Genesis of Non-Coding RNA Genes in Human Chromosome 22—A Sequence Connection with Protein Genes Separated by Evolutionary Time
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(APOCI, -C2, and -E and LDLR) and the Genes C3, PEPD, and GPI (Whole-Arm Translocation/Somatic Cell Hybrids/Genomic Clones/Gene Family/Atherosclerosis) A
Proc. Natl. Acad. Sci. USA Vol. 83, pp. 3929-3933, June 1986 Genetics Regional mapping of human chromosome 19: Organization of genes for plasma lipid transport (APOCI, -C2, and -E and LDLR) and the genes C3, PEPD, and GPI (whole-arm translocation/somatic cell hybrids/genomic clones/gene family/atherosclerosis) A. J. LUSIS*t, C. HEINZMANN*, R. S. SPARKES*, J. SCOTTt, T. J. KNOTTt, R. GELLER§, M. C. SPARKES*, AND T. MOHANDAS§ *Departments of Medicine and Microbiology, University of California School of Medicine, Center for the Health Sciences, Los Angeles, CA 90024; tMolecular Medicine, Medical Research Council Clinical Research Centre, Harrow, Middlesex HA1 3UJ, United Kingdom; and §Department of Pediatrics, Harbor Medical Center, Torrance, CA 90509 Communicated by Richard E. Dickerson, February 6, 1986 ABSTRACT We report the regional mapping of human from defects in the expression of the low density lipoprotein chromosome 19 genes for three apolipoproteins and a lipopro- (LDL) receptor and is strongly correlated with atheroscle- tein receptor as well as genes for three other markers. The rosis (15). Another relatively common dyslipoproteinemia, regional mapping was made possible by the use of a reciprocal type III hyperlipoproteinemia, is associated with a structural whole-arm translocation between the long arm of chromosome variation of apolipoprotein E (apoE) (16). Also, a variety of 19 and the short arm of chromosome 1. Examination of three rare apolipoprotein deficiencies result in gross perturbations separate somatic cell hybrids containing the long arm but not of plasma lipid transport; for example, apoCII deficiency the short arm of chromosome 19 indicated that the genes for results in high fasting levels oftriacylglycerol (17). -
Identification of an Overprinting Gene in Merkel Cell Polyomavirus Provides Evolutionary Insight Into the Birth of Viral Genes
Identification of an overprinting gene in Merkel cell polyomavirus provides evolutionary insight into the birth of viral genes Joseph J. Cartera,b,1,2, Matthew D. Daughertyc,1, Xiaojie Qia, Anjali Bheda-Malgea,3, Gregory C. Wipfa, Kristin Robinsona, Ann Romana, Harmit S. Malikc,d, and Denise A. Gallowaya,b,2 Divisions of aHuman Biology, bPublic Health Sciences, and cBasic Sciences and dHoward Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 Edited by Peter M. Howley, Harvard Medical School, Boston, MA, and approved June 17, 2013 (received for review February 24, 2013) Many viruses use overprinting (alternate reading frame utiliza- mammals and birds (7, 8). Polyomaviruses leverage alternative tion) as a means to increase protein diversity in genomes severely splicing of the early region (ER) of the genome to generate pro- constrained by size. However, the evolutionary steps that facili- tein diversity, including the large and small T antigens (LT and ST, tate the de novo generation of a novel protein within an ancestral respectively) and the middle T antigen (MT) of murine poly- ORF have remained poorly characterized. Here, we describe the omavirus (MPyV), which is generated by a novel splicing event and identification of an overprinting gene, expressed from an Alter- overprinting of the second exon of LT. Some polyomaviruses can nate frame of the Large T Open reading frame (ALTO) in the early drive tumorigenicity, and gene products from the ER, especially region of Merkel cell polyomavirus (MCPyV), the causative agent SV40 LT and MPyV MT, have been extraordinarily useful models of most Merkel cell carcinomas. -
A Co-Opted ISG15-USP18 Binding Mechanism Normally Reserved for Deisgylation Controls Type I IFN Signalling
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446527; this version posted June 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 A co-opted ISG15-USP18 binding mechanism normally reserved for deISGylation controls 2 type I IFN signalling 3 4 5 6 Andri Vasou1, Katie Nightingale2, Vladimíra Cetkovská 1, Connor G.G. Bamford3‡, Jelena 7 Andrejeva1, Richard E. Randall1, John McLauchlan3, Michael P. Weekes2, David J Hughes1* 8 9 10 11 1Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St 12 Andrews, United Kingdom. 2Cambridge Institute for Medical Research, Hills Road, Cambridge, 13 United Kingdom 3MRC-University of Glasgow Centre for Virus Research, Glasgow, United 14 Kingdom. 15 16 17 ‡ Present addresses: Wellcome-Wolfson Institute for Experimental Medicine, Queen’s 18 University, Belfast UK. 19 20 21 22 * Corresponding author: [email protected]; Tel: +44 1334 467197 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446527; this version posted June 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 24 Abstract 25 Type I interferon (IFN) signalling induces the expression of several hundred IFN-stimulated 26 genes that provide an unfavourable environment for viral replication. -
GENOME GENERATION Glossary
GENOME GENERATION Glossary Chromosome An organism’s DNA is packaged into chromosomes. Humans have 23 pairs of chromosomesincluding one pair of sex chromosomes. Women have two X chromosomes and men have one X and one Y chromosome. Dominant (see also recessive) Genes come in pairs. A dominant form of a gene is the “stronger” version that will be expressed. Therefore if someone has one dominant and one recessive form of a gene, only the characteristics of the dominant form will appear. DNA DNA is the long molecule that contains the genetic instructions for nearly all living things. Two strands of DNA are twisted together into a double helix. The DNA code is made up of four chemical letters (A, C, G and T) which are commonly referred to as bases or nucleotides. Gene A gene is a section of DNA that is the code for a specific biological component, usually a protein. Each gene may have several alternative forms. Each of us has two copies of most of our genes, one copy inherited from each parent. Most of our traits are the result of the combined effects of a number of different genes. Very few traits are the result of just one gene. Genetic sequence The precise order of letters (bases) in a section of DNA. Genome A genome is the complete DNA instructions for an organism. The human genome contains 3 billion DNA letters and approximately 23,000 genes. Genomics Genomics is the study of genomes. This includes not only the DNA sequence itself, but also an understanding of the function and regulation of genes both individually and in combination. -
Examining the Process of De Novo Gene Birth: an Educational Primer on “Integration of New Genes Into Cellular Networks, and Their Structural Maturation”
PRIMER Examining the Process of de Novo Gene Birth: An Educational Primer on “Integration of New Genes into Cellular Networks, and Their Structural Maturation” Seth Frietze and Judith Leatherman1 School of Biological Sciences, University of Northern Colorado, Greeley, Colorado 80639 SUMMARY New genes that arise from modification of the noncoding portion of a genome rather than being duplicated from parent genes are called de novo genes. These genes, identified by their brief evolution and lack of parent genes, provide an opportunity to study the timeframe in which emerging genes integrate into cellular networks, and how the characteristics of these genes change as they mature into bona fide genes. An article by G. Abrusán provides an opportunity to introduce students to fundamental concepts in evolutionary and comparative genetics and to provide a technical background by which to discuss systems biology approaches when studying the evolutionary process of gene birth. Basic background needed to understand the Abrusán study and details on comparative genomic concepts tailored for a classroom discussion are provided, including discussion questions and a supplemental exercise on navigating a genome database. Related article in GENETICS: Abrusán, G., 2013 Integration of New Genes into Cellular Networks, and Their Structural Maturation. Genetics 195: 1407–1417. Background duplication has occurred over and over during evolutionary history, leaving most species with “families” of related genes IFE as we know it is encoded by the DNA of our genomes. arising from multiple duplication events (Demuth and Hahn Every cellular being has its own genome specifying the L 2009). When an organism duplicates a gene, one gene copy information required for constructing and maintaining its exis- can continue to perform the original function of that gene tence (its genotype). -
An Overview of the Independent Histories of the Human Y Chromosome and the Human Mitochondrial Chromosome
The Proceedings of the International Conference on Creationism Volume 8 Print Reference: Pages 133-151 Article 7 2018 An Overview of the Independent Histories of the Human Y Chromosome and the Human Mitochondrial chromosome Robert W. Carter Stephen Lee University of Idaho John C. Sanford Cornell University, Cornell University College of Agriculture and Life Sciences School of Integrative Plant Science,Follow this Plant and Biology additional Section works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Carter, R.W., S.S. Lee, and J.C. Sanford. An overview of the independent histories of the human Y- chromosome and the human mitochondrial chromosome. 2018. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 133–151. Pittsburgh, Pennsylvania: Creation Science Fellowship. Carter, R.W., S.S. Lee, and J.C. Sanford. An overview of the independent histories of the human Y-chromosome and the human mitochondrial chromosome. 2018. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. -
Type I IFN Signaling Infection by Up-Regulating Typhimurium
Enhanced Antibacterial Potential in UBP43-Deficient Mice against Salmonella typhimurium Infection by Up-Regulating Type I IFN Signaling This information is current as of September 24, 2021. Keun Il Kim, Oxana A. Malakhova, Kasper Hoebe, Ming Yan, Bruce Beutler and Dong-Er Zhang J Immunol 2005; 175:847-854; ; doi: 10.4049/jimmunol.175.2.847 http://www.jimmunol.org/content/175/2/847 Downloaded from References This article cites 45 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/175/2/847.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Enhanced Antibacterial Potential in UBP43-Deficient Mice against Salmonella typhimurium Infection by Up-Regulating Type I IFN Signaling1 Keun Il Kim,2* Oxana A. Malakhova,* Kasper Hoebe,† Ming Yan,* Bruce Beutler,† and Dong-Er Zhang3* ISG15 is an IFN-inducible ubiquitin-like protein and its expression and conjugation to target proteins are dramatically induced upon viral or bacterial infection. -
Uncovering De Novo Gene Birth in Yeast Using Deep Transcriptomics
ARTICLE https://doi.org/10.1038/s41467-021-20911-3 OPEN Uncovering de novo gene birth in yeast using deep transcriptomics William R. Blevins 1,2,3, Jorge Ruiz-Orera 1,4, Xavier Messeguer5, Bernat Blasco-Moreno 6, ✉ José Luis Villanueva-Cañas 1,7, Lorena Espinar2,8, Juana Díez 6, Lucas B. Carey 2,9 & M. Mar Albà 1,10 De novo gene origination has been recently established as an important mechanism for the formation of new genes. In organisms with a large genome, intergenic and intronic regions 1234567890():,; provide plenty of raw material for new transcriptional events to occur, but little is know about how de novo transcripts originate in more densely-packed genomes. Here, we identify 213 de novo originated transcripts in Saccharomyces cerevisiae using deep transcriptomics and genomic synteny information from multiple yeast species grown in two different conditions. We find that about half of the de novo transcripts are expressed from regions which already harbor other genes in the opposite orientation; these transcripts show similar expression changes in response to stress as their overlapping counterparts, and some appear to translate small proteins. Thus, a large fraction of de novo genes in yeast are likely to co-evolve with already existing genes. 1 Evolutionary Genomics Group, Research Programme on Biomedical Informatics, Hospital del Mar Research Institute (IMIM) and Universitat Pompeu Fabra (UPF), Barcelona, Spain. 2 Single Cell Behavior Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain. 3 Single Cell Genomics Group, Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain. 4 Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. -
Cell Growth and Reproduction Lesson 6.2: Chromosomes and DNA Replication
Chapter 6: Cell Growth and Reproduction Lesson 6.2: Chromosomes and DNA Replication Cell reproduction involves a series of steps that always begin with the processes of interphase. During interphase the cell’s genetic information which is stored in its nucleus in the form of chromatin, composed of both mitotic and interphase chromosomes molecules of protein complexes and DNA strands that are loosely coiled winds tightly to be replicated. It is estimated that the DNA in human cells consists of approximately three billion nucleotides. If a DNA molecule was stretched out it would measure over 20 miles in length and all of it is stored in the microscopic nuclei of human cells. This lesson will help you to understand how such an enormous amount of DNA is coiled and packed in a complicated yet organized manner. During cell reproduction as a cell gets ready to divide the DNA coils even more into tightly compact structures. Lesson Objectives • Describe the coiled structure of chromosomes. • Understand that chromosomes are coiled structures made of DNA and proteins. They form after DNA replicates and are the form in which the genetic material goes through cell division. • Discover that DNA replication is semi-conservative; half of the parent DNA molecule is conserved in each of the two daughter DNA molecules. • Outline discoveries that led to knowledge of DNA’s structure and function. • Examine the processes of DNA replication. Vocabulary • centromere • double helix • Chargaff’s rules • histones • chromatid • nucleosomes • chromatin • semi-conservative DNA replication • chromosome • sister chromatids • DNA replication • transformation Introduction In eukaryotic cells, the nucleus divides before the cell itself divides. -
Metabolism As Related to Chromosome Structure and the Duration of Life by John W
METABOLISM AS RELATED TO CHROMOSOME STRUCTURE AND THE DURATION OF LIFE BY JOHN W. GOWEN (From the Department of Animal Pathology of The Rockefeller Institute for Medical Research, Princeton, N. ].) (Received for publication, December 16, 1930) In this paper it is proposed to measure the katabollsm of four fundamentally distinct groups of animals all within the same species and having closely similar genetic constitutions. These groups differ in what are perhaps the most significant elements of life. The chromosome structure of the first group is that of the type female, diploid; the second group is that of the type male, diploid but having one X and Y instead of the two X-chromosomes of the type female; the third group of flies are triploid, three sex chromosomes and three sets of autosomes; the fourth group, sex-intergrades has two X-chromo- somes and three sets of autosomes. Katabolism is a direct function of the cells composing the bodies of all animals. The cells of these four groups differ in size; the type male cells are the smallest; the females are somewhat, possibly a tenth, larger; the sex-intergrades and triploid cells are a half larger. The larger cell size suggests that any function within the cell would be performed in a larger way. The carbon dioxide production should enable us to measure physiologically the extent of this activity and present us with data on that fundamental point the relation of cell size to metabolic activity. The durations of life of these different groups have been measured. The forms with the balanced chromosome complexes within their cells live the longest time, the unbalanced groups the least. -
Genetic Variation in Chromosome Y Regulates Susceptibility to Influenza a Virus Infection
Genetic variation in chromosome Y regulates susceptibility to influenza A virus infection Dimitry N. Krementsova, Laure K. Casea, Oliver Dienzb, Abbas Razaa, Qian Fanga, Jennifer L. Athera, Matthew E. Poyntera, Jonathan E. Boysonb, Janice Y. Bunnc, and Cory Teuschera,d,1 aDepartment of Medicine, University of Vermont, Burlington, VT 05405; bDepartment of Surgery, University of Vermont, Burlington, VT 05405; cDepartment of Medical Biostatistics, University of Vermont, Burlington, VT 05405; and dDepartment of Pathology, University of Vermont, Burlington, VT 05405 Edited by Sabra Klein, Johns Hopkins University, Baltimore, MD, and accepted by Editorial Board Member Peter Palese January 23, 2017 (received for review December 20, 2016) Males of many species, ranging from humans to insects, are more encephalomyelitis (EAE) in SJL/J mice, which are controlled by susceptible than females to parasitic, fungal, bacterial, and viral genetic variation in ChrY (23–25). Moreover, with respect to infections. One mechanism that has been proposed to account for viral infections, we reported that genetic variation in ChrY this difference is the immunocompetence handicap model, which influences both survival following infection with Coxsackie- posits that the greater infectious disease burden in males is due to virus B3 virus (CVB3) (26) and susceptibility to CVB3-induced testosterone, which drives the development of secondary male sex autoimmune myocarditis (27). To address whether genetic vari- characteristics at the expense of suppressing immunity. However, ation in ChrY is capable of influencing susceptibility to IAV and emerging data suggest that cell-intrinsic (chromosome X and Y) the associated sex differences, we studied the susceptibility of a sex-specific factors also may contribute to the sex differences in panel of ChrY consomic strains on the C57BL/6J background infectious disease burden. -
USP18 Is a Key Regulator of the Interferon-Driven Gene Network Modulating Pancreatic Beta Cell Inflammation and Apoptosis
Citation: Cell Death and Disease (2012) 3, e419; doi:10.1038/cddis.2012.158 & 2012 Macmillan Publishers Limited All rights reserved 2041-4889/12 www.nature.com/cddis USP18 is a key regulator of the interferon-driven gene network modulating pancreatic beta cell inflammation and apoptosis I Santin*,1, F Moore1, FA Grieco1, P Marchetti2, C Brancolini3 and DL Eizirik1 Type 1 diabetes (T1D) is an autoimmune disease targeting pancreatic beta cells. Genome-wide association studies and gene expression analysis identified interferon (IFN)-driven gene networks as crucial pathways in the pathogenesis of T1D. IFNs are linked to the response to viral infections and might contribute to the initiation of the autoimmune process in T1D. We presently analyzed the role of ubiquitin-specific peptidase 18 (USP18), an interferon-stimulated gene 15-specific protease, on IFN-induced pancreatic beta cell inflammation and apoptosis. Our findings indicate that USP18 inhibition induces inflammation by increasing the STAT signaling and exacerbates IFN-induced beta cell apoptosis by the mitochondrial pathway of cell death. USP18 regulates activation of three BH3-only proteins, namely, DP5, Bim and PUMA in pancreatic beta cells, suggesting a direct link between regulators of the type I IFN signaling pathway and members of the BCL-2 family. USP18 depletion increases the expression of the T1D candidate gene MDA5, leading to an upregulation of double-stranded RNA-induced chemokine production. These data suggest a cross talk between the type I IFN signaling pathway and a candidate gene for T1D to increase pro-inflammatory responses in beta cells. The present study shows that USP18 is a key regulator of IFN signaling in beta cells and underlines the importance of this pathway in beta cell inflammation and death.