1967 ii Preface These notes arose from a one-semester course in the foundations of projective geometry, given at Harvard in the fall term of 1966–1967. We have approached the subject simultaneously from two different directions. In the purely synthetic treatment, we start from axioms and build the abstract theory from there. For example, we have included the synthetic proof of the fundamental theorem for projectivities on a line, using Pappus’ Axiom. On the other hand we have the real projective plane as a model, and use methods of Euclidean geometry or analytic geometry to see what is true in that case. These two approaches are carried along independently, until the first is specialized by the introduction of more axioms, and the second is generalized by working over an arbitrary field or division ring, to the point where they coincide in Chapter 7, with the introduction of coordinates in an abstract projective plane. Throughout the course there is special emphasis on the various groups of transformations which arise in projective geometry. Thus the reader is intro- duced to group theory in a practical context. We do not assume any previous knowledge of algebra, but do recommend a reading assignment in abstract group theory, such as [4]. There is a small list of problems at the end of the notes, which should be taken in regular doses along with the text. There is also a small bibliography, mentioning various works referred to in the preparation of these notes. However, I am most indebted to Oscar Zariski, who taught me the same course eleven years ago.
    [Show full text]
  • 7 , 2002, 18:01
    c CY absorb absorbing absorbing barrier absorbing set abacist absorption abacounter absorption law co ecient of absorption abacus abacus Pythagoricus index of absorption selective absorption ab duction Ab elian sound absorption Ab elian group ab erration abstract abnormal abnormality abstract algebra ab ort abstract data typ e ab ound abstract mathematics abridged abrupt abstract number abstract space abscissa abstract symb ol absolute abstraction absolute constant absolute continuity abstraction layer absolute convergence absolute error extensive abstraction absolute frequency absolute inequality mathematical abstraction absolute maximum absolute minimum abundance absolute number abundantnumber absolute symmetry absolute term academia absolute value access academic access control academy access frequency accelerate access p ermission acceleration access time absolute acceleration accessible acceleration of free fall account angular acceleration average acceleration accumulate centrifugal acceleration accumulation accumulation factor centrip etal acceleration accumulation p oint complementary acceleration accumulator constant acceleration accuracy external acceleration clo ck accuracy accurate gravitational acceleration accurately ground acceleration achromatic
    [Show full text]
  • Semi-Similar Complete Quadrangles
    Forum Geometricorum Volume 14 (2014) 87–106. FORUM GEOM ISSN 1534-1178 Semi-Similar Complete Quadrangles Benedetto Scimemi Abstract. Let A = A1A2A3A4 and B =B1B2B3B4 be complete quadrangles and assume that each side AiAj is parallel to BhBk (i, j, h, k is a permutation of 1, 2, 3, 4 ). Then A and B, in general, are not homothetic; they are linked by another strong geometric relation, which we study in this paper. Our main result states that, modulo similarities, the mapping Ai → Bi is induced by an involutory affinity (an oblique reflection). A and B may have quite different aspects, but they share a great number of geometric features and turn out to be similar when A belongs to the most popular families of quadrangles: cyclic and trapezoids. 1. Introduction Two triangles whose sides are parallel in pairs are homothetic. A similar state- ment, trivially, does not apply to quadrilaterals. How about two complete quadran- gles with six pairs of parallel sides? An answer cannot be given unless the question is better posed: let A = A1A2A3A4, B =B1B2B3B4 be complete quadrangles and assume that each side AiAj is parallel to BiBj; then A and B are indeed ho- mothetic. In fact, the two triangle homotheties, say A1A2A3 → B1B2B3, and A4A2A3 → B4B2B3, must be the same mappings, as they have the same effect on two points. 1 There is, however, another interesting way to relate the six directions. Assume AiAj is parallel to BhBk (i, j, h, k will always denote a permutation of 1, 2, 3, 4). Then A and B in general are not homothetic.
    [Show full text]
  • 8. the Second Paper by Professor Gutzmer Consists of a Short Report
    268 THE CONSTRUCTION OF CONICS. [Feb., 8. The second paper by Professor Gutzmer consists of a short report on some investigations and results related to a previous paper by him under the title : " Theory of adjoined differential equations," Halle, 1896. The next meeting of the Vereinigung will be held at Meran, in the Tyrol, in September, 1905, under the presidency of Pro­ fessor F. Klein. E. E. WILSON. GÖTTINGEN, GEEMANY, November, 1904. THE CONSTKUCTION OF CONICS UNDER GIVEN CONDITIONS. BY PROFESSOR M. W. HASKELL. ( Read before the San Francisco Section of the American Mathematical Society, April 30, 1904. ) UNDER the above title are grouped a few notes on special aspects of the subject, with no pretense at an exhaustive treat­ ment. While certain of the results are not new, it is believed that the method by which they are derived will be of some interest. Homogeneous coordinates are used exclusively ; fol­ lowing Casey (Analytical Geometry, page 70), a quadrangle or quadrilateral whose diagonal triangle is the triangle of reference is designated as a "standard" quadrangle or quadrilateral. The coordinates of the vertices of a standard quadrangle, or of the sides of a standard quadrilateral, are then d= KX : =h K2 : =L /c3, and they may be projected into ± 1 : ± 1 : dt 1 if desired. It is to be noticed that the complete quadrangle (quadrilateral) is fully determined and can be easily constructed, when the diagonal triangle and any one vertex (side) are given. § 1. Conies Defined by Five Points or by Five Tangents. THEOREM I. The eight vertices of two standard quadrangles lie on one and the same eonie.
    [Show full text]
  • Thinking Geometrically a Survey of Geometries
    AMS / MAA TEXTBOOKS VOL 26 Thinking Geometrically A Survey of Geometries Thomas Q. Sibley Thinking Geometrically A Survey of Geometries c 2015 by The Mathematical Association of America (Incorporated) Library of Congress Control Number: 2015936100 Print ISBN: 978-1-93951-208-6 Electronic ISBN: 978-1-61444-619-4 Printed in the United States of America Current Printing (last digit): 10987654321 10.1090/text/026 Thinking Geometrically A Survey of Geometries Thomas Q. Sibley St. John’s University Published and distributed by The Mathematical Association of America Council on Publications and Communications Jennifer J. Quinn, Chair Committee on Books Fernando Gouvea,ˆ Chair MAA Textbooks Editorial Board Stanley E. Seltzer, Editor Matthias Beck Richard E. Bedient Otto Bretscher Heather Ann Dye Charles R. Hampton Suzanne Lynne Larson John Lorch Susan F. Pustejovsky MAA TEXTBOOKS Bridge to Abstract Mathematics, Ralph W. Oberste-Vorth, Aristides Mouzakitis, and Bonita A. Lawrence Calculus Deconstructed: A Second Course in First-Year Calculus, Zbigniew H. Nitecki Calculus for the Life Sciences: A Modeling Approach, James L. Cornette and Ralph A. Ackerman Combinatorics: A Guided Tour, David R. Mazur Combinatorics: A Problem Oriented Approach, Daniel A. Marcus Complex Numbers and Geometry, Liang-shin Hahn A Course in Mathematical Modeling, Douglas Mooney and Randall Swift Cryptological Mathematics, Robert Edward Lewand Differential Geometry and its Applications, John Oprea Distilling Ideas: An Introduction to Mathematical Thinking, Brian P.Katz and Michael Starbird Elementary Cryptanalysis, Abraham Sinkov Elementary Mathematical Models, Dan Kalman An Episodic History of Mathematics: Mathematical Culture Through Problem Solving, Steven G. Krantz Essentials of Mathematics, Margie Hale Field Theory and its Classical Problems, Charles Hadlock Fourier Series, Rajendra Bhatia Game Theory and Strategy, Philip D.
    [Show full text]
  • Foundations of Projective Geometry
    CHAPTER 15 Foundations of Projective Geometry What a delightful thing this perspective is! — Paolo Uccello (1379-1475) Italian Painter and Mathemati- cian 15.1 AXIOMS OF PROJECTIVE GEOMETRY In section 9.3 of Chapter 9 we covered the four basic axioms of Projective geometry: P1 Given two distinct points there is a unique line incident on these points. P2 Given two distinct lines, there is at least one point incident on these lines. P3 There exist three non-collinear points. P4 Every line has at least three distinct points incident on it. We then introduced the notions of triangles and quadrangles and saw that there was a finite projective plane with 7 points and 7 lines that had a peculiar property in relation to quadrangles. The odd quadrangle behavior turns out to absent in most of the classical models of Projective geometry. If we want to rule out this behavior we need a fifth axiom: Axiom P5: (Fano’s Axiom) The three diagonal points of a complete quadrangle are not collinear. 171 172 Exploring Geometry - Web Chapters This axiom is named for the Italian mathematician Gino Fano (1871– 1952). Fano discovered the 7 point projective plane, which is now called the Fano plane. The Fano plane is the simplest figure which satisfies Ax- ioms P1–P4, but which has a quadrangle with collinear diagonal points. (For more detail on this topic, review section 9.3.4.) The basic set of four axioms is not strong enough to prove one of the classical theorems in Projective geometry —Desargues’ Theorem. Theorem 15.1.
    [Show full text]