Welding Terms Cheat Sheet

Total Page:16

File Type:pdf, Size:1020Kb

Welding Terms Cheat Sheet WELDING TERMS CHEAT SHEET ARC-PERCUSSIVE WELDING LASER-BEAM WELDING (LBW) A process in which similar and dissimilar metals are easily A process that produces a coalescence of metals by radiation and consistently joined; best used for lead attachment, cable emitted from a concentrated beam of coherent light; best used termination, and small parts welding for steel, stainless steel, aluminum, titanium, nickel, copper, and other commercial metals ARC WELDING Also known as stick welding; a process that uses an electric OXY-ACETYLENE WELDING current flowing from a gap between the metal and the welding A process in which a tank of oxygen and acetylene are stick, also known as an arc-welding electrode; effective for combined with an adjustable torch to result in a precise, welding most alloys or joints and can be used both indoors and controlled flame used to heat metal outdoors, or in drafty areas OXY-FUEL GAS WELDING (OFW) ATOMIC HYDROGEN WELDING (AHW) A group of processes which join metals by heating with a An older process that involves placing two metal tungsten fuel gas flame or flares with or without the application of electrodes in a hydrogen atmosphere, leading to a break- pressure and with or without the use of filler metal; includes up and recombination of the hydrogen molecules in a heat any operation that uses a fuel gas combined with oxygen as a explosion heating medium CARBON ARC WELDING (CAW) PLASMA ARC WELDING (PAW) The first modern welding process; a process that heats metals A process in which a non-consumable tungsten electrode, together with a non-consumable carbon electrode shielding gas, and plasma torch are used with a constriction cup, which forces the arc out into a narrow jet, until the diameter ELECTRIC RESISTANCE WELDING (ERW) of the constriction cup is reduced, leaving a finer arc jet Includes spot welding and seam welding; a process that uses heat generated by passing a high-frequency electrical current PLASTIC WELDING through the metal, as well as pressure to hold the to-be-welded A process of uniting softened surfaces of thermoplastic parts for a certain amount of time materials with the aid of heat (except solvent welding); subcategories for this type of welding include hot gas/hot air ELECTRON-BEAM WELDING (EBW) welding, speed tip welding, extrusion welding, contact A process that produces coalescence of metals with the heat welding, hot plate welding, high frequency welding, obtained from a concentrated beam composed primarily of induction welding, injection welding, ultrasonic welding, high-velocity electrons striking the surfaces to be joined friction welding, and spin welding ELECTROSLAG WELDING (ESW) RESISTANCE SPOT WELDING (RSW) Best for thick materials, this process joins metals with heat that’s A resistance process that produces coalescence at the faying generated by passage of electric current through a molten surfaces in one spot by the heat obtained from resistance to conductive slag, which melts the filler and base metals; similar electric current through the work parts held together under to electrogas welding pressure by electrodes FLUX-CORED ARC WELDING (FCAW) SHIELDED METAL ARC WELDING A high-speed, portable wire-feed process that doesn’t require Also known as stick welding; a process that melts and joins a shielding gas and uses flux-cored wire to shield the arc; metals by heating them with an arc between a coated metal effective when welding outdoors, in windy conditions, or on electrode and the workpiece dirty materials SUBMERGED ARC WELDING (SAW) GAS METAL ARC WELDING (GMAW) A process that uses a flux to generate protective gases and slag, Often referred to by its subtypes, wire-feed/metal inert gas and to add alloying elements to the weld pool like MIG welding (MIG) welding, which is great for cleanly welding thin metals, or metal active gas (MAG) welding; a process in which an TUNGSTEN INERT GAS (TIG) WELDING electric arc forms and heats a workpiece metal to a consumable Also known as the Cadillac Process and gas tungsten arc wire electrode by melting the two together welding (GTAW), which is most useful for aluminum and mild and stainless steel applications; the most common and highest GLASS WELDING quality welding process that uses two-handed arc welding with A process that heats the glass through the glass transition, turning a non-consumable tungsten electrode to produce the weld it into a thick liquid mass; best used for lighting, neon signs, flashtubes, scientific equipment, dishes, and other glassware www.kaempfandharris.com | 301-663-6670 Welding Terms Cheat Sheet.
Recommended publications
  • Fundamentals of Joining Processes
    Outline ME3072 – MANUFACTURING ENGINEERING II BSc Eng (Hons) in Mechanical Engineering • Introduction to Welding Semester - 4 • Fusion-Welding Processes • Solid-State Welding Processes Fundamentals of Joining • Metallurgy of Welding Processes • Weld Quality • Brazing & Soldering Prepared By : R.K.P.S Ranaweera BSc (Hons) MSc Lecturer - Department of Mechanical Engineering University of Moratuwa 2 (for educational purpose only) Joining Processes Classification of Joining Processes 3 4 1 Introduction to Welding • Attention must be given to the cleanliness of the metal surfaces prior to welding and to possible • Is a process by which two materials, usually metals oxidation or contamination during welding process. are permanently joined together by coalescence, which is induced by a combination of temperature, • Production of high quality weld requires: pressure and metallurgical conditions. Source of satisfactory heat and/or pressure Means of protecting or cleaning the metal • Is extensively used in fabrication as an alternative Caution to avoid harmful metallurgical effects method for casting or forging and as a replacement for bolted and riveted joints. Also used as a repair • Advantages of welding over other joints: medium to reunite metals. Lighter in weight and has a great strength • Types of Welding: High corrosion resistance Fusion welding Fluid tight for tanks and vessels Solid-state (forge) welding Can be altered easily (flexibility) and economically 5 6 • Weldability has been defined as the capacity of • Steps in executing welding: metal to be welded under the fabrication conditions Identification of welds, calculation of weld area by stress imposed into a specific, suitably designed structure analysis, preparation of drawings & to perform satisfactorily in the intended service.
    [Show full text]
  • Welding Technology a Suncam Continuing Education Course
    033.pdf Welding Technology A SunCam Continuing Education Course Welding Technology By Roger Cantrell www.SunCam.com Page 1 of 35 033.pdf Welding Technology A SunCam Continuing Education Course Learning Objectives This course introduces the student to the concept of developing procedures for welding and brazing. Welding and brazing variables are introduced and some example concepts for applying each variable are highlighted to pique the student’s interest and perhaps lead to further study. Upon completion of this course, the student should be able to: • Understand the concept of creating a welding/brazing procedure • Identify several commonly used welding/brazing processes • Identify the more common welding/brazing variables • Appreciate some of the considerations for applying each variable 1.0 INTRODUCTION This course highlights the basic concepts of developing a welding or brazing procedure specification (WPS/BPS). There are a number of ways to approach this subject such as by process, base material, etc. It will be convenient to organize our thoughts in the format of ASME Section IX. The various factors that might influence weld quality are identified in ASME Section IX as "Welding Variables". "Brazing Variables" are treated in a separate part of Section IX in a manner similar to welding variables. The listing of variables for welding procedures can be found in ASME Section IX, Tables QW-252 through QW-265 (a table for each process). The layout of each table is similar to Figure No. 1. www.SunCam.com Page 2 of 35 033.pdf Welding Technology A SunCam Continuing Education Course Process Variable Variation (Description) Essential Supplementary Essential Nonessential Joint Backing X Root Spacing X Base P Number X Metal G Number X Filler F Number X Metal A Number X Continued in this fashion until all relevant variables for the subject process are listed.
    [Show full text]
  • Mechanical Testing and Evaluation of High-Speed and Low
    MECHANICAL TESTING AND EVALUATION OF HIGH-SPEED AND LOW- SPEED FRICTION STIR WELDS A Thesis by Nitin Banwasi Bachelor of Engineering, Bangalore University, Bangalore, India 2000 Submitted to the College of Engineering and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the degree of Master of Science Fall 2005 EXPERIMENTAL TESTING AND EVALUATION OF HIGH-SPEED AND LOW- SPEED FRICTION STIR WELDS I have examined the final copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Mechanical Engineering. George E. Talia, Committee Chair We have read this thesis and recommended its acceptance: Dr. Hamid M. Lankarani, Department Chair, Committee Member Dr. Krishna K. Krishnan, Committee Member ii DEDICATION To My Parents iii ACKNOWLEDGEMENTS I am grateful to all that are part of my efforts during my work both academically and personally. I am thankful to my committee chair, Dr.George E.Talia, for being not only supportive in my endeavors but also patient and informative. I appreciate the involvement of both Dr. Hamid M. Lankarani and Dr. Krishna K. Krishnan for their involvement in its fulfillment. I also want to remember fellow student’s help and suggestions in making it possible with gratitude. iv ABSTRACT The potential of the Friction Stir Welding (FSW) process is easily observed in the creation of defect free welds in almost all of the Aluminum alloys. The success and applicability of the process, however, will depend on the performance of the welds compared to other joining processes.
    [Show full text]
  • The Right Tool for Every Job...Big Or Small
    The right tool for every job.... big or small TRANSMIG MULTI-PROCESS WELDING INVERTERS The CIGWELD complete range of TRANSMIG multi-process MIG, Stick & TIG welding inverters, come loaded with features sure to satisfy any trade professional in any industry regardless of the welding application. 1300 654 674 I www.cigweld.com.au Sponsors Index Shindaiwa Structural Steel Standards 2 http://www.shindaiwa.com.au/ South Pacific Welding Group Pressure Equipment 6 http://www.spwgroup.com.au/home.asp Standards Smenco http://www.smenco.com.au Thermadyne – Transmig 9 Thermadyne - Cigweld Range www.thermadyne.com.au SafeTac Company Bio – Boston 11 http://www.safetac.com.au Engineering Bureau Veritas http://www.bureauveritas.com.au Smenco – Mining Spec 13 Southern Cross Industrial Welder Supplies http://www.scis.com.au 1300 Apprentice 15 Technoweld http://www.technoweld.com.au MSA - Australian Government 16 Hardface Technologys Skills Connect http://www.hardface.com.au 3834 Weld Management Letter to the Editor 18 [email protected] Welding Duplex – Lincoln 19 Cover Page Electric CIGWELD have released a complete family of six Transmig 3‐in‐1 MIG, STICK and TIG welding inverters to Progress Update 20 the market, ranging from 175 Amps right up to 550 Amps. In November 2011, the Transmig 200i and Transmig 250i single phase portable Multi‐Process Inverters with power factor correction (PFC) hit the market and created quite a stir, and now in early 2012 CIGWELD have realised the 3 phase versions to complete the Transmig inverter range. AWI operates this service for members. Information and comments in AWI publications are the opinions of specific individuals and companies, and may not reflect the position of AWI or its Directors.
    [Show full text]
  • Welding Operations
    WELDING OPERATIONS Date Initiated: February 1, 1993 Dates Modified / Updated: September 15, 1993 October 16, 1998 PROCESS DESCRIPTION: Many industrial and manufacturing facilities regularly use a variety of welding processes and materials. The processes include; - Gas Metal Arc Welding (GMAW) - a. k. a. Metal Inert Gas Welding (MIG), - Gas Tungsten Arc Welding (GTAW) - a. k. a. Tungsten Inert Gas Welding (TIG), - Shielded Metal Arc Welding (SMAW) - a. k. a. Manual Metal Arc Welding (MMA), - Flux Core Arc Welding (FCAW), - Submerged Arc Welding (SAW), - Arc Spot Welding, - Electrogas Welding, - Electrostag Welding, - Brazing, - Thermal Cutting, - Resistance Welding, - Plasma Arc Welding, - Electron Beam Welding, - Laser Beam Welding The majority of the common welding processes can be classified as either gas metal arc welding (GMAW) or shielded metal arc welding (SMAW). GMAW generally uses an electrical current to melt and apply a filler metal under a blanket of inert gas. SMAW traditionally uses an electrical current to melt specially coated electrodes which form a protective flux over the weld during application. Both processes use electrodes, filler metals, wire, coatings, and/or gases that may contain and emit several listed substances including NOx, CO, cadmium, cobalt, copper, chromium, manganese, nickel, lead, zinc, and fluorides. Welding operations release fumes and particulates with diameters of 0.001 to 100 microns. Previous studies of welding emissions have been primarily focused on worker exposure and safety. Many technical difficulties have been identified regarding proper sampling and analytical procedures due, in part, to the wide variety of processes, welding materials, and field conditions. The majority of existing test data which can be used to quantify welding emissions is based on studies performed by the American Welding Society (AWS).
    [Show full text]
  • Gas-Shielded Arc Welding TIG Welding
    Gas-Shielded Arc Welding Gas-shielded welding can be divided into the tungsten gas-shielded welding and the metal gas-shielded welding processes. The tungsten gas-shielded welding covers the processes − Tungsten plasma arc welding (PAW) − Inert-gas tungsten-arc welding (TIG), whereby TIG welding is the most widely used fusion welding process for aluminium. The plasma welding consists only of the plasma-arc welding process which works with a transferred arc. The metal shielded-gas welding is limited to the metal inert-gas welding process operating with an inert gas as shield, as well as a process combination with plasma welding (plasma metal shielded-gas welding - PMIG). The abbreviations used are: GAW Gas-shielded arc welding GMGMMA Gas-mixture shielded metal-arc welding GTAW Gas-shielded tungsten arc welding (MAGM) GMAW Gas-shielded metal arc welding MAGC CO2-shielded metal-arc welding AHW Atomic hydrogen welding NGW Narrow-gap welding CAW Constricted arc welding EGW Electro -gas welding TIG Tungsten inert-gas arc welding PMIG Plasma MIG welding MIG Metal inert-gas arc welding MAG Metal active-gas arc welding p Pulsed arc PJW Plasma jet welding sh Short arc PAW Plasma arc welding sp Spray arc PJPW Plasma jet plasma arc welding l Long arc TIG Welding Principle of TIG Welding TIG welding equipment Watercooled TIG welding torch Torch forms for TIG welding Shielding gases for welding and cutting Flow meters Flow meter for torches Effect of current and inert gas Argon consumption for TIG welding Tungsten electrodes
    [Show full text]
  • An Analysis of the Metal Finds from the Ninth-Century Metalworking
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 8-2017 An Analysis of the Metal Finds from the Ninth-Century Metalworking Site at Bamburgh Castle in the Context of Ferrous and Non-Ferrous Metalworking in Middle- and Late-Saxon England Julie Polcrack Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Medieval History Commons Recommended Citation Polcrack, Julie, "An Analysis of the Metal Finds from the Ninth-Century Metalworking Site at Bamburgh Castle in the Context of Ferrous and Non-Ferrous Metalworking in Middle- and Late-Saxon England" (2017). Master's Theses. 1510. https://scholarworks.wmich.edu/masters_theses/1510 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. AN ANALYSIS OF THE METAL FINDS FROM THE NINTH-CENTURY METALWORKING SITE AT BAMBURGH CASTLE IN THE CONTEXT OF FERROUS AND NON-FERROUS METALWORKING IN MIDDLE- AND LATE-SAXON ENGLAND by Julie Polcrack A thesis submitted to the Graduate College in partial fulfillment of the requirements for the degree of Master of Arts The Medieval Institute Western Michigan University August 2017 Thesis Committee: Jana Schulman, Ph.D., Chair Robert Berkhofer, Ph.D. Graeme Young, B.Sc. AN ANALYSIS OF THE METAL FINDS FROM THE NINTH-CENTURY METALWORKING SITE AT BAMBURGH CASTLE IN THE CONTEXT OF FERROUS AND NON-FERROUS METALWORKING IN MIDDLE- AND LATE-SAXON ENGLAND Julie Polcrack, M.A.
    [Show full text]
  • Electroslag Welding: the Effect of Slag Composition
    ELECTROSLAG WELDING: THE EFFECT OF SLAG COMPOSITION ON MECHANICAL PROPERTIES by JAMES S. MITCHELL B.Sc, Queens University at Kingston, 1973 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE In the Department of METALLURGY We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA August 1977 © James Mitchell, 1977 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date 7 ABSTRACT Previous studies of the properties of electroslag weld metal have been done using electroslag remelted ingots made under welding conditions. This procedure assumes the electrical and thermal regimes of these pro• cesses to be equivalent. To test this assumption an experimental program was devised in which the remelted metal of an ingot and weld made with each of three slag systems was analysed and the mechanical properties examined. The results show that each process imparted different properties to the remelted metal by alloy and inclusion modification. Consequently the above assumption was proved invalid. Special consideration was given to the effect of inclusion composition and overall distribution toward mechanical properties.
    [Show full text]
  • Welding Process Reference Guide
    Welding Process Reference Guide gas arc welding…………………..GMAW -pulsed arc…………….……….GMAW-P atomic hydrogen welding……..AHW -short circuiting arc………..GMAW-S bare metal arc welding…………BMAW gas tungsten arc welding…….GTAW carbon arc welding……………….CAW -pulsed arc……………………….GTAW-P -gas……………………………………CAW-G plasma arc welding……………..PAW -shielded……………………………CAW-S shielded metal arc welding….SMAW -twin………………………………….CAW-T stud arc welding………………….SW electrogas welding……………….EGW submerged arc welding……….SAW Flux cord arc welding…………..FCAW -series………………………..…….SAW-S coextrusion welding……………...CEW Arc brazing……………………………..AB cold welding…………………………..CW Block brazing………………………….BB diffusion welding……………………DFW Diffusion brazing…………………….DFB explosion welding………………….EXW Dip brazing……………………………..DB forge welding…………………………FOW Flow brazing…………………………….FLB friction welding………………………FRW Furnace brazing……………………… FB hot pressure welding…………….HPW SOLID ARC Induction brazing…………………….IB STATE BRAZING WELDING Infrared brazing……………………….IRB roll welding…………………………….ROW WELDING (8) ultrasonic welding………………….USW (SSW) (AW) Resistance brazing…………………..RB Torch brazing……………………………TB Twin carbon arc brazing…………..TCAB dip soldering…………………………DS furnace soldering………………….FS WELDING OTHER electron beam welding………….EBW induction soldering……………….IS SOLDERING PROCESS WELDNG -high vacuum…………………….EBW-HV infrared soldering…………………IRS (S) -medium vacuum………………EBW-MV iron soldering……………………….INS -non-vacuum…………………….EBW-NV resistance soldering…………….RS electroslag welding……………….ESW torch soldering……………………..TS
    [Show full text]
  • UNIT-IV Metal Joining Processes
    Manufacturing Process - I UNIT –IV Metal Joining Processes Prepared By Prof. Shinde Vishal Vasant Assistant Professor Dept. of Mechanical Engg. NDMVP’S Karmaveer Baburao Thakare College of Engg. Nashik Contact No- 8928461713 E mail:- [email protected] Website:- www.vishalshindeblog.wordpress.com 06/09/2016 PROF.V.V.SHINDE NDMVP'S KBTCOE NASHIK JOINING PROCESSES • Joining includes welding, brazing, soldering, adhesive bonding of materials. • They produce permanent joint between the parts to be assembled. • They cannot be separated easily by application of forces. • They are mainly used to assemble many parts to make a system. • Welding is a metal joining process in which two or more parts are joined or coalesced at their contacting surfaces by suitable application of heat or/and pressure. • Some times, welding is done just by applying heat alone, with no pressure applied • In some cases, both heat and pressure are applied; and in other cases only pressure is applied, without any external heat. • In some welding processes a filler material is added to facilitate coalescence(Joining)06/09/2016 PROF.V.V.SHINDE NDMVP'S KBTCOE NASHIK Joining Processes: Welding, Brazing, Soldering 1. Brazing and Soldering: Melting of filler rod only • Brazing: higher temperature, ~brass filler, strong • Soldering: lower temp, ~tin-lead filler, weak 2. Welding: Melting of filler rod and base metals 06/09/2016 PROF.V.V.SHINDE NDMVP'S KBTCOE NASHIK Advantages of welding: • Welding provides a permanent joint. • Welded joint can be stronger than the parent materials if a proper filler metal is used that has strength properties better than that of parent base material and if defect less welding is done.
    [Show full text]
  • Lecture: 3 Classification of Welding Processes II Apart from Technical
    Lecture: 3 Classification of Welding Processes II Apart from technical factors, welding processes can also be classified on the fundamental approaches used for deposition of materials for developing a joint. This chapter presents the classification of welding processes as welding processes and allied process used for developing a joint Keywords: Welding and allied processes, approach of classification, cast weld, resistance weld, fusion weld, solid state weld 3.1 Classification of welding processes There is another way of classifying welding and allied processes which is commonly reported in literature. Various positive processes involving addition or deposition of metal are first broadly grouped as welding process and allied welding processes as under: 1. Welding processes i. Cast weld processes ii. Fusion weld processes iii. Resistance weld processes iv. Solid state weld processes 2. Allied welding processes i. Metal depositing processes ii. Soldering iii. Brazing iv. Adhesive bonding v. Weld surfacing vi. Metal spraying This approach of classifying the welding process is primarily based on the way metallic pieces are united together during welding such as Availability and solidification of molten weld metal between components being joined are similar to that of casting: Cast weld process. Fusion of faying surfaces for developing a weld: Fusion weld process Heating of metal only to plasticize then applying pressure to forge them together: Resistance weld process Use pressure to produce a weld joint in solid state only: Solid state weld process 3.2 Cast welding process Those welding processes in which either molten weld metal is supplied from external source or melted and solidified at very low rate during solidification like castings.
    [Show full text]
  • VOLUME 1 Welding Metallurgy Carbon and Alloy Steels
    VOLUME 1 Welding Metallurgy Carbon and Alloy Steels Volume I Fundamentals George E. Linnert GML Publications Hilton Head Island, South Carolina, USA Fourth Edition Published by the American Welding Society Miami, Florida, USA Contents Contents Chapter One: Background to Welding Metallurgy 1 MILESTONES IN WELDING HISTORY 1 THE FUTURE OF WELDING 4 WHAT IS WELDING METALLURGY? 6 PUTTING WELDING METALLURGY TO USE 12 WELDING TECHNOLOGY RESOURCES 12 SUGGESTED READING 15 Chapter Two: The Structure of Metals 18 ATOMS 18 Elementary Particles 20 Electrons 22 Positrons 26 Atomic Nuclei 26 Protons 27 Neutrons 28 Atom Construction 32 Isotopes of Elements 33 Isobars 34 Atomic Weight 34 Atomic Mass 34 Atom Valency 35 lonization 36 Radioactivity 37 Atom Size or Diameter 38 THE ELEMENTS 39 AGGREGATES OF ATOMS 41 The Solid State 45 The Crystalline Solids 45 Amorphous Solids 47 The Liquid State 48 The Gaseous State 49 FUNDAMENTALS OF CRYSTALS 50 Identification of Planes and Directions in Crystals 56 Basic Types of Crystals 56 vi Welding Metallurgy Inert Gas Crystals 58 Ionic Crystals 58 Covalent Crystals 59 Metallic Crystals 59 THE CRYSTALLINE STRUCTURE OF METALS 61 How Does a Crystal Grow from the Melt? 64 The Formation of Dendrites 66 The Formation of Grains 68 The Shape of Grains 71 The Size of Grains 72 Undercooling 72 THE IMPORTANCE OF A CRYSTALLINE STRUCTURE 74 Allotropic Transformation 75 Solubility in the Solid State 76 Plasticity in Metallic Crystals 77 Slip in Crystalline Structures 77 Slip and Lattice Orientation 78 Slip in Polycrystalline Metals
    [Show full text]