Sirdavidia, an Extroardinary New Genus of Annonaceae from Gabon

Total Page:16

File Type:pdf, Size:1020Kb

Sirdavidia, an Extroardinary New Genus of Annonaceae from Gabon A peer-reviewed open-access journal PhytoKeys 46: 1–19 (2015)Sirdavidia, an extraordinary new genus of Annonaceae from Gabon 1 doi: 10.3897/phytokeys.46.8937 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Sirdavidia, an extraordinary new genus of Annonaceae from Gabon Thomas L.P. Couvreur1,2,3, Raoul Niangadouma4, Bonaventure Sonké2,5,6, Hervé Sauquet7 1 Institut de Recherche pour le Développement, UMR-DIADE, BP 64501, F-34394 Montpellier cedex 5, France. 2 University of Yaoundé I, Higher Teacher’s Training College, Plant Systematic and Ecology Laborato- ry, P.O. Box 047, Yaoundé, Cameroon 3 Naturalis Biodiversity Centre, Botany Section, Darwinweg 2, 2333 CR Leiden, The Netherlands 4 National Herbarium of Gabon, R.D. 1135, Libreville, Gabon 5 Missouri Botanical Garden, Africa & Madagascar Department, P.O. Box 299, St. Louis, Missouri 63166-0299, USA 6 Université Libre de Bruxelles, Herbarium et Bibliothèque de Botanique africaine, CP 169, Av. F. Roosevelt 50, B-1050, Brussels, Belgium 7 Université Paris-Sud, Laboratoire Écologie, Systématique, Évolution, CNRS UMR 8079, 91405 Orsay, France Corresponding author: Thomas L.P. Couvreur ([email protected]) Academic editor: Pavel Stoev | Received 12 November 2014 | Accepted 19 January 2015 | Published 4 February 2015 Citation: Couvreur TLP, Niangadouma R, Sonké B, Sauquet H (2015) Sirdavidia, an extraordinary new genus of Annonaceae from Gabon. PhytoKeys 46: 1–19. doi: 10.3897/phytokeys.46.8937 Abstract A distinctive new monotypic genus from Gabon is described in the tropical plant family Annonaceae: Sirdavidia, in honor to Sir David Attenborough. Molecular phylogenetic analyses confirm thatSirdavidia , which is very distinct from a morphological standpoint, is not nested in any existing genus of Annonaceae and belongs to tribe Piptostigmateae (subfamily Malmeoideae), which now contains a total of six genera. The genus is characterized by long acuminate leaves, fully reflexed red petals, 16–19 bright yellow, loosely arranged stamens forming a cone, and a single carpel topped by a conspicuous stigma. With just three known collections, a preliminary IUCN conservation status assessment is provided as “endangered” as well as a distribution map. The discovery of Sirdavidia is remarkable at several levels. First, it was collected near the road in one of the botanically best-known regions of Gabon: Monts de Cristal National Park. Second, its sister group is the genus Mwasumbia, also monotypic, endemic to a small area in a forest in Tanzania, some 3000 km away. Finally, the floral morphology is highly suggestive of a buzz pollination syndrome. If confirmed, this would be the first documentation of such a pollination syndrome in Mag- noliidae and early-diverging angiosperms in general. Copyright Thomas L.P. Couvreur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Thomas L.P. Couvreur et al. / PhytoKeys 46: 1–19 (2015) Résumé Un nouveau genre monotypique du Gabon est décrit dans la famille tropicale des Annonaceae : Sirda- vidia, en honneur à Sir David Attenborough. Des analyses phylogénétiques confirment que Sirdavidia, caractérisé par une morphologie unique, n’appartient à aucun genre connu d’Annonaceae et se place au sein de la tribu des Piptostigmateae (dans la sous-famille des Malmeoideae), laquelle compte désormais un total de six genres. Le genre est caractérisé par des feuilles avec un long acumen, des pétales rouges réfléchis, 16–19 étamines jaunes qui forment un cône lâche et un carpelle surmonté d’un stigmate bien visible. Avec seulement trois récoltes connues, un statut de conservation préliminaire de “endangered” est proposé sur la base des critères de l’UICN. Une carte de distribution est également fournie. La découverte de Sirdavidia est remarquable pour plusieurs raisons. Tout d’abord le nouveau genre a été collecté près de la route dans l’une des régions les plus connues botaniquement du Gabon : le Parc National des Monts de Cristal. Ensuite, son groupe-frère est le genre, Mwasumbia, également monotypique, endémique d’une petite région en Tanzanie à plus de 3000 km. Enfin, les caractères floraux suggèrent un syndrome de pol- linisation appélé « buzz pollination». Si cela se confirme, ce sera la première documentation de ce type de syndrome pour les Magnoliidae et les Angiospermes basales en général. Keywords Piptostigmateae, Monts de Cristal, buzz pollination, vicariance, Annonaceae, Central Africa, Magnoliidae Introduction The Central African country of Gabon is merely 270 000 km² in size, but is home to an incredible botanical diversity (Sosef et al. 2006). Around 82% of its territory is covered with tropical rain forest and with around 5000 vascular plant species, Gabon is an important center of plant biodiversity in Central Africa (Sosef et al. 2006). The country is botanically one of the best known in the region (Sosef et al. 2006; Wieringa and Sosef 2011) with several parts of its territory well inventoried, such as the Monts de Cristal area (Wieringa and Sosef 2011). Annonaceae (Magnoliidae) is a pantropical flowering plant family of trees, shrubs and lianas. With around 2500 species (Chatrou et al. 2012; Couvreur et al. 2011) it is one of the most diverse plant families in tropical rain forests, and the largest in order Magnoliales (Haywood et al. 2009). Recently a new phylogenetic classification of the family recognizes four subfamilies and 14 tribes (Chatrou et al. 2012). This was fol- lowed by a scratchpad website (World Annonaceae; Couvreur 2014b) documenting Annonaceae diversity and taxonomy worldwide. Taxonomic understanding of African Annonaceae has been increasing since the publication of “Flore du Gabon, Annon- aceae, volume 16” (Le Thomas 1969) more than 40 years ago (Botermans et al. 2011; Couvreur 2009; Couvreur 2014a; Deroin and Luke 2005; Fero et al. 2014; Versteegh and Sosef 2007). As a consequence, several new species and a new genus have been described in Africa these past years, mainly from Tanzania (Couvreur et al. 2006; Couvreur et al. 2009; Johnson et al. 1999; Luke and Deroin 2005; Marshall et al. in press). New species, however, from Central Africa, and in particular Gabon, have been rarer with only a few such descriptions (Jongkind 2002). Sirdavidia, an extraordinary new genus of Annonaceae from Gabon 3 A probable new genus of Annonaceae was collected during field work in Monts de Cristal National Park, as part of a larger field trip focusing on the study Magnoliidae floral diversity. The objective of this paper was to confirm its status as a new species and its classification in a new genus. The taxon was first seen near the Kinguélé dam, and further prospection in the area revealed several individuals. It is the unusual floral structure of this species for Annonaceae that led us to suspect it might represent a new taxon and to undertake both a phylogenetic analysis and more thorough morphologi- cal observations. As we show here, interesting tropical taxa unknown to science can still be discovered in places even considered to be well known botanically. Material and methods Herbarium, alcohol and photographic materials were used to produce the descriptions. In order to identify other specimens of this new genus, we looked at all undetermined Annonaceae specimens in the herbaria located at BR, BRLU, LBV, P and YA (her- barium acronyms according to Thiers 2012). We also looked at sterile plot specimens of Annonaceae for Gabon held at BRLU. The conservation status was assessed by calculating the extent of occurrence (EOO) and the area of occupancy (AOO) using the GeoCAT tool (Bachman et al. 2011) and applying the IUCN Red List Category criteria (Standards-and-Petitions-Working-Group 2006). A preliminary phylogenetic analysis indicated that the new taxon was nested in tribe Piptostigmateae of the Malmeoideae subfamily. Therefore, the data matrix of Couvreur et al. (2009) was used to undertake the analyses. The matrix was based on two plastid markers (rbcL and trnL intron / trnL-trnF spacer) and contains 35 out of the 47 genera of Malmeoideae, representing all major lineages. Representative species from all other subfamilies were also sampled: Anaxagoreoideae (1 genus), Ambavioide- ae (2 genera out of 8), Annonoideae (17 genera out of 50). Eupomatia bennettii (Eu- pomatiaceae) was chosen as the outgroup (Massoni et al. 2014; Sauquet et al. 2003). All six genera currently recognized in Piptostigmateae were sampled. Sampling within genera was restricted to one species in the Annonoideae and Ambavioideae, and varied from one to two species in the Malmeoideae. DNA extractions of silicagel-dried leaf samples from two individuals of Sirdavidia solannona Couvreur & Sauquet were performed using a DNeasy Plant Mini Kit (Qiagen, Valencia, CA). The universal primers C/D and E/F (Taberlet et al. 1991) were used to amplify and sequence the trnL intron and trnL-trnF spacer. The rbcL marker was amplified using two primer combinations, 1F/724R and 636F/1460R (Fay et al. 1998). PCR amplifications were conducted using the FailSafe kit with Premix E (Epicentre, Madison, WI), according to manufacturer’s instructions and by adding 0.5 U of Taq DNA polymerase (Promega, Madison, WI) in a total volume of 50 μL. The PCR program was as follows: 35 thermal cycles at 94 °C for 1 min, 50–55 °C for 50 s, 72 °C for 50 s and a final extension at 72 °C for 3 min. Sequencing was performed at Macrogen (The Netherlands). Sequences were edited using Geneious 1.5.6 4 Thomas L.P. Couvreur et al. / PhytoKeys 46: 1–19 (2015) (Drummond et al. 2010) and manually aligned in the PAUP* text editor (version 4.10b; Swofford 2002). Gaps were coded following the simple coding model of Simmons and Ochoterena (2000). Microsatellites and ambiguously aligned regions (in the trnL intron and trnL-trnF spacer) were excluded from the analyses.
Recommended publications
  • Cherimoya and Guanabana in the Archaeological Record of Peru
    Journal of Ethnobiology 17(2):235-248 Winter 1997 CHERIMOYA AND GUANABANA IN THE ARCHAEOLOGICAL RECORD OF PERU THOMAS POZORSKI AND SHELIA POZORSKI Department of Psychology and Anthropology University of Texas-Pan American Edinburg, TX 78539 ABSTRACT.-Most researchers commonly assume that both cherimoya (Annona cherimolia) and guanabana (Annona muricata) have long been a part of the prehistoric record of ancient Peru. However, archaeological and ethnohistoric research in the past 25years strongly indicates that cherimoya was not introduced into Peru until ca. A.D. 1630 and that guanabana is only present after ca. A.D. 1000and is mainly associated with sites of the Chimu culture. RESUMEN.-La mayorfa de los investigadores suponen que tanto la chirimoya (Annona cherimola)como la guanabana (Annona muricata) han sido parte del registro prehist6rico del antiguo Peru por largo tiempo . Sin embargo, las in vestigaciones arqueol6gicas y etnohist6ricas de los ultimos veinticinco afios indican fuertemente que la chirimoya no fue introducida al Peru sino hasta 1630 D.C., Y que la guanabana esta presente s610 despues de aproximadamente 1000 D.C., Y esta asociada principalmente con sitios de la cultura chirmi. RESUME.- La plupart des chercheurs supposent couramment qu'une espece de pomme cannelle (Annonacherimolia)et le corossol (Annona muricata) ont faitpartie, pendant une longue periode, de l'inventaire prehistorique du Perou. Toutefois, les recherches archeologiques et ethnohistoriques des vingt-cinq dern ieres annees indiquent fortement que la pomme cannelle A. cherimolia ne fut introduite au Perou qu'aux environs de 1630 apr. J.-c. et la presence du corossol n'est attestee qu'en 1000apr.
    [Show full text]
  • The Potential Use of Annona (Annonaceae) by Products As a Source of Botanical Insecticides
    The potential use of Annona (Annonaceae) by products as a source of botanical insecticides Leandro do Prado Ribeiroa*, Camila Moreira de Souzab, Keylla Utherdyany Bicalhoc, Edson Luiz Lopes Baldinb, Moacir Rossi Forimc, João Batista Fernandesc, José Djair Vendramimd a Research Center for Family Agriculture, Agricultural Research and Rural Extension Company of Santa Catarina (CEPAF/EPAGRI), Chapecó, Santa Catarina, Brazil. *E-mail: [email protected]; bDepartment of Crop Protection, College of Agricultural Sciences, São Paulo State University (FCA/UNESP) Botucatu, São Paulo, Brazil; d Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil; c Department of Entomology and Acarology, “Luiz de Queiroz” College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil. INTRODUCTION In addition, some species of Annona genera (e.g.: Annona muricata, Annona squamosa, Annona cherimolia, and Annona The structural and functional diversity of secondary metabolites cherimolia x Annona squamosa) have great economic (allelochemicals) is a key factor for the survival and evolutionary importance due to their edible fruits of ample commercial success of plant species inhabiting an environment with an interest. Consequently, a considerably cultivated area (~ 14,000 abundance of natural enemies. Therefore, the tropical flora, hectares) with these species is observed in Brazil. However, most with its unique biodiversity, is a promising natural reservoir of of Annona fruits production are destined for fruit-processing bioactive substances. In this context, Brazil has the highest plant industries and commercialized as frozen pulps for juice genetic diversity in the world offering enormous potential for preparations due to its small shelf life.
    [Show full text]
  • TML Propagation Protocols
    PROPAGATION PROTOCOLS This document is intended as a guide for Tamborine Mountain Landcare members who wish to assist our regeneration projects by growing some of the plants needed. It is a work in progress so if you have anything to add to the protocols – for example a different but successful way of propagating and growing a particular plant – then please give it to Julie Lake so she can add it to the document. The idea is that our shared knowledge and experience can become a valuable part of TML's intellectual property as well as a useful source of knowledge for members. As there are many hundreds of plants native to Tamborine Mountain, the protocols list will take a long time to complete, with growing information for each plant added alphabetically as time permits. While the list is being compiled by those members with competence in this field, any TML member with a query about propagating a particular plant can post it on the website for other me mb e r s to answer. To date, only protocols for trees and shrubs have been compiled. Vines and ferns will be added later. Fruiting times given are usual for the species but many rainforest plants flower and fruit opportunistically, according to weather and other conditions unknown to us, thus fruit can be produced at any time of year. Finally, if anyone would like a copy of the protocols, contact Julie on [email protected] and she’ll send you one. ………………….. Growing from seed This is the best method for most plants destined for regeneration projects for it is usually fast, easy and ensures genetic diversity in the regenerated landscape.
    [Show full text]
  • Acta Botanica Brasilica Doi: 10.1590/0102-33062020Abb0051
    Acta Botanica Brasilica doi: 10.1590/0102-33062020abb0051 Toward a phylogenetic reclassification of the subfamily Ambavioideae (Annonaceae): establishment of a new subfamily and a new tribe Tanawat Chaowasku1 Received: February 14, 2020 Accepted: June 12, 2020 . ABSTRACT A molecular phylogeny of the subfamily Ambavioideae (Annonaceae) was reconstructed using up to eight plastid DNA regions (matK, ndhF, and rbcL exons; trnL intron; atpB-rbcL, psbA-trnH, trnL-trnF, and trnS-trnG intergenic spacers). The results indicate that the subfamily is not monophyletic, with the monotypic genus Meiocarpidium resolved as the second diverging lineage of Annonaceae after Anaxagorea (the only genus of Anaxagoreoideae) and as the sister group of a large clade consisting of the rest of Annonaceae. Consequently, a new subfamily, Meiocarpidioideae, is established to accommodate the enigmatic African genus Meiocarpidium. In addition, the subfamily Ambavioideae is redefined to contain two major clades formally recognized as two tribes. The tribe Tetramerantheae consisting of only Tetrameranthus is enlarged to include Ambavia, Cleistopholis, and Mezzettia; and Canangeae, a new tribe comprising Cananga, Cyathocalyx, Drepananthus, and Lettowianthus, are erected. The two tribes are principally distinguishable from each other by differences in monoploid chromosome number, branching architecture, and average pollen size (monads). New relationships were retrieved within Tetramerantheae, with Mezzettia as the sister group of a clade containing Ambavia and Cleistopholis. Keywords: Annonaceae, Ambavioideae, Meiocarpidium, molecular phylogeny, systematics, taxonomy et al. 2019). Every subfamily received unequivocally Introduction and consistently strong molecular support except the subfamily Ambavioideae, which is composed of nine Annonaceae, a pantropical family of flowering plants genera: Ambavia, Cananga, Cleistopholis, Cyathocalyx, prominent in lowland rainforests, consist of 110 genera Drepananthus, Lettowianthus, Meiocarpidium, Mezzettia, (Guo et al.
    [Show full text]
  • Phylogenomics of the Major Tropical Plant Family Annonaceae Using Targeted Enrichment of Nuclear Genes
    ORIGINAL RESEARCH published: 09 January 2019 doi: 10.3389/fpls.2018.01941 Phylogenomics of the Major Tropical Plant Family Annonaceae Using Targeted Enrichment of Nuclear Genes Thomas L. P. Couvreur 1*†, Andrew J. Helmstetter 1†, Erik J. M. Koenen 2, Kevin Bethune 1, Rita D. Brandão 3, Stefan A. Little 4, Hervé Sauquet 4,5 and Roy H. J. Erkens 3 1 IRD, UMR DIADE, Univ. Montpellier, Montpellier, France, 2 Institute of Systematic Botany, University of Zurich, Zurich, Switzerland, 3 Maastricht Science Programme, Maastricht University, Maastricht, Netherlands, 4 Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université-Paris Saclay, Orsay, France, 5 National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, Australia Edited by: Jim Leebens-Mack, University of Georgia, United States Targeted enrichment and sequencing of hundreds of nuclear loci for phylogenetic Reviewed by: reconstruction is becoming an important tool for plant systematics and evolution. Eric Wade Linton, Central Michigan University, Annonaceae is a major pantropical plant family with 110 genera and ca. 2,450 species, United States occurring across all major and minor tropical forests of the world. Baits were designed Mario Fernández-Mazuecos, by sequencing the transcriptomes of five species from two of the largest Annonaceae Real Jardín Botánico (RJB), Spain Angelica Cibrian-Jaramillo, subfamilies. Orthologous loci were identified. The resulting baiting kit was used to Centro de Investigación y de Estudios reconstruct phylogenetic relationships at two different levels using concatenated and Avanzados (CINVESTAV), Mexico gene tree approaches: a family wide Annonaceae analysis sampling 65 genera and *Correspondence: Thomas L. P.
    [Show full text]
  • Efficacy of Seed Extracts of Annona Squamosa and Annona Muricata (Annonaceae) for the Control of Aedes Albopictus and Culex Quinquefasciatus (Culicidae)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Asian Pac J Trop Biomed 2014; 4(10): 798-806 798 Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Biomedicine journal homepage: www.elsevier.com/locate/apjtb Document heading doi:10.12980/APJTB.4.2014C1264 2014 by the Asian Pacific Journal of Tropical Biomedicine. All rights reserved. 襃 Efficacy of seed extracts of Annona squamosa and Annona muricata (Annonaceae) for the control of Aedes albopictus and Culex quinquefasciatus (Culicidae) 1 1 2 Lala Harivelo Raveloson Ravaomanarivo *, Herisolo Andrianiaina Razafindraleva , Fara Nantenaina Raharimalala , Beby 1 3 2,4 Rasoahantaveloniaina , Pierre Hervé Ravelonandro , Patrick Mavingui 1Department of Entomology, Faculty of Sciences, University of Antananarivo, Po Box 906, Antananarivo (101), Madagascar 2International Associated Laboratory, Research and Valorization of Malagasy Biodiversity Antananarivo, Madagascar 3Research Unit on Process and Environmental Engineering, Faculty of Sciences, University of Antananarivo, Po Box 906, Antananarivo (101), Madagascar 4UMR CNRS 5557, USC INRA 1364, Vet Agro Sup, Microbial Ecology, FR41 BioEnvironment and Health, University of Lyon 1, Villeurbanne F-69622, France PEER REVIEW ABSTRACT Peer reviewer Objective: Annona squamosa Annona é è muricata To evaluate the potential efficacy of seed extracts of Aedes and albopictus Dr.é éDelatte H l ne, UMR Peuplements Culexused quinquefasciatus as natural insecticides to control adult and larvae of the vectors V g taux et Bio-agresseurs en M’ ilieu andMethods: under laboratory conditions. Tropical, CIRAD-3P7, Chemin de l IRAT, Aqueous and oil extracts of the two plants were prepared from dried seeds.
    [Show full text]
  • (Bedd.) IM Turner (Annonaceae) and a New Variety from India
    Taiwania 62(3): 305‒310, 2017 DOI: 10.6165/tai.2017.62.305 Notes on the Taxonomic status of Polyalthia malabarica (Bedd.) I. M. Turner (Annonaceae) and a new variety from India Mohan ALISTER*, Gopalaprabhu RAJKUMAR, Ahammed NAZARUDEEN and Alagramam Govindasamy PANDURANGAN Division of Plant Systematics and Evolutionary Science, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram district, Kerala- 695 562, India. * Corresponding author's email: [email protected] (Manuscript received 15 April 2016; accepted 28 May 2017; online published 25 July 2017) ABSTRACT: The taxonomic status of Polyalthia malabarica (Bedd.) I. M. Turner is discussed and a variety from Western Ghats of India is newly proposed with taxonomic description and illustration. KEY WORDS: Annonaceae, India, Kerala, New variety, Polyalthia malabarica var. longipedicellata. INTRODUCTION et al., 2012). Approximately 65 species were removed from the genus Polyalthia but at the same time nine The genus Polyalthia (Annonaceae) was first additions were included by merging the genus described by C. L. Blume (1830) based on type Haplostichathus as mentioned. Presently the genus specimen Polyalthia subcordata, which was collected Polyalthia comprises approximately 85 species and its from Java (Xue et al., 2012). The genus was considered distribution ranged to Austral-Asian region as one of the largest genera in paleotropical regions in (Chaowasku et al., 2012). the family Annonaceae with distribution ranging from The genus is now characterised by reticulate East Africa to Madagascar, Indian subcontinent and venation of leaves, generally with more or less South East Asia to Australia with approximately about subcordate or cordate leaf base, axillary to extra 150 species (Verdcourt, 1969; Xue et al., 2011; axillary or terminal inflorescence, 2‒6 ovules per ovary, Saunders et al., 2011).
    [Show full text]
  • Newsletter No
    Newsletter No. 167 June 2016 Price: $5.00 AUSTRALASIAN SYSTEMATIC BOTANY SOCIETY INCORPORATED Council President Vice President Darren Crayn Daniel Murphy Australian Tropical Herbarium (ATH) Royal Botanic Gardens Victoria James Cook University, Cairns Campus Birdwood Avenue PO Box 6811, Cairns Qld 4870 Melbourne, Vic. 3004 Australia Australia Tel: (+61)/(0)7 4232 1859 Tel: (+61)/(0) 3 9252 2377 Email: [email protected] Email: [email protected] Secretary Treasurer Leon Perrie John Clarkson Museum of New Zealand Te Papa Tongarewa Queensland Parks and Wildlife Service PO Box 467, Wellington 6011 PO Box 975, Atherton Qld 4883 New Zealand Australia Tel: (+64)/(0) 4 381 7261 Tel: (+61)/(0) 7 4091 8170 Email: [email protected] Mobile: (+61)/(0) 437 732 487 Councillor Email: [email protected] Jennifer Tate Councillor Institute of Fundamental Sciences Mike Bayly Massey University School of Botany Private Bag 11222, Palmerston North 4442 University of Melbourne, Vic. 3010 New Zealand Australia Tel: (+64)/(0) 6 356- 099 ext. 84718 Tel: (+61)/(0) 3 8344 5055 Email: [email protected] Email: [email protected] Other constitutional bodies Hansjörg Eichler Research Committee Affiliate Society David Glenny Papua New Guinea Botanical Society Sarah Matthews Heidi Meudt Advisory Standing Committees Joanne Birch Financial Katharina Schulte Patrick Brownsey Murray Henwood David Cantrill Chair: Dan Murphy, Vice President Bob Hill Grant application closing dates Ad hoc adviser to Committee: Bruce Evans Hansjörg Eichler Research
    [Show full text]
  • Primitive Angiosperm Flower – a Discussion*
    Acta Bot. Neerl. 23(4), August 1974, p. 461-471. The structure and function of the primitive Angiosperm flower – a discussion* Gerhard Gottsberger Departamentode Botanica, Faculdade de Ciencias Medicas e Biologicas de Botucatu, Estado de Sao Paulo, Brazil SUMMARY Morphological and functional features of primitive entomophilous Angiosperm flowers are discussed and confronted with modem conceptions onearly Angiosperm differentiation. Evidence is put forward to show that large, solitary and terminally-borne flowers are not most primitive in the Angiosperms, but rather middle-sized ones, groupedinto lateral flower aggregates or inflorescences. It is believed that most primitive, still unspecialized Angiosperm flowers were pollinated casuallyby beetles. Only in a later phase did they graduallybecome adaptedto the more effective but more devastating type of beetle pollination. Together with this specialization, flower enlargment, reduction of inflorescences, numerical increase of stamens and carpels, and their more dense aggregationand flatteningmight have occurred. In have maintained the archaic condi- regard to pollination,many primitive Angiosperms tion of because beetles still dominant insect whereas in cantharophily, are a group, dispersal they have been largely forced to switch over from the archaic saurochory to the more modern modes of dispersal by birds and mammals,since duringthe later Mesozoic the dominance of reptiles had come to an end. The prevailing ideas regarding the primitiveness of Angiosperm flower struc- be somewhat Is the
    [Show full text]
  • Plant Life of Western Australia
    INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm.
    [Show full text]
  • Anthesis Volume 10: 2014 -2015 Botany: an Interdisciplinary Science
    Anthesis Volume 10: 2014 -2015 Botany: An Interdisciplinary Science Annual Publication of Gargi College Botanical Society Department of Botany Gargi College, Siri Fort Road New Delhi-110049 1 Anthesis Volume 10: 2014-2015 Special Focus: Botany: An Interdisciplinary Science Department of Botany Gargi College, Siri Fort Road New Delhi-110049 Cover Page Design: Leena Arora 2 Anthesis Volume 10: 2014-2015 Special Focus: Botany: An Interdisciplinary Science Contents All the topics listed below have been hyper-linked to the corresponding articles. Click on the topics to read the article. You can come back to the contents page by clicking on the link at the end of every article. Page S.No. Topic No. 1. From the Principal’s Desk 5 2. From the Editor’s Desk 6 Articles 3. Diamonds in My Backyard 8 4. Chemistry of Plant Life: At a Glance 11 5. Flashlight on Facts: Plant Nomenclature 15 6. What’s in a Name? 20 7. Wonders of Nature: Look alikes 23 8. Forensic Botany: Plant Detectives 28 9. Virus Induced Gene Silencing 32 Some Interesting Trees 10. 41 Dendrology: The Wood Science 11. 44 12. Gymnosperms: Treasure Trove of Medicines 48 13. Ayurveda: As Relevant Now 51 The Mushroom Story 14. 53 15. Agriculture Redefined 56 16. The Ficus Siblings 58 17. Student Research Projects 61 18. My Introduction to Floral World 64 3 19. Flamboyant Miracles: Blooms 69 20. Career Options in Horticulture 73 Students’ Opinion 21. Will I Be Educated? 76 22. Being A Botanist 78 23. Go Break Those Boundaries!!! 81 24. Famous Plant: Lavender 82 25.
    [Show full text]
  • Nonaceae Using Targeted Enrichment of Nuclear Genes Supplementary
    Phylogenomics of the major tropical plant family An- nonaceae using targeted enrichment of nuclear genes Thomas L.P. Couvreur1,*, Andrew J. Helmstetter1, Erik J.M. Koenen2, Kevin Bethune1, Rita D. Brand~ao3, Stefan Little4, Herv´eSauquet4,5, Roy H.J. Erkens3 1 IRD, UMR DIADE, Univ. Montpellier, Montpellier, France 2 Institute of Systematic Botany, University of Zurich, Z¨urich, Switzer- land 3 Maastricht University, Maastricht Science Programme, P.O. Box 616, 6200 MD Maastricht, The Netherlands 4 Ecologie Syst´ematiqueEvolution, Univ. Paris-Sud, CNRS, AgroParis- Tech, Universit´e-Paris Saclay, 91400, Orsay, France 5 National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, Australia * [email protected] Supplementary Information (see next page) 1 Supplementary Table 1. Specimen details of taxa sampled for both An- nonaceae and Piptostigmateae analyses Subfamily Tribe Species Collector number Country INDEX TAG total reads Mapped % enrichment 10x coverage mean depth Ambavioideae Cleistopholis staudii Couvreur, T.L.P. 570 Gabon I12 TAG79 1790158 402150 22 0,82 119,7 Ambavioideae Drepananthus ramuliflorus Sauquet, H. 167 Malaysia I10 TAG45 2676926 150278 6 0,66 45,1 Ambavioideae Meiocarpidium olivieranum Couvreur, T.L.P. 920 Gabon I10 TAG13 3950072 343879 9 0,80 104,3 Anaxagoreoideae Anaxagorea crassipetala Maas, P.J.M. 9408 Costa Rica I10 TAG25 2648398 256748 10 0,67 76,9 Annonoideae Annoneae Annona glabra Chatrou, L.W. 467 Peru I10 TAG36 4328486 622387 14 0,83 190,7 Annonoideae Annoneae Anonidium mannii Couvreur, T.L.P. 1053 Cameroon I04 TAG36 1613002 679049 42 0,89 206,9 Annonoideae Annoneae Boutiquea platypetala Couvreur, T.L.P.
    [Show full text]