Download Site

Total Page:16

File Type:pdf, Size:1020Kb

Download Site UCLA UCLA Electronic Theses and Dissertations Title Probabilistic Evaluation of Seismic Levee Performance using Field Performance Data Permalink https://escholarship.org/uc/item/0jr9p39b Author Kwak, Dong Youp Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Probabilistic Evaluation of Seismic Levee Performance using Field Performance Data A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Civil Engineering by Dong Youp Kwak 2014 © Copyright by Dong Youp Kwak 2014 ABSTRACT OF THE DISSERTATION Probabilistic Evaluation of Seismic Levee Performance using Field Performance Data by Dong Youp Kwak Doctor of Philosophy in Civil Engineering University of California, Los Angeles, 2014 Professor Jonathan P. Stewart, Chair I characterize the seismic fragility of levees along the Shinano River system in Japan using field performance data from two M 6.6 shallow crustal earthquakes. I quantify levee damage using crack depth, crack width, and crest subsidence for 3318 levee segments each 50 m long. Variables considered for possible correlation to damage include peak ground velocity (PGV), geomorphology, groundwater elevation, and levee geometry. For site conditions beneath levees without geophysical measurements, a model for shear wave velocity is proposed considering soil type, penetration resistance, vertical effective stress, geomorphology, and spatial variation of boring-to-boring residuals. Seismic levee fragility is expressed as the probability of exceeding a damage level conditioned on PGV alone and PGV in combination with other variables. The probability of damage (at any level) monotonically increases from effectively zero for PGV < 14 ii cm/s to approximately 0.5 for PGV ≈ 80 cm/s. Of the additional parameters considered, groundwater elevation relative to levee base most significantly affects fragility functions, increasing and decreasing failure probabilities (relative to the PGV-only function) for shallow and deep groundwater conditions, respectively. I demonstrate applicability of the fragility models developed from data in the Shinano River region of Japan (SRJ) for geotechnical conditions along urban levees in the Central Valley region of California (CVC) by comparing penetration resistance data between regions for common soil types and geology. For Holocene flood plain deposits I find penetration resistance for coarse-grained soils in the SRJ and CVC study regions to be similar, whereas for fine-grained soils the CVC sediments are stiffer. For Holocene basin and Pleistocene deposits mostly appeared only in the CVC, both coarse- and fine-grained deposits are stiffer than Holocene floodplain deposits. Spatial correlations of demand and damage are important to consider when evaluating the performance of a complete levee system. I develop a numerical methodology to evaluate the system fragility utilizing the spatial correlations of damage capacity and demands between segments. System level damage probabilities are found to decrease with the strength of these correlations. The damage demand exhibits positive correlation over larger distances than does the damage capacity. iii The dissertation of Dong Youp Kwak is approved. Robert E. Kayen Hongquan Xu Jian Zhang Scott J. Brandenberg Jonathan P. Stewart, Committee Chair University of California, Los Angeles 2014 iv ... To my beloved family. v CONTENTS CONTENTS................................................................................................................................. VI LIST OF FIGURES ...................................................................................................................... X LIST OF TABLES ..................................................................................................................... XV ACKNOWLEDGMENTS ....................................................................................................... XVI CURRICULUM VITAE ....................................................................................................... XVIII 1 STUDY OVERVIEW ........................................................................................................1 1.1 Introduction ..............................................................................................................1 1.2 Scope of Research ....................................................................................................3 2 DATA RESOURCES .........................................................................................................7 2.1 Introduction ..............................................................................................................7 2.2 Damage Description.................................................................................................8 2.3 Earthquake Recordings ..........................................................................................11 2.4 Geomorphology Maps ...........................................................................................16 2.5 Soil Conditions and Levee Geometry ....................................................................18 2.5.1 Embankment and Foundation Soil Conditions ..........................................19 2.5.2 Levee Geometry .........................................................................................21 2.6 Hydrology Conditions ............................................................................................22 2.6.1 Ground Water Level ..................................................................................22 2.6.2 River Water Elevations ..............................................................................23 3 COMPARISON OF SITE CONDITIONS BETWEEN STUDY REGION AND CALIFORNIA’S CENTRAL VALLEY ..............................................................25 3.1 Introduction ............................................................................................................25 3.2 Data Resource ........................................................................................................25 3.2.1 Boring Logs ...............................................................................................25 3.2.2 Soil Compositions ......................................................................................27 vi 3.2.3 Geologic Conditions ..................................................................................28 3.3 Comparison of Penetration Resistance ..................................................................30 3.3.1 Correction on SPT Blow Counts................................................................30 3.3.2 Distribution of Penetration Resistance.......................................................31 3.4 Summary and Discussion .......................................................................................35 4 CORRELATION OF SHEAR WAVE VELOCITY WITH PENETRATION RESISTANCE AND VERTICAL EFFECTIVE STRESS ..........................................37 4.1 Introduction ............................................................................................................37 4.2 Data Resources.......................................................................................................39 4.2.1 Shear Wave Velocity and Penetration Resistance .....................................39 4.2.2 Geomorphic Conditions .............................................................................41 4.2.3 Topographic Conditions.............................................................................42 4.3 Shear Wave Velocity Model Development ...........................................................44 4.3.1 Basic Model ...............................................................................................45 4.3.2 Influence of Geomorphic and Topographic Conditions ............................48 4.4 Spatial Variation of Boring-to-boring Residual .....................................................52 4.5 Comparison of Vs30 values computed using various methods................................55 4.6 Site Conditions on Levee Foundations ..................................................................57 4.7 Summary and Conclusion ......................................................................................60 5 GROUND MOTION AND GROUND WATER ELEVATION ..................................62 5.1 Introduction ............................................................................................................62 5.2 Ground Motion on Levees .....................................................................................62 5.2.1 Description of the Problem ........................................................................63 5.2.2 Proposed Approach ....................................................................................65 5.3 Ground Water Elevation on Earthquake Dates ......................................................67 5.3.1 Interpolation of River Water Elevation ......................................................68 5.3.2 Correlation between Groundwater Elevation and River Elevation ............72 5.3.3 Groundwater Elevation in Levees at the Time of Earthquake ...................75 6 DEVELOPMENT OF FRAGILITY FUNCTION ........................................................77 6.1 Introduction ............................................................................................................77
Recommended publications
  • Title Destructive Effects of the Estuary Dam on the Nagara River's
    Destructive Effects of the Estuary Dam on the Nagara River's Title Environment, and the Program for its Regeneration Author(s) 粕谷, 志郎; 村瀬, 惣一; 青山, 己織 Citation [岐阜大学地域科学部研究報告] no.[20] p.[1]-[22] Issue Date 2007-02-28 Rights 岐阜大学地域科学部 (Faculty of Regional Studies, Gifu Version University) / リバーポリシーネットワーク(NPO) (River Policy Network(NPO)) URL http://hdl.handle.net/20.500.12099/15555 ※この資料の著作権は、各資料の著者・学協会・出版社等に帰属します。 BulletinoftheFaculyofRegionalStudies,GifuUniversityVol.20:1-22.(2007) DestructiveE恥ctsoftheEstuaryI)amontheNagaraRiver,s Environment,andtheProgram払ritsRegeneration ShiroKasuya,SohichiMuraseandMioriAoyama GifuUniversity,Defunctperson,RiverPolicyNetwork(NPO) (Received:November27,2006) Abstract TheplanOftheNagaraRiverestuarydamwasissuedin1960・Thepurposewasasupplyofthefresh watertoIseBayindustrialarea・Thoughitwastheplanforsupportlngtheeconomicgrowth・aWater demanddrasticallydidnotexpandafterwards,andtheoppositionmovementmainlyonthefisheryparty wasalsointensified・Afterthe一一Anpachifl00ddamage叩in1976,however,thefloodcontroIpurposeof thedamwasemphasized・Theriverbottommustbedredgedinordertorunthefloodsafely・Thesalt waterwillgoup,Whenitwillbesodone,andtheagrlCulturesaltdamagewillbecaused・Estuarydam, whichstopsthis,Callsitthenecessity・Theoppositionmovementonceceases,anditbeganconstruction in1988.It was almost simultaneous,and the new opposition movement mainly on environmental problembecamepopular・However,theoperationwasstartedin1995,Whilethefearoftheadverse effecttotheenvironmentdoesnotfadeaway. Afterwards,thesludgepilesupintheriverbed,benthosessuchastheclamsdisappearalmost,and
    [Show full text]
  • Geography & Climate
    Web Japan http://web-japan.org/ GEOGRAPHY AND CLIMATE A country of diverse topography and climate characterized by peninsulas and inlets and Geography offshore islands (like the Goto archipelago and the islands of Tsushima and Iki, which are part of that prefecture). There are also A Pacific Island Country accidented areas of the coast with many Japan is an island country forming an arc in inlets and steep cliffs caused by the the Pacific Ocean to the east of the Asian submersion of part of the former coastline due continent. The land comprises four large to changes in the Earth’s crust. islands named (in decreasing order of size) A warm ocean current known as the Honshu, Hokkaido, Kyushu, and Shikoku, Kuroshio (or Japan Current) flows together with many smaller islands. The northeastward along the southern part of the Pacific Ocean lies to the east while the Sea of Japanese archipelago, and a branch of it, Japan and the East China Sea separate known as the Tsushima Current, flows into Japan from the Asian continent. the Sea of Japan along the west side of the In terms of latitude, Japan coincides country. From the north, a cold current known approximately with the Mediterranean Sea as the Oyashio (or Chishima Current) flows and with the city of Los Angeles in North south along Japan’s east coast, and a branch America. Paris and London have latitudes of it, called the Liman Current, enters the Sea somewhat to the north of the northern tip of of Japan from the north. The mixing of these Hokkaido.
    [Show full text]
  • Flood Loss Model Model
    GIROJ FloodGIROJ Loss Flood Loss Model Model General Insurance Rating Organization of Japan 2 Overview of Our Flood Loss Model GIROJ flood loss model includes three sub-models. Floods Modelling Estimate the loss using a flood simulation for calculating Riverine flooding*1 flooded areas and flood levels Less frequent (River Flood Engineering Model) and large- scale disasters Estimate the loss using a storm surge flood simulation for Storm surge*2 calculating flooded areas and flood levels (Storm Surge Flood Engineering Model) Estimate the loss using a statistical method for estimating the Ordinarily Other precipitation probability distribution of the number of affected buildings and occurring disasters related events loss ratio (Statistical Flood Model) *1 Floods that occur when water overflows a river bank or a river bank is breached. *2 Floods that occur when water overflows a bank or a bank is breached due to an approaching typhoon or large low-pressure system and a resulting rise in sea level in coastal region. 3 Overview of River Flood Engineering Model 1. Estimate Flooded Areas and Flood Levels Set rainfall data Flood simulation Calculate flooded areas and flood levels 2. Estimate Losses Calculate the loss ratio for each district per town Estimate losses 4 River Flood Engineering Model: Estimate targets Estimate targets are 109 Class A rivers. 【Hokkaido region】 Teshio River, Shokotsu River, Yubetsu River, Tokoro River, 【Hokuriku region】 Abashiri River, Rumoi River, Arakawa River, Agano River, Ishikari River, Shiribetsu River, Shinano
    [Show full text]
  • Japanese Geography Quiz What Prefecture Is Located in the Northernmost Part in Japan?
    Japanese Geography Quiz What prefecture is located in the northernmost part in Japan? ① Hokkaido ② Aomori ③ Akita ④ Ishikawa What prefecture is located in the northernmost part in Japan? ① Hokkaido ② Aomori ③ Akita ④ Ishikawa What prefecture is located in the westernmost part in Japan? ① Okinawa ② Nagasaki ③ Osaka ④ Kagoshima What prefecture is located in the westernmost part in Japan? ① Okinawa ② Nagasaki ③ Osaka ④ Kagoshima What is the name of the island located in the southernmost part of Japan? ① Yaku Island ② Marcus Island ③ Okinawa Island ④ Okinotori Islands What is the name of the island located in the southernmost part of Japan? ① Yaku Island ② Marcus Island ③ Okinawa Island ④ Okinotori Islands What is the name of the island located in the easternmost part of Japan? ① Father Island ② Okinotori Islands ③ Marcus Island ④ Mother Island What is the name of the island located in the easternmost part of Japan? ① Father Island ② Okinotori Islands ③ Marcus Island ④ Mother Island What mountain is the second highest in Japan following Mt. Fuji? ① Yatsugatake Mountains ② Mt. Hotaka ③ Monte Yari ④ Mt. Kita (Shirane) What mountain is the second highest in Japan following Mt. Fuji? ① Yatsugatake Mountains ② Mt. Hotaka ③ Monte Yari ④ Mt. Kita (Shirane) How high is Mt.Fuji, the highest mountain in Japan? ① 1,776 meters ② 2,776 meters ③ 3,776 meters ④ 4,776 meters How high is Mt.Fuji, the highest mountain in Japan? ① 1,776 meters ② 2,776 meters ③ 3,776 meters ④ 4,776 meters What is the longest river in Japan? ① Shinano River ② Tone River ③ Ishikari
    [Show full text]
  • Map of Japan the World Japan & Surrounding Countries Emergence of Japanese Land
    Geography of Japan Geography of Japan Map of Japan The World Japan & surrounding countries Emergence of Japanese Land • During the glacier age (about 1,000,000 – 10,000 BC), Japan was connected to the Asian continent. About 10,000 years ago Japanese islands were separated from the continent as a result of earth movements. • Thus, the Japanese islands are connected to the Asian mainland by the relatively shallow-lying continental shelf. • The 4 main islands, Okinawa and thousands of small islands. 6,852 islands (2006 survey) inhabited islands: 400, others un- inhabited Japan is an island country • Close enough to the Asian Continent. • 31 miles (ca. 50km) from Tsushima, Japan to Busan, Korea • 26 miles from the tip of Hokkaido to Sakhalin • Several miles to Kuril Islands from Nosappu cape (2.5 miles) Latitude- from Montreal in the north to Florida in the south Japan latitude comparison to Brunswick, ME US latitude comparison to Tokyo, Japan Tokyo is about the same latitude as Raleigh, North Carolina Total Land Area • 378,000 km2 – 1/25th the size of the U.S. • Slightly smaller than the State of California • 3,800 km (2375 miles) from the northern tip to the southern island • Country of many volcanoes • 80% of Japan’s surface is mountainous • Less than 15% is arable • Situated along the circum-Pacific volcanic belt – numerous earthquakes Pacific Volcanic Belt Other facts • The nation’s capital: Tokyo, 36° North latitude • Population: • Tokyo: 13,754,000 (Jan. 2018) • Japan: 126,420,000 (Apr. 2018) (less than half of the US) • The highest mountain: Mt.
    [Show full text]
  • A Synopsis of the Parasites from Cyprinid Fishes of the Genus Tribolodon in Japan (1908-2013)
    生物圏科学 Biosphere Sci. 52:87-115 (2013) A synopsis of the parasites from cyprinid fishes of the genus Tribolodon in Japan (1908-2013) Kazuya Nagasawa and Hirotaka Katahira Graduate School of Biosphere Science, Hiroshima University Published by The Graduate School of Biosphere Science Hiroshima University Higashi-Hiroshima 739-8528, Japan December 2013 生物圏科学 Biosphere Sci. 52:87-115 (2013) REVIEW A synopsis of the parasites from cyprinid fishes of the genus Tribolodon in Japan (1908-2013) Kazuya Nagasawa1)* and Hirotaka Katahira1,2) 1) Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan 2) Present address: Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan Abstract Four species of the cyprinid genus Tribolodon occur in Japan: big-scaled redfin T. hakonensis, Sakhalin redfin T. sachalinensis, Pacific redfin T. brandtii, and long-jawed redfin T. nakamuraii. Of these species, T. hakonensis is widely distributed in Japan and is important in commercial and recreational fisheries. Two species, T. hakonensis and T. brandtii, exhibit anadromy. In this paper, information on the protistan and metazoan parasites of the four species of Tribolodon in Japan is compiled based on the literature published for 106 years between 1908 and 2013, and the parasites, including 44 named species and those not identified to species level, are listed by higher taxon as follows: Ciliophora (2 named species), Myxozoa (1), Trematoda (18), Monogenea (0), Cestoda (3), Nematoda (9), Acanthocephala (2), Hirudinida (1), Mollusca (1), Branchiura (0), Copepoda (6 ), and Isopoda (1). For each taxon of parasite, the following information is given: its currently recognized scientific name, previous identification used for the parasite occurring in or on Tribolodon spp.; habitat (freshwater, brackish, or marine); site(s) of infection within or on the host; known geographical distribution in Japan; and the published source of each locality record.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses Jade, amber, obsidian and serpentinite: the social context of exotic stone exchange networks in central Japan during the late middle Jômon period Bausch, Ilona How to cite: Bausch, Ilona (2003) Jade, amber, obsidian and serpentinite: the social context of exotic stone exchange networks in central Japan during the late middle Jômon period, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4022/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 A copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. JadCy Ambery Obsidian and Serpentinite: the social context of exotic stone exchange networks in Central Japan during the Late Middle Jomon period by Ilona Bausch A thesis presented for the degree of Doctor of Philosophy Department of East Asian Studies, University of Durham 31 December 2003 I I JAN 7005 117 ABSTRACT The social context of exotic stone exchange nefworfcs in Centml Japan during the Late Middle Jomon period llona Bausch This dissertation presents a holistic, contextual approach to long-distance exchange networks in Central Japan ca.
    [Show full text]
  • New Prediction of Sediment-Related Disaster Critical Rainfall Using Meteorological Model WRF
    Symposium Proceedings of the INTERPRAENENT 2018 in the Pacific Rim New Prediction of Sediment-related Disaster Critical Rainfall Using Meteorological Model WRF Toshihide SUGIMOTO1, Toshiyuki SAKAI2 and Hiroshi MAKINO1* 1 NEWJEC Inc. (2-3-20 Honjo-Higashi, Kita-ku, Osaka 5310074, Japan) 2 Japan Weather Association (2-3-2 Minamisenba, Chuo-ku, Osaka 5420081, Japan) *Corresponding author. E-mail: [email protected] A large number of sediment-related disasters have recently occurred in Japan due to record heavy rains exceeding 1,000 mm in cumulative rainfall and concentrated heavy rains equivalent to an hourly rainfall of 100 mm. These heavy rainfall events are likely to increase in frequency because of the impact of an increase in water vapor content caused by rising temperatures associated with global warming. Today, sediment disaster alert information is made public to ready people for sediment disasters. However, since calculation is based on the actually measured rainfall, announcement is generally made just before a sediment disaster occurs. There is no sufficient time left before people can leave their homes for shelter. This is one of the major problems related to the current system of sediment disaster alert information announcement. In this research, we conducted rainfall prediction based on rainfall simulation that uses numerical calculation meteorological model Weather Research and Forecasting (WRF) as a new evaluation technique that predicts a rainfall event likely to cause a sediment disaster at an early stage or two to three days in advance and made a comparative review of the simulation results with recent rainfall events that actually caused sediment disasters.
    [Show full text]
  • Mitigation of Flood Hazards in Japan
    River Basin Management IV 271 Mitigation of flood hazards in Japan M. Takezawa1, H. Gotoh1 & Y. Takeuchi2 1Nihon University, Tokyo, Japan 2Japan Infrastructure Partners Abstract In recent years, there have been instances of unusually heavy rain in Japan, including rainfall in excess of 200 mm/day. The aim of flood-control planning in Japan since 1945 has been to confine river water to within riverbanks and to ensure that levees protect river basins from flooding. In many rivers, dams were constructed in upstream areas and long levees were built along the riverbanks. The main aim of flood-control planning is to prevent the flooding of river basins by the over-flow of river water across riverbanks; however, as rainfall prediction has recently become difficult because of the effects of global warming, the main emphasis of flood-control planning has shifted from prevention to providing areas of refuge. Flood hazards must be dealt with by ‘hard measures’ such as levees and reservoirs, and ‘soft measures’ such as the provision of hydrological information, regulation of land use, and evacuation advice. In 2001, the Japanese Government made it mandatory for all regional bodies to compile and distribute flood-hazard maps to inform inhabitants of the danger of flooding and the locations of sites of refuge for all inhabitants. It is difficult to provide residents with complete protection from flooding hazards. Many people in Japan live alongside rivers, and Japanese culture has long encompassed wet-rice cultivation. Communities have always lived under the threat of flooding, but the profitability of river water makes it preferable to live close to a river even if flooding occurs at times of heavy rain.
    [Show full text]
  • River and Wetland Restoration: Lessons from Japan
    Articles River and Wetland Restoration: Lessons from Japan KEIGO NAKAMURA, KLEMENT TOCKNER, AND KUNIHIKO AMANO River and wetland restoration has emerged as a worldwide phenomenon and is becoming a highly profitable business. Although researchers worldwide know a lot about restoration practices in Europe and the United States, we have only scant information about the activities in Japan, where more than 23,000 river restoration projects have been conducted during the past 15 years. In Japan, restoration is a daunting business because of the high human population density, urbanization, and harsh environmental conditions. Here we provide an overview of the various restoration activities in Japan and discuss the lessons that we can draw from them. Keywords: conservation, rehabilitation, biodiversity, floodplain, lake s the 21st century begins, the issue of sustainable article, we present a brief characterization of the country’s en- Aecosystem management is providing humanity with vironmental settings, provide a historic overview of river one of its greatest challenges. The problem is particularly and wetland management in Japan, introduce recent agendas complex for freshwater systems, where humans and natural for restoration, and present three key case studies in more systems are inherently linked. Increasing water demands for detail. Finally, we discuss some general lessons that can be an expanding human population competes with protecting drawn from the various restoration activities in Japan. aquatic ecosystems and ecological services (MEA 2005). To- day, rivers and wetlands are among the most threatened A unique environmental setting ecosystems worldwide (Brinson and Malvarez 2002, Embedded within the circum-Pacific volcanic belt called the Malmqvist and Rundle 2002, Tockner and Stanford 2002).
    [Show full text]
  • A Checklist and Bibliography of Parasites of Salmonids of Japan
    ;r c j . 3 $JJ#~,Sci. Rep. Hokkaido Salmon Hatchery, (41) : 1-75 (1987) A Checklist and Bibliography of Parasites of Salmonids of Japan Kazuya NAGASAWA*',Shigehiko URAWA", and Teruhiko AWAKURA*~ Abstract Information on the parasites of salmonids in Japanese waters that was published during the years 1889-1986 is assembled in the form of Parasite-Host and Host- Parasite lists with accompanying bibliography. Ninety-four named species of parasites (18 Protozoa, 5 Monogenea, 21 Trematoda, 7 Cestoidea, 19 Nematoda, 15 Acanthocephala, 1 Hirudinoidea, 1 Mollusca, 1 Branchiura, 5 Copepoda, 1 Isopoda) have been reported, and numerous other parasites not identified to species level are also included. The Parasite-Host list, arranged on a taxonomic basis, includes for each parasite species its currently recognized scientific name, and synonyms oc- curring in the literature, habitat (freshwater or marine), location of infection (site) within the host, species of host(s), known geographical distribution in Japanese waters, and the published source for each host and locality record. Where neces- sary, remarks and footnotes dealing with such topics as taxonomy, nomenclature, and misidentifications are included. The Host-Parasite list summarizes the species of parasites from each species of salmonid and their geographical distributions. Although taxonomic revision is not the aim of the checklist, the following three new combinations and one new synonym are proposed : Microsporidium takedai (Awa- kura, 1974) n. comb. for Nosemu tukedui ; Sterliudochonu ephemeridurum (Linstow, 1872) n. comb. for Cystidicoloides ephemeridurum ; and Salvelinema ishii (Fujita, 1941) new synonym of S. salvelini (Fujita, 1939) n. comb. for Metabronemu salvelini. Con tents Introduction ................................................................................................ 2 Parasite-Host List ......................................................................................
    [Show full text]
  • Landform Changes in an Active Folding Zone Induced by the October 23, 2004, Mid Niigata Earthquake, Japan 1 2 3 4 K
    th The 14 World Conference on Earthquake Engineering October 12-17, 2008, Beijing, China LANDFORM CHANGES IN AN ACTIVE FOLDING ZONE INDUCED BY THE OCTOBER 23, 2004, MID NIIGATA EARTHQUAKE, JAPAN 1 2 3 4 K. Konagai , T. Fujita , T. Ikeda and S. Takatsu 1 Professor, Institute of Industrial Science, University of Tokyo, Tokyo. Japan 2 PhD candidate, Institute of Industrial Science, University of Tokyo, Tokyo. Japan 3 Senior Researcher, Research Institute of Technology, Tobishima Corporation, Japan 4 Researcher, Geotechnical Division, CTI Engineering Co. Ltd., Japan Email: [email protected] ABSTRACT : About 8 months after the October 23rd, 2004, Mid-Niigata Earthquake, the middle reach of the Uono River was flooded in a heavy rain. The flood-ravaged zone was immediately upstream of the most seriously devastated zone in the Mid-Niigata Earthquake, and tectonic deformation caused in this earthquake was considered to be one of the causes of this flooding. Precise digital elevation models (DEMs) before and after the earthquake were obtained with stereoscopy for aerial photographs and Laser Imaging Detection and Ranging technology (LIDAR), respectively, and then compared to detect elevation changes and translations. It was clarified in this study that an about one-kilometer wide brush along Kajigane syncline has shifted about 0.5m eastward causing the area where the Uono River meets the Shinano River to be raised upward by 0.5 to 1.5 meters. KEYWORDS: Mid-Niigata Earthquake, tectonic deformation, post-quake disaster, rehabilitations 1. INTRODUCTION A massive earthquake often causes long-lasting issues, and the October 23rd 2004 Mid-Niigata Earthquake was no exception.
    [Show full text]