Cell Growth and Reproduction Lesson 6.2: Chromosomes and DNA Replication
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(APOCI, -C2, and -E and LDLR) and the Genes C3, PEPD, and GPI (Whole-Arm Translocation/Somatic Cell Hybrids/Genomic Clones/Gene Family/Atherosclerosis) A
Proc. Natl. Acad. Sci. USA Vol. 83, pp. 3929-3933, June 1986 Genetics Regional mapping of human chromosome 19: Organization of genes for plasma lipid transport (APOCI, -C2, and -E and LDLR) and the genes C3, PEPD, and GPI (whole-arm translocation/somatic cell hybrids/genomic clones/gene family/atherosclerosis) A. J. LUSIS*t, C. HEINZMANN*, R. S. SPARKES*, J. SCOTTt, T. J. KNOTTt, R. GELLER§, M. C. SPARKES*, AND T. MOHANDAS§ *Departments of Medicine and Microbiology, University of California School of Medicine, Center for the Health Sciences, Los Angeles, CA 90024; tMolecular Medicine, Medical Research Council Clinical Research Centre, Harrow, Middlesex HA1 3UJ, United Kingdom; and §Department of Pediatrics, Harbor Medical Center, Torrance, CA 90509 Communicated by Richard E. Dickerson, February 6, 1986 ABSTRACT We report the regional mapping of human from defects in the expression of the low density lipoprotein chromosome 19 genes for three apolipoproteins and a lipopro- (LDL) receptor and is strongly correlated with atheroscle- tein receptor as well as genes for three other markers. The rosis (15). Another relatively common dyslipoproteinemia, regional mapping was made possible by the use of a reciprocal type III hyperlipoproteinemia, is associated with a structural whole-arm translocation between the long arm of chromosome variation of apolipoprotein E (apoE) (16). Also, a variety of 19 and the short arm of chromosome 1. Examination of three rare apolipoprotein deficiencies result in gross perturbations separate somatic cell hybrids containing the long arm but not of plasma lipid transport; for example, apoCII deficiency the short arm of chromosome 19 indicated that the genes for results in high fasting levels oftriacylglycerol (17). -
Mobile Genetic Elements in Streptococci
Curr. Issues Mol. Biol. (2019) 32: 123-166. DOI: https://dx.doi.org/10.21775/cimb.032.123 Mobile Genetic Elements in Streptococci Miao Lu#, Tao Gong#, Anqi Zhang, Boyu Tang, Jiamin Chen, Zhong Zhang, Yuqing Li*, Xuedong Zhou* State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China. #Miao Lu and Tao Gong contributed equally to this work. *Address correspondence to: [email protected], [email protected] Abstract Streptococci are a group of Gram-positive bacteria belonging to the family Streptococcaceae, which are responsible of multiple diseases. Some of these species can cause invasive infection that may result in life-threatening illness. Moreover, antibiotic-resistant bacteria are considerably increasing, thus imposing a global consideration. One of the main causes of this resistance is the horizontal gene transfer (HGT), associated to gene transfer agents including transposons, integrons, plasmids and bacteriophages. These agents, which are called mobile genetic elements (MGEs), encode proteins able to mediate DNA movements. This review briefly describes MGEs in streptococci, focusing on their structure and properties related to HGT and antibiotic resistance. caister.com/cimb 123 Curr. Issues Mol. Biol. (2019) Vol. 32 Mobile Genetic Elements Lu et al Introduction Streptococci are a group of Gram-positive bacteria widely distributed across human and animals. Unlike the Staphylococcus species, streptococci are catalase negative and are subclassified into the three subspecies alpha, beta and gamma according to the partial, complete or absent hemolysis induced, respectively. The beta hemolytic streptococci species are further classified by the cell wall carbohydrate composition (Lancefield, 1933) and according to human diseases in Lancefield groups A, B, C and G. -
Transposable Elements Drive Reorganisation of 3D Chromatin
bioRxiv preprint doi: https://doi.org/10.1101/523712; this version posted January 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Transposable elements drive reorganisation of 3D chromatin during early embryogenesis Kai Kruse1, Noelia Díaz1, §, Rocio Enriquez-Gasca1, §, Xavier Gaume2, 4, Maria-Elena Torres-Padilla2, 3 and Juan M. Vaquerizas1, * 1. Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149 Muenster, Germany. 2. Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, Marchioninistraße 25, 81377 Munich, Germany. 3. Faculty of Biology, Ludwig Maximilians Universität, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany. 4. Present address: Cancer Research Center of Lyon, 28 Rue Laennec, Lyon 69008, France. §. These authors have contributed equally to this work. *. Correspondence to J.M.V. ([email protected], @vaquerizasjm) Keywords: Chromosome conformation capture; low-input Hi-C; early embryonic development; totipotency; transposable elements; MERVL; TAds; 2-cell embryo; 2-cell-like cells; zygotic genome activation; CAF-1; dux. Transposable elements are abundant genetic components of eukaryotic genomes with important regulatory features affecting transcription, splicing, and recombination, among others. Here we demonstrate that the Murine Endogenous Retroviral Element (MuERV-L/MERVL) family of transposable elements drives the 3D reorganisation of the genome in the early mouse embryo. By generating Hi-C data in 2-cell-like cells, we show that MERLV elements promote the formation of insulating domain boundaries through- out the genome in vivo and in vitro. -
Review Cell Division from a Genetic Perspective
REVIEW CELL DIVISION FROM A GENETIC PERSPECTIVE LELAND H. HARTWELL From the Department of Genetics, University of Washington, Seattle, Washington 98195 Recently, a number of laboratories have begun to incubation at the restrictive condition for that study mutant cells that are defective in specific mutation, whereas mutants with defects in one of stages of the eukaryotic cell cycle. The long-range the continuously required functions will arrest at goals of this work are to identify the genes that the restrictive temperature with cells at a variety code for division-related proteins, to define the of positions in the cell cycle. roles that these gene products play and to investi- Classes of mutants may be distinguished from gate the hierarchies of order that assure their one another and the roles of their products delim- coordinated activity. It is my intent in this brief ited by determining the stage-specific event at review to discuss the strategies employed in this which they arrest. It is convenient to have a genetic approach and to enumerate some of the designation for the first landmark of the cell cycle new conclusions that have come to light. A recent that is blocked in a particular mutant, and I shall review on the genetics of meiosis (2) complements call it the diagnostic landmark for that mutant. this review on mitosis. Mutants of Saccharomyces cerevisiae have been identified that have diagnostic landmarks at spin- MUTANTS dle pole body (SPB) duplication, SPB separation, Mutations that inactivate gene products essential initiation of DNA synthesis, DNA replication, for division would be lethal. -
GENOME GENERATION Glossary
GENOME GENERATION Glossary Chromosome An organism’s DNA is packaged into chromosomes. Humans have 23 pairs of chromosomesincluding one pair of sex chromosomes. Women have two X chromosomes and men have one X and one Y chromosome. Dominant (see also recessive) Genes come in pairs. A dominant form of a gene is the “stronger” version that will be expressed. Therefore if someone has one dominant and one recessive form of a gene, only the characteristics of the dominant form will appear. DNA DNA is the long molecule that contains the genetic instructions for nearly all living things. Two strands of DNA are twisted together into a double helix. The DNA code is made up of four chemical letters (A, C, G and T) which are commonly referred to as bases or nucleotides. Gene A gene is a section of DNA that is the code for a specific biological component, usually a protein. Each gene may have several alternative forms. Each of us has two copies of most of our genes, one copy inherited from each parent. Most of our traits are the result of the combined effects of a number of different genes. Very few traits are the result of just one gene. Genetic sequence The precise order of letters (bases) in a section of DNA. Genome A genome is the complete DNA instructions for an organism. The human genome contains 3 billion DNA letters and approximately 23,000 genes. Genomics Genomics is the study of genomes. This includes not only the DNA sequence itself, but also an understanding of the function and regulation of genes both individually and in combination. -
Cell Division and Cycle
Name: _______________________ Date:_____________ Period_________ Subject: ________ Cell Division and Cycle Read the phase to answer the questions 1 through 10. Living organisms are constantly making new cells. They make new cells in order to grow and also to replace old dead cells. The process by which new cells are made is called cell division. Cell division is occurring all the time. Around two trillion cell divisions occur in the average human body every day! Types of Cell Division There are three main types of cell division: binary fission, mitosis, and meiosis. Binary fission is used by simple organisms like bacteria. More complex organisms gain new cells by either mitosis or meiosis. Mitosis Mitosis is used when a cell needs to be replicated into exact copies of itself. Everything in the cell is duplicated. The two new cells have the same DNA, functions, and genetic code. The original cell is called the mother cell and the two new cells are called daughter cells. The full process, or cycle, of mitosis is described in more detail below. Examples of cells that are produced through mitosis include cells in the human body for the skin, blood, and muscles. Cell Cycle for Mitosis Cells go through different phases called the cell cycle. The "normal" state of a cell is called the "interphase". The genetic material is duplicated during the interphase stage of the cell. When a cell gets the signal that it is to duplicate, it will enter the first state of mitosis called the "prophase". Prophase - During this phase the chromatin condenses into chromosomes and the nuclear membrane and nucleolus break down. -
Mitosis Vs. Meiosis
Mitosis vs. Meiosis In order for organisms to continue growing and/or replace cells that are dead or beyond repair, cells must replicate, or make identical copies of themselves. In order to do this and maintain the proper number of chromosomes, the cells of eukaryotes must undergo mitosis to divide up their DNA. The dividing of the DNA ensures that both the “old” cell (parent cell) and the “new” cells (daughter cells) have the same genetic makeup and both will be diploid, or containing the same number of chromosomes as the parent cell. For reproduction of an organism to occur, the original parent cell will undergo Meiosis to create 4 new daughter cells with a slightly different genetic makeup in order to ensure genetic diversity when fertilization occurs. The four daughter cells will be haploid, or containing half the number of chromosomes as the parent cell. The difference between the two processes is that mitosis occurs in non-reproductive cells, or somatic cells, and meiosis occurs in the cells that participate in sexual reproduction, or germ cells. The Somatic Cell Cycle (Mitosis) The somatic cell cycle consists of 3 phases: interphase, m phase, and cytokinesis. 1. Interphase: Interphase is considered the non-dividing phase of the cell cycle. It is not a part of the actual process of mitosis, but it readies the cell for mitosis. It is made up of 3 sub-phases: • G1 Phase: In G1, the cell is growing. In most organisms, the majority of the cell’s life span is spent in G1. • S Phase: In each human somatic cell, there are 23 pairs of chromosomes; one chromosome comes from the mother and one comes from the father. -
An Overview of the Independent Histories of the Human Y Chromosome and the Human Mitochondrial Chromosome
The Proceedings of the International Conference on Creationism Volume 8 Print Reference: Pages 133-151 Article 7 2018 An Overview of the Independent Histories of the Human Y Chromosome and the Human Mitochondrial chromosome Robert W. Carter Stephen Lee University of Idaho John C. Sanford Cornell University, Cornell University College of Agriculture and Life Sciences School of Integrative Plant Science,Follow this Plant and Biology additional Section works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Carter, R.W., S.S. Lee, and J.C. Sanford. An overview of the independent histories of the human Y- chromosome and the human mitochondrial chromosome. 2018. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 133–151. Pittsburgh, Pennsylvania: Creation Science Fellowship. Carter, R.W., S.S. Lee, and J.C. Sanford. An overview of the independent histories of the human Y-chromosome and the human mitochondrial chromosome. 2018. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. -
Metabolism As Related to Chromosome Structure and the Duration of Life by John W
METABOLISM AS RELATED TO CHROMOSOME STRUCTURE AND THE DURATION OF LIFE BY JOHN W. GOWEN (From the Department of Animal Pathology of The Rockefeller Institute for Medical Research, Princeton, N. ].) (Received for publication, December 16, 1930) In this paper it is proposed to measure the katabollsm of four fundamentally distinct groups of animals all within the same species and having closely similar genetic constitutions. These groups differ in what are perhaps the most significant elements of life. The chromosome structure of the first group is that of the type female, diploid; the second group is that of the type male, diploid but having one X and Y instead of the two X-chromosomes of the type female; the third group of flies are triploid, three sex chromosomes and three sets of autosomes; the fourth group, sex-intergrades has two X-chromo- somes and three sets of autosomes. Katabolism is a direct function of the cells composing the bodies of all animals. The cells of these four groups differ in size; the type male cells are the smallest; the females are somewhat, possibly a tenth, larger; the sex-intergrades and triploid cells are a half larger. The larger cell size suggests that any function within the cell would be performed in a larger way. The carbon dioxide production should enable us to measure physiologically the extent of this activity and present us with data on that fundamental point the relation of cell size to metabolic activity. The durations of life of these different groups have been measured. The forms with the balanced chromosome complexes within their cells live the longest time, the unbalanced groups the least. -
The Obscure World of Integrative and Mobilizable Elements Gérard Guédon, Virginie Libante, Charles Coluzzi, Sophie Payot-Lacroix, Nathalie Leblond-Bourget
The obscure world of integrative and mobilizable elements Gérard Guédon, Virginie Libante, Charles Coluzzi, Sophie Payot-Lacroix, Nathalie Leblond-Bourget To cite this version: Gérard Guédon, Virginie Libante, Charles Coluzzi, Sophie Payot-Lacroix, Nathalie Leblond-Bourget. The obscure world of integrative and mobilizable elements: Highly widespread elements that pirate bacterial conjugative systems. Genes, MDPI, 2017, 8 (11), pp.337. 10.3390/genes8110337. hal- 01686871 HAL Id: hal-01686871 https://hal.archives-ouvertes.fr/hal-01686871 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License G C A T T A C G G C A T genes Review The Obscure World of Integrative and Mobilizable Elements, Highly Widespread Elements that Pirate Bacterial Conjugative Systems Gérard Guédon *, Virginie Libante, Charles Coluzzi, Sophie Payot and Nathalie Leblond-Bourget * ID DynAMic, Université de Lorraine, INRA, 54506 Vandœuvre-lès-Nancy, France; [email protected] (V.L.); [email protected] (C.C.); [email protected] (S.P.) * Correspondence: [email protected] (G.G.); [email protected] (N.L.-B.); Tel.: +33-037-274-5142 (G.G.); +33-037-274-5146 (N.L.-B.) Received: 12 October 2017; Accepted: 15 November 2017; Published: 22 November 2017 Abstract: Conjugation is a key mechanism of bacterial evolution that involves mobile genetic elements. -
U6-Life-Cycle-Background.Pdf
UNIT 6: LIFE CYCLE CORAL REEF ECOLOGY CURRICULUM This unit is part of the Coral Reef Ecology Curriculum that was developed by the Education Department of the Khaled bin Sultan Living Oceans Foundation. It has been designed for secondary school students, but can be adapted for other uses. The entire curriculum can be found online at lof.org/CoralReefCurriculum. Author and Design/Layout: Amy Heemsoth, Director of Education Editorial assistance provided by: Andrew Bruckner, Ken Marks, Melinda Campbell, Alexandra Dempsey, and Liz Rauer Thompson Illustrations by: Amy Heemsoth Cover Photo: ©Michele Westmorland/iLCP ©2014 Khaled bin Sultan Living Oceans Foundation. All rights reserved. Unless otherwise noted, photos are property of the Khaled bin Sultan Living Oceans Foundation. The Khaled bin Sultan Living Oceans Foundation and authors disclaim any liability for injury or damage related to the use of this curriculum. These materials may be reproduced for education purposes. When using any of the materials from this curriculum, please include the following attribution: Khaled bin Sultan Living Oceans Foundation Coral Reef Ecology Curriculum www.lof.org The Khaled bin Sultan Living Oceans Foundation (KSLOF) was incorporated in California as a 501(c)(3), public benefit, Private Operating Foundation in September 2000. The Living Oceans Foundation is dedicated to providing science-based solutions to protect and restore ocean health through research, outreach, and education. The educational goals of the Khaled bin Sultan Living Oceans Foundation and -
Coordinating DNA Replication Initiation with Cell Growth
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 12206-12211, October 1996 Biochemistry Coordinating DNA replication initiation with cell growth: Differential roles for DnaA and SeqA proteins (Escherichia coli/initiation mass) ERIK BOYE*t, TROND STOKKE*, NANCY KLECKNERt, AND KIRSTEN SKARSTAD* *Departments of Biophysics and Cell Biology, Institute for Cancer Research, Montebello, 0310 Oslo, Norway; and tDepartment of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 Contributed by Nancy Kleckner, July 25, 1996 ABSTRACT We describe here the development of a new DnaA recognizes oriC specifically and, together with accessory approach to the analysis of Escherichia coli replication con- proteins, promotes the formation of an open complex which trol. Cells were grown at low growth rates, in which case the permits loading of the DnaB helicase and priming of DNA bacterial cell cycle approximates that of eukaryotic cells with replication (4). A second component, SeqA, has been identi- Gl, S, and G2 phases: cell division is followed sequentially by fied genetically as a negative modulator of the initiation a gap period without DNA replication, replication ofthe single process (5). Biochemical data suggest that SeqA mediates its chromosome, another gap period, and finally the next cell effects by binding to oriC prior to initiation (6). division. Flow cytometry of such slowly growing cells reveals The most detailed molecular models of initiation control in the timing of replication initiation as a function of cell mass. E. coli have focused on the DnaA protein. The amount of The data show that initiation is normally coupled to cell DnaA protein per origin (7), the activity of DnaA protein per physiology extremely tightly: the distribution ofindividual cell cell (8), or the concentration of DnaA (9) have been proposed masses at the time of initiation in wild-type cells is very to trigger initiation of DNA replication.