Commercial Lunar Propellant Architecture a Collaborative Study of Lunar Propellant Production
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Surrender Software
Scientific image rendering for space scenes with the SurRender software Scientific image rendering for space scenes with the SurRender software R. Brochard, J. Lebreton*, C. Robin, K. Kanani, G. Jonniaux, A. Masson, N. Despré, A. Berjaoui Airbus Defence and Space, 31 rue des Cosmonautes, 31402 Toulouse Cedex, France [email protected] *Corresponding Author Abstract The autonomy of spacecrafts can advantageously be enhanced by vision-based navigation (VBN) techniques. Applications range from manoeuvers around Solar System objects and landing on planetary surfaces, to in -orbit servicing or space debris removal, and even ground imaging. The development and validation of VBN algorithms for space exploration missions relies on the availability of physically accurate relevant images. Yet archival data from past missions can rarely serve this purpose and acquiring new data is often costly. Airbus has developed the image rendering software SurRender, which addresses the specific challenges of realistic image simulation with high level of representativeness for space scenes. In this paper we introduce the software SurRender and how its unique capabilities have proved successful for a variety of applications. Images are rendered by raytracing, which implements the physical principles of geometrical light propagation. Images are rendered in physical units using a macroscopic instrument model and scene objects reflectance functions. It is specially optimized for space scenes, with huge distances between objects and scenes up to Solar System size. Raytracing conveniently tackles some important effects for VBN algorithms: image quality, eclipses, secondary illumination, subpixel limb imaging, etc. From a user standpoint, a simulation is easily setup using the available interfaces (MATLAB/Simulink, Python, and more) by specifying the position of the bodies (Sun, planets, satellites, …) over time, complex 3D shapes and material surface properties, before positioning the camera. -
Report Resumes
REPORT RESUMES ED 019 218 88 SE 004 494 A RESOURCE BOOK OF AEROSPACE ACTIVITIES, K-6. LINCOLN PUBLIC SCHOOLS, NEBR. PUB DATE 67 EDRS PRICEMF.41.00 HC-S10.48 260P. DESCRIPTORS- *ELEMENTARY SCHOOL SCIENCE, *PHYSICAL SCIENCES, *TEACHING GUIDES, *SECONDARY SCHOOL SCIENCE, *SCIENCE ACTIVITIES, ASTRONOMY, BIOGRAPHIES, BIBLIOGRAPHIES, FILMS, FILMSTRIPS, FIELD TRIPS, SCIENCE HISTORY, VOCABULARY, THIS RESOURCE BOOK OF ACTIVITIES WAS WRITTEN FOR TEACHERS OF GRADES K-6, TO HELP THEM INTEGRATE AEROSPACE SCIENCE WITH THE REGULAR LEARNING EXPERIENCES OF THE CLASSROOM. SUGGESTIONS ARE MADE FOR INTRODUCING AEROSPACE CONCEPTS INTO THE VARIOUS SUBJECT FIELDS SUCH AS LANGUAGE ARTS, MATHEMATICS, PHYSICAL EDUCATION, SOCIAL STUDIES, AND OTHERS. SUBJECT CATEGORIES ARE (1) DEVELOPMENT OF FLIGHT, (2) PIONEERS OF THE AIR (BIOGRAPHY),(3) ARTIFICIAL SATELLITES AND SPACE PROBES,(4) MANNED SPACE FLIGHT,(5) THE VASTNESS OF SPACE, AND (6) FUTURE SPACE VENTURES. SUGGESTIONS ARE MADE THROUGHOUT FOR USING THE MATERIAL AND THEMES FOR DEVELOPING INTEREST IN THE REGULAR LEARNING EXPERIENCES BY INVOLVING STUDENTS IN AEROSPACE ACTIVITIES. INCLUDED ARE LISTS OF SOURCES OF INFORMATION SUCH AS (1) BOOKS,(2) PAMPHLETS, (3) FILMS,(4) FILMSTRIPS,(5) MAGAZINE ARTICLES,(6) CHARTS, AND (7) MODELS. GRADE LEVEL APPROPRIATENESS OF THESE MATERIALSIS INDICATED. (DH) 4:14.1,-) 1783 1490 ,r- 6e tt*.___.Vhf 1842 1869 LINCOLN PUBLICSCHOOLS A RESOURCEBOOK OF AEROSPACEACTIVITIES U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE OFFICE OF EDUCATION K-6) THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT.POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION POSITION OR POLICY. 1919 O O Vj A PROJECT FUNDED UNDER TITLE HIELEMENTARY AND SECONDARY EDUCATION ACT A RESOURCE BOOK OF AEROSPACE ACTIVITIES (K-6) The work presentedor reported herein was performed pursuant to a Grant from the U. -
European Space Surveillance and Tracking
2ndEuropean EU SST Webinar: Space Operations in Space Surveillance and Tracking 16Surveillance November 2020 –and14h CETTracking The EU SST activities received funding from the European Union programmes, notably from the Horizon 2020 research and innovation programme under grant agreements No 760459, No 785257, No 713630, No 713762 and No 634943, and the Copernicus and Galileo programme under grant agreements No 299/G/GRO/COPE/19/11109, No 237/GRO/COPE/16/8935 and No 203/G/GRO/COPE/15/7987. This Portal reflects only the SST Cooperation’s actions and the European Commission and the Research Executive Agency are not responsible for any use that may be made of the information it contains. 2nd EU SST Webinar Operations in Space Surveillance and Tracking Speakers Pascal María Antonia Cristina Florian João FAUCHER (CNES) RAMOS (CDTI) PÉREZ (CDTI) DELMAS (CNES) ALVES (EU SatCen) Pier Luigi Lt. Moreno Juan Christophe Rodolphe RIGHETTI PERONI (IT MoD) ESCALANTE MORAND (EEAS) MUÑOZ (EUMETSAT) (EC – DG ECHO) (EC-DG DEFIS) 2nd EU SST Webinar: Operations in Space Surveillance and Tracking 16 November 2020 3 Agenda (1/2) 14h00-14h10: Welcome to the 2nd EU SST Webinar [Moderator: Mr Oliver Rajan (EU SatCen)] 14h10-14h50: SST Support Framework: Safeguarding European space infrastructure • Overview, governance model, security relevance and future perspectives [SST Cooperation Chair: Dr Pascal Faucher (CNES)] EU SST Architecture & Service Provision Model • Sensors network • Database and Catalogue precursor • Services [Chair of the SST Technical Committee: -
Orbital Fueling Architectures Leveraging Commercial Launch Vehicles for More Affordable Human Exploration
ORBITAL FUELING ARCHITECTURES LEVERAGING COMMERCIAL LAUNCH VEHICLES FOR MORE AFFORDABLE HUMAN EXPLORATION by DANIEL J TIFFIN Submitted in partial fulfillment of the requirements for the degree of: Master of Science Department of Mechanical and Aerospace Engineering CASE WESTERN RESERVE UNIVERSITY January, 2020 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis of DANIEL JOSEPH TIFFIN Candidate for the degree of Master of Science*. Committee Chair Paul Barnhart, PhD Committee Member Sunniva Collins, PhD Committee Member Yasuhiro Kamotani, PhD Date of Defense 21 November, 2019 *We also certify that written approval has been obtained for any proprietary material contained therein. 2 Table of Contents List of Tables................................................................................................................... 5 List of Figures ................................................................................................................. 6 List of Abbreviations ....................................................................................................... 8 1. Introduction and Background.................................................................................. 14 1.1 Human Exploration Campaigns ....................................................................... 21 1.1.1. Previous Mars Architectures ..................................................................... 21 1.1.2. Latest Mars Architecture ......................................................................... -
Mini-RF: Imaging Radars for Exploring the Lunar Poles
Mini-RF: Imaging Radars for Exploring the Lunar Poles Ben Bussey, Paul Spudis, Keith Raney, Helene Winters JHU/APL Stu Nozette, Chris Lichtenberg, Bill Marinelli NAWC 1 Mini-RF Organization, Science and Resource Evaluation Objectives • Mini-RF is a suite of radar instruments funded by NASA (SOMD & ESMD) and DoD. • Search for areas near the lunar poles that have the anomalous radar reflectivity signatures (high radar albedo and Circular Polarization Ratios) that differentiate volumetric water-ice deposits from more typical lunar surfaces • Map the morphology of permanently dark regions near the poles 2 Search for Ice • The case for water-ice can be resolved only if robust and repeatable data of the lunar polar regions support that conclusion. This rigorous standard can be met only by a dedicated polar-orbiting radar. • Mini-RF will use a unique hybrid polarity architecture to look for ice deposits • Transmit circular polarization (e.g. right-circular polarization RCP) • Receive coherent orthogonal polarizations • Derive Stokes parameters of the received signal • Use Stokes parameters to reconstruct and investigate the nature of the backscatter field. Distinguish between surface (roughness) and volume (ice) scattering 3 Top-level Radar Overview Parameter Chandrayaan-1 LRO • Frequency S-band S-band and X-band • Polarization Tx RCP Rx H & V • Scatterometry S-band (none) • Imager Regional maps Site-specific selections • Resolution (m/pixel) 75 75, 7.5 azimuth x 15 range • Looks 16 16 or 8 • Swath (km) 8 6 or 4 • Altitude (km) 100 50 • Incidence -
On-Orbit Servicing and Refueling Concepts!
On-orbit Servicing and Refueling Concepts! June 17, 2015 Benjamin B. Reed Deputy Project Manager Satellite Servicing Capabilities Office http://ssco.gsfc.nasa.gov Pre-decisional. Do not forward or post without the consent of [email protected] Introduction! • Over the past five years, NASA has: – Invested in satellite-servicing technologies and tested them on the ground and in orbit – Examined several different “design reference missions” • Non-Shuttle-based Hubble Space Telescope • Propellant depot • 30-m telescope assembly • GOES-12 refueling (GEO) • Landsat 7 refueling (LEO) Growing momentum towards robotic satellite servicing capability. Pre-decisional. Do not forward or post without the consent of [email protected] 2 In Space Robotic Servicing ! • The Satellite Servicing Capabilities Office is responsible for the overall management, coordination, and implementation of satellite servicing technologies and capabilities for NASA. To meet these objectives it: – Conducts studies – Conducts demonstration experiments in orbit and on the ground – Manages technology development and satellite servicing missions – Advises and designs cooperative servicing elements and subsystems Pre-decisional. Do not forward or post without the consent of [email protected] 3 In Space Robotic Servicing Team and Partners! Johnson Space Canadian Space Center Agency Goddard Space Flight Center Department of Defense Space Test Program Glenn Research Center WVU RPI JHU UMD Naval Research Kennedy Laboratory Space Center Pre-decisional. Do not forward or post without the consent of [email protected] 4 Servicing Supports Multiple Objectives! On-orbit Assembly Asteroid Infrastructure Redirection Inspection and Maintenance Fleet Management Government and Commercial Human Exploration Observatory Servicing Servicing Planetary Capabilities! Defense Propellant Depot 5 5 Pre-decisional. -
Apollo 13 Mission Review
APOLLO 13 MISSION REVIEW HEAR& BEFORE THE COMMITTEE ON AERONAUTICAL AND SPACE SCIENCES UNITED STATES SENATE NINETY-FIRST CONGRESS SECOR’D SESSION JUR’E 30, 1970 Printed for the use of the Committee on Aeronautical and Space Sciences U.S. GOVERNMENT PRINTING OFFICE 47476 0 WASHINGTON : 1970 COMMITTEE ON AEROKAUTICAL AND SPACE SCIENCES CLINTON P. ANDERSON, New Mexico, Chairman RICHARD B. RUSSELL, Georgia MARGARET CHASE SMITH, Maine WARREN G. MAGNUSON, Washington CARL T. CURTIS, Nebraska STUART SYMINGTON, bfissouri MARK 0. HATFIELD, Oregon JOHN STENNIS, Mississippi BARRY GOLDWATER, Arizona STEPHEN M.YOUNG, Ohio WILLIAM B. SAXBE, Ohio THOJfAS J. DODD, Connecticut RALPH T. SMITH, Illinois HOWARD W. CANNON, Nevada SPESSARD L. HOLLAND, Florida J4MES J. GEHRIG,Stad Director EVERARDH. SMITH, Jr., Professional staffMember Dr. GLENP. WILSOS,Professional #tad Member CRAIGVOORHEES, Professional Staff Nember WILLIAMPARKER, Professional Staff Member SAMBOUCHARD, Assistant Chief Clerk DONALDH. BRESNAS,Research Assistant (11) CONTENTS Tuesday, June 30, 1970 : Page Opening statement by the chairman, Senator Clinton P. Anderson-__- 1 Review Board Findings, Determinations and Recommendations-----_ 2 Testimony of- Dr. Thomas 0. Paine, Administrator of NASA, accompanied by Edgar M. Cortright, Director, Langley Research Center and Chairman of the dpollo 13 Review Board ; Dr. Charles D. Har- rington, Chairman, Aerospace Safety Advisory Panel ; Dr. Dale D. Myers, Associate Administrator for Manned Space Flight, and Dr. Rocco A. Petrone, hpollo Director -___________ 21, 30 Edgar 11. Cortright, Chairman, hpollo 13 Review Board-------- 21,27 Dr. Dale D. Mvers. Associate Administrator for Manned SDace 68 69 105 109 LIST OF ILLUSTRATIOSS 1. Internal coinponents of oxygen tank So. 2 ---_____-_________________ 22 2. -
Space News Update – May 2019
Space News Update – May 2019 By Pat Williams IN THIS EDITION: • India aims to be 1st country to land rover on Moon's south pole. • Jeff Bezos says Blue Origin will land humans on moon by 2024. • China's Chang'e-4 probe resumes work for sixth lunar day. • NASA awards Artemis contract for lunar gateway power. • From airport to spaceport as UK targets horizontal spaceflight. • Russian space sector plagued by astronomical corruption. • Links to other space and astronomy news published in May 2019. Disclaimer - I claim no authorship for the printed material; except where noted (PW). INDIA AIMS TO BE 1ST COUNTRY TO LAND ROVER ON MOON'S SOUTH POLE India will become the first country to land a rover on the Moon's the south pole if the country's space agency "Indian Space Research Organisation (ISRO)" successfully achieves the feat during the country's second Moon mission "Chandrayaan-2" later this year. "This is a place where nobody has gone. All the ISRO missions till now to the Moon have landed near the Moon's equator. Chandrayaan-2, India’s second lunar mission, has three modules namely Orbiter, Lander (Vikram) & Rover (Pragyan). The Orbiter and Lander modules will be interfaced mechanically and stacked together as an integrated module and accommodated inside the GSLV MK-III launch vehicle. The Rover is housed inside the Lander. After launch into earth bound orbit by GSLV MK-III, the integrated module will reach Moon orbit using Orbiter propulsion module. Subsequently, Lander will separate from the Orbiter and soft land at the predetermined site close to lunar South Pole. -
A Breath of Fresh Air: Air-Scooping Electric Propulsion in Very Low Earth Orbit
A BREATH OF FRESH AIR: AIR-SCOOPING ELECTRIC PROPULSION IN VERY LOW EARTH ORBIT Rostislav Spektor and Karen L. Jones Air-scooping electric propulsion (ASEP) is a game-changing concept that extends the lifetime of very low Earth orbit (VLEO) satellites by providing periodic reboosting to maintain orbital altitudes. The ASEP concept consists of a solar array-powered space vehicle augmented with electric propulsion (EP) while utilizing ambient air as a propellant. First proposed in the 1960s, ASEP has attracted increased interest and research funding during the past decade. ASEP technology is designed to maintain lower orbital altitudes, which could reduce latency for a communication satellite or increase resolution for a remote sensing satellite. Furthermore, an ASEP space vehicle that stores excess gas in its fuel tank can serve as a reusable space tug, reducing the need for high-power chemical boosters that directly insert satellites into their final orbit. Air-breathing propulsion can only work within a narrow range of operational altitudes, where air molecules exist in sufficient abundance to provide propellant for the thruster but where the density of these molecules does not cause excessive drag on the vehicle. Technical hurdles remain, such as how to optimize the air-scoop design and electric propulsion system. Also, the corrosive VLEO atmosphere poses unique challenges for material durability. Despite these difficulties, both commercial and government researchers are making progress. Although ASEP technology is still immature, it is on the cusp of transitioning between research and development and demonstration phases. This paper describes the technical challenges, innovation leaders, and potential market evolution as satellite operators seek ways to improve performance and endurance. -
Lunar Sourcebook : a User's Guide to the Moon
4 LUNAR SURFACE PROCESSES Friedrich Hörz, Richard Grieve, Grant Heiken, Paul Spudis, and Alan Binder The Moon’s surface is not affected by atmosphere, encounters with each other and with larger planets water, or life, the three major agents for altering throughout the lifetime of the solar system. These terrestrial surfaces. In addition, the lunar surface has orbital alterations are generally minor, but they not been shaped by recent geological activity, because ensure that, over geological periods, collisions with the lunar crust and mantle have been relatively cold other bodies will occur. and rigid throughout most of geological time. When such a collision happens, two outcomes are Convective internal mass transport, which dominates possible. If “target” and “projectile” are of comparable the dynamic Earth, is therefore largely absent on the size, collisional fragmentation and annihilation Moon, and so are the geological effects of such occurs, producing a large number of much smaller internal motions—volcanism, uplift, faulting, and fragments. If the target object is very large compared subduction—that both create and destroy surfaces on to the projectile, it behaves as an “infinite halfspace,” Earth. The great contrast between the ancient, stable and the result is an impact crater in the target body. Moon and the active, dynamic Earth is most clearly For collisions in the asteroid belt, many of the shown by the ages of their surfaces. Nearly 80% of the resulting collisional fragments or crater ejecta escape entire solid surface of Earth is <200 m.y. old. In the gravitational field of the impacted object; many of contrast, >99% of the lunar surface formed more than these fragments are then further perturbed into 3 b.y. -
Issue #1 – 2012 October
TTSIQ #1 page 1 OCTOBER 2012 Introducing a new free quarterly newsletter for space-interested and space-enthused people around the globe This free publication is especially dedicated to students and teachers interested in space NEWS SECTION pp. 3-22 p. 3 Earth Orbit and Mission to Planet Earth - 13 reports p. 8 Cislunar Space and the Moon - 5 reports p. 11 Mars and the Asteroids - 5 reports p. 15 Other Planets and Moons - 2 reports p. 17 Starbound - 4 reports, 1 article ---------------------------------------------------------------------------------------------------- ARTICLES, ESSAYS & MORE pp. 23-45 - 10 articles & essays (full list on last page) ---------------------------------------------------------------------------------------------------- STUDENTS & TEACHERS pp. 46-56 - 9 articles & essays (full list on last page) L: Remote sensing of Aerosol Optical Depth over India R: Curiosity finds rocks shaped by running water on Mars! L: China hopes to put lander on the Moon in 2013 R: First Square Kilometer Array telescopes online in Australia! 1 TTSIQ #1 page 2 OCTOBER 2012 TTSIQ Sponsor Organizations 1. About The National Space Society - http://www.nss.org/ The National Space Society was formed in March, 1987 by the merger of the former L5 Society and National Space institute. NSS has an extensive chapter network in the United States and a number of international chapters in Europe, Asia, and Australia. NSS hosts the annual International Space Development Conference in May each year at varying locations. NSS publishes Ad Astra magazine quarterly. NSS actively tries to influence US Space Policy. About The Moon Society - http://www.moonsociety.org The Moon Society was formed in 2000 and seeks to inspire and involve people everywhere in exploration of the Moon with the establishment of civilian settlements, using local resources through private enterprise both to support themselves and to help alleviate Earth's stubborn energy and environmental problems. -
The Annual Compendium of Commercial Space Transportation: 2017
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .