Thinking Geometrically a Survey of Geometries
Total Page:16
File Type:pdf, Size:1020Kb
AMS / MAA TEXTBOOKS VOL 26 Thinking Geometrically A Survey of Geometries Thomas Q. Sibley Thinking Geometrically A Survey of Geometries c 2015 by The Mathematical Association of America (Incorporated) Library of Congress Control Number: 2015936100 Print ISBN: 978-1-93951-208-6 Electronic ISBN: 978-1-61444-619-4 Printed in the United States of America Current Printing (last digit): 10987654321 10.1090/text/026 Thinking Geometrically A Survey of Geometries Thomas Q. Sibley St. John’s University Published and distributed by The Mathematical Association of America Council on Publications and Communications Jennifer J. Quinn, Chair Committee on Books Fernando Gouvea,ˆ Chair MAA Textbooks Editorial Board Stanley E. Seltzer, Editor Matthias Beck Richard E. Bedient Otto Bretscher Heather Ann Dye Charles R. Hampton Suzanne Lynne Larson John Lorch Susan F. Pustejovsky MAA TEXTBOOKS Bridge to Abstract Mathematics, Ralph W. Oberste-Vorth, Aristides Mouzakitis, and Bonita A. Lawrence Calculus Deconstructed: A Second Course in First-Year Calculus, Zbigniew H. Nitecki Calculus for the Life Sciences: A Modeling Approach, James L. Cornette and Ralph A. Ackerman Combinatorics: A Guided Tour, David R. Mazur Combinatorics: A Problem Oriented Approach, Daniel A. Marcus Complex Numbers and Geometry, Liang-shin Hahn A Course in Mathematical Modeling, Douglas Mooney and Randall Swift Cryptological Mathematics, Robert Edward Lewand Differential Geometry and its Applications, John Oprea Distilling Ideas: An Introduction to Mathematical Thinking, Brian P.Katz and Michael Starbird Elementary Cryptanalysis, Abraham Sinkov Elementary Mathematical Models, Dan Kalman An Episodic History of Mathematics: Mathematical Culture Through Problem Solving, Steven G. Krantz Essentials of Mathematics, Margie Hale Field Theory and its Classical Problems, Charles Hadlock Fourier Series, Rajendra Bhatia Game Theory and Strategy, Philip D. Straffin Geometry Illuminated: An Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry, Matthew Harvey Geometry Revisited, H. S. M. Coxeter and S. L. Greitzer Graph Theory: A Problem Oriented Approach, Daniel Marcus An Invitation to Real Analysis, Luis F. Moreno Knot Theory, Charles Livingston Learning Modern Algebra: From Early Attempts to Prove Fermat’s Last Theorem, Al Cuoco and Joseph J. Rotman The Lebesgue Integral for Undergraduates, William Johnston Lie Groups: A Problem-Oriented Introduction via Matrix Groups, Harriet Pollatsek Mathematical Connections: A Companion for Teachers and Others, Al Cuoco Mathematical Interest Theory, Second Edition, Leslie Jane Federer Vaaler and James W. Daniel Mathematical Modeling in the Environment, Charles Hadlock Mathematics for Business Decisions Part 1: Probability and Simulation (electronic textbook), Richard B. Thompson and Christopher G. Lamoureux Mathematics for Business Decisions Part 2: Calculus and Optimization (electronic textbook), Richard B. Thompson and Christopher G. Lamoureux Mathematics for Secondary School Teachers, Elizabeth G. Bremigan, Ralph J. Bremigan, and John D. Lorch The Mathematics of Choice, Ivan Niven The Mathematics of Games and Gambling, Edward Packel Math Through the Ages, William Berlinghoff and Fernando Gouvea Noncommutative Rings, I. N. Herstein Non-Euclidean Geometry, H. S. M. Coxeter Number Theory Through Inquiry, David C. Marshall, Edward Odell, and Michael Starbird Ordinary Differential Equations: from Calculus to Dynamical Systems, V.W. Noonburg A Primer of Real Functions, Ralph P. Boas A Radical Approach to Lebesgue’s Theory of Integration, David M. Bressoud A Radical Approach to Real Analysis, 2nd edition, David M. Bressoud Real Infinite Series, Daniel D. Bonar and Michael Khoury, Jr. Thinking Geometrically: A Survey of Geometries, Thomas Q. Sibley Topology Now!, Robert Messer and Philip Straffin Understanding our Quantitative World, Janet Andersen and Todd Swanson MAA Service Center P.O. Box 91112 Washington, DC 20090-1112 1-800-331-1MAA FAX: 1-240-396-5647 Contents Preface xv 1 Euclidean Geometry 1 1.1 Overview and History........................................................................... 1 1.1.1 The Pythagoreans and Zeno .......................................................... 2 1.1.2 Plato and Aristotle...................................................................... 4 1.1.3 Exercises for Section 1.1.............................................................. 5 1.2 Euclid’s Approach to Geometry I: Congruence and Constructions................... 10 1.2.1 Congruence............................................................................... 11 1.2.2 Constructions............................................................................ 12 1.2.3 Equality of Measure.................................................................... 15 1.2.4 The Greek Legacy....................................................................... 16 1.2.5 Exercises for Section 1.2.............................................................. 17 1.2.6 Archimedes............................................................................... 25 1.3 Euclid’s Approach II: Parallel Lines......................................................... 26 1.3.1 Exercises for Section 1.3.............................................................. 30 1.4 Similar Figures.................................................................................... 33 1.4.1 Exercises for Section 1.4.............................................................. 37 1.5 Three-Dimensional Geometry................................................................. 42 1.5.1 Polyhedra.................................................................................. 42 1.5.2 Geodesic Domes ........................................................................ 46 1.5.3 The Geometry of the Sphere.......................................................... 48 1.5.4 Exercises for Section 1.5.............................................................. 51 1.5.5 Buckminster Fuller ..................................................................... 59 1.5.6 Projects for Chapter 1.................................................................. 59 1.5.7 Suggested Readings .................................................................... 65 2 Axiomatic Systems 67 2.1 From Euclid to Modern Axiomatics......................................................... 67 2.1.1 Overview and History.................................................................. 67 2.1.2 Axiomatic Systems..................................................................... 68 2.1.3 A Simplified Axiomatic System..................................................... 71 2.1.4 Exercises for Section 2.1.............................................................. 73 vii viii Contents 2.2 Axiomatic Systems for Euclidean Geometry.............................................. 75 2.2.1 SMSG Postulates........................................................................ 76 2.2.2 Hilbert’sAxioms........................................................................ 77 2.2.3 Exercises for Section 2.2.............................................................. 78 2.2.4 David Hilbert............................................................................. 81 2.3 Models and Metamathematics................................................................. 82 2.3.1 Exercises for Section 2.3.............................................................. 88 2.3.2 Kurt Godel.¨ ............................................................................... 94 2.3.3 Projects for Chapter 2.................................................................. 94 2.3.4 Suggested Readings .................................................................... 96 3 Analytic Geometry 97 3.1 Overview and History........................................................................... 98 3.1.1 The Analytic Model .................................................................... 98 3.1.2 Exercises for Section 3.1.............................................................. 100 3.1.3 Rene´ Descartes.......................................................................... 104 3.2 Conics and Locus Problems ................................................................... 104 3.2.1 Exercises for Section 3.2.............................................................. 110 3.2.2 Pierre de Fermat......................................................................... 114 3.3 Further Topics in Analytic Geometry........................................................ 114 3.3.1 Parametric Equations................................................................... 114 3.3.2 Polar Coordinates....................................................................... 116 3.3.3 Barycentric Coordinates............................................................... 118 3.3.4 Other Analytic Geometries............................................................ 120 3.3.5 Exercises for Section 3.3.............................................................. 121 3.4 Curves in Computer-Aided Design.......................................................... 126 3.4.1 Exercises for Section 3.4.............................................................. 131 3.5 Higher Dimensional Analytic Geometry.................................................... 133 3.5.1 Analytic Geometry in Rn .............................................................. 133 3.5.2 Regular Polytopes....................................................................... 137 3.5.3