UCLA UCLA Electronic Theses and Dissertations Title Probabilistic Evaluation of Seismic Levee Performance using Field Performance Data Permalink https://escholarship.org/uc/item/0jr9p39b Author Kwak, Dong Youp Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Probabilistic Evaluation of Seismic Levee Performance using Field Performance Data A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Civil Engineering by Dong Youp Kwak 2014 © Copyright by Dong Youp Kwak 2014 ABSTRACT OF THE DISSERTATION Probabilistic Evaluation of Seismic Levee Performance using Field Performance Data by Dong Youp Kwak Doctor of Philosophy in Civil Engineering University of California, Los Angeles, 2014 Professor Jonathan P. Stewart, Chair I characterize the seismic fragility of levees along the Shinano River system in Japan using field performance data from two M 6.6 shallow crustal earthquakes. I quantify levee damage using crack depth, crack width, and crest subsidence for 3318 levee segments each 50 m long. Variables considered for possible correlation to damage include peak ground velocity (PGV), geomorphology, groundwater elevation, and levee geometry. For site conditions beneath levees without geophysical measurements, a model for shear wave velocity is proposed considering soil type, penetration resistance, vertical effective stress, geomorphology, and spatial variation of boring-to-boring residuals. Seismic levee fragility is expressed as the probability of exceeding a damage level conditioned on PGV alone and PGV in combination with other variables. The probability of damage (at any level) monotonically increases from effectively zero for PGV < 14 ii cm/s to approximately 0.5 for PGV ≈ 80 cm/s. Of the additional parameters considered, groundwater elevation relative to levee base most significantly affects fragility functions, increasing and decreasing failure probabilities (relative to the PGV-only function) for shallow and deep groundwater conditions, respectively. I demonstrate applicability of the fragility models developed from data in the Shinano River region of Japan (SRJ) for geotechnical conditions along urban levees in the Central Valley region of California (CVC) by comparing penetration resistance data between regions for common soil types and geology. For Holocene flood plain deposits I find penetration resistance for coarse-grained soils in the SRJ and CVC study regions to be similar, whereas for fine-grained soils the CVC sediments are stiffer. For Holocene basin and Pleistocene deposits mostly appeared only in the CVC, both coarse- and fine-grained deposits are stiffer than Holocene floodplain deposits. Spatial correlations of demand and damage are important to consider when evaluating the performance of a complete levee system. I develop a numerical methodology to evaluate the system fragility utilizing the spatial correlations of damage capacity and demands between segments. System level damage probabilities are found to decrease with the strength of these correlations. The damage demand exhibits positive correlation over larger distances than does the damage capacity. iii The dissertation of Dong Youp Kwak is approved. Robert E. Kayen Hongquan Xu Jian Zhang Scott J. Brandenberg Jonathan P. Stewart, Committee Chair University of California, Los Angeles 2014 iv ... To my beloved family. v CONTENTS CONTENTS................................................................................................................................. VI LIST OF FIGURES ...................................................................................................................... X LIST OF TABLES ..................................................................................................................... XV ACKNOWLEDGMENTS ....................................................................................................... XVI CURRICULUM VITAE ....................................................................................................... XVIII 1 STUDY OVERVIEW ........................................................................................................1 1.1 Introduction ..............................................................................................................1 1.2 Scope of Research ....................................................................................................3 2 DATA RESOURCES .........................................................................................................7 2.1 Introduction ..............................................................................................................7 2.2 Damage Description.................................................................................................8 2.3 Earthquake Recordings ..........................................................................................11 2.4 Geomorphology Maps ...........................................................................................16 2.5 Soil Conditions and Levee Geometry ....................................................................18 2.5.1 Embankment and Foundation Soil Conditions ..........................................19 2.5.2 Levee Geometry .........................................................................................21 2.6 Hydrology Conditions ............................................................................................22 2.6.1 Ground Water Level ..................................................................................22 2.6.2 River Water Elevations ..............................................................................23 3 COMPARISON OF SITE CONDITIONS BETWEEN STUDY REGION AND CALIFORNIA’S CENTRAL VALLEY ..............................................................25 3.1 Introduction ............................................................................................................25 3.2 Data Resource ........................................................................................................25 3.2.1 Boring Logs ...............................................................................................25 3.2.2 Soil Compositions ......................................................................................27 vi 3.2.3 Geologic Conditions ..................................................................................28 3.3 Comparison of Penetration Resistance ..................................................................30 3.3.1 Correction on SPT Blow Counts................................................................30 3.3.2 Distribution of Penetration Resistance.......................................................31 3.4 Summary and Discussion .......................................................................................35 4 CORRELATION OF SHEAR WAVE VELOCITY WITH PENETRATION RESISTANCE AND VERTICAL EFFECTIVE STRESS ..........................................37 4.1 Introduction ............................................................................................................37 4.2 Data Resources.......................................................................................................39 4.2.1 Shear Wave Velocity and Penetration Resistance .....................................39 4.2.2 Geomorphic Conditions .............................................................................41 4.2.3 Topographic Conditions.............................................................................42 4.3 Shear Wave Velocity Model Development ...........................................................44 4.3.1 Basic Model ...............................................................................................45 4.3.2 Influence of Geomorphic and Topographic Conditions ............................48 4.4 Spatial Variation of Boring-to-boring Residual .....................................................52 4.5 Comparison of Vs30 values computed using various methods................................55 4.6 Site Conditions on Levee Foundations ..................................................................57 4.7 Summary and Conclusion ......................................................................................60 5 GROUND MOTION AND GROUND WATER ELEVATION ..................................62 5.1 Introduction ............................................................................................................62 5.2 Ground Motion on Levees .....................................................................................62 5.2.1 Description of the Problem ........................................................................63 5.2.2 Proposed Approach ....................................................................................65 5.3 Ground Water Elevation on Earthquake Dates ......................................................67 5.3.1 Interpolation of River Water Elevation ......................................................68 5.3.2 Correlation between Groundwater Elevation and River Elevation ............72 5.3.3 Groundwater Elevation in Levees at the Time of Earthquake ...................75 6 DEVELOPMENT OF FRAGILITY FUNCTION ........................................................77 6.1 Introduction ............................................................................................................77
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages176 Page
-
File Size-