Highlights of the Didymellaceae: a Polyphasic Approach to Characterise Phoma and Related Pleosporalean Genera
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Culture-Independent Analysis of Fungal Endophytes of Wheat Grown in Kwazulu-Natal, South Africa
THE CULTURE-INDEPENDENT ANALYSIS OF FUNGAL ENDOPHYTES OF WHEAT GROWN IN KWAZULU-NATAL, SOUTH AFRICA By Richard Jörn Burgdorf Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY In Microbiology School of Life Sciences College of Agriculture, Engineering and Science Pietermaritzburg South Africa December 2016 Thesis summary Fungal endophytes are of interest due to their diverse taxonomy and biological functions. A range of definitions exists based on their identity, morphology, location and relationship with their host. Fungal endophytes belong to a wide range of taxa and they are categorized by a variety of characteristics. The detection and identification of these fungal endophytes can be performed using culture-dependent and culture-independent methods. These organisms have a range of application in pharmaceutical discovery and agriculture. Agricultural applications include the exploitation of the growth promoting and protective properties of fungal endophytes in crops such as wheat. This important crop is grown in South Africa where biotic and environmental stresses pose a challenge to its cultivation. Fungal endophytes have demonstrated potential to ameliorate these challenges. Future research will reveal how they can be harnessed to fight food insecurity brought about by stress factors such as climate change. Extraneous DNA interferes with PCR studies of endophytic fungi. A procedure was developed with which to evaluate the removal of extraneous DNA. Wheat (Triticum aestivum) leaves were sprayed with Saccharomyces cerevisiae and then subjected to physical and chemical surface treatments. The fungal ITS1 products were amplified from whole tissue DNA extractions. ANOVA was performed on the DNA bands representing S. cerevisiae on the agarose gel. -
ISOLAMENTO E CRESCIMENTO DE Asperisporium Caricae E SUA RELAÇÃO FILOGENÉTICA COM Mycosphaerellaceae
LARISSA GOMES DA SILVA ISOLAMENTO E CRESCIMENTO DE Asperisporium caricae E SUA RELAÇÃO FILOGENÉTICA COM Mycosphaerellaceae Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós- Graduação em Fitopatologia, para obtenção do título de Magister Scientiae. VIÇOSA MINAS GERAIS – BRASIL 2010 LARISSA GOMES DA SILVA ISOLAMENTO E CRESCIMENTO DE Asperisporium caricae E SUA RELAÇÃO FILOGENÉTICA COM Mycosphaerellaceae Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós- Graduação em Fitopatologia, para obtenção do título de Magister Scientiae. APROVADA: 23 de fevereiro de 2010. ________________________________ ___________________________ Profº. Eduardo Seiti Gomide Mizubuti Pesq. Harold Charles Evans (Co-orientador) ________________________________ ________________________________ Pesq. Trazilbo José de Paula Júnior Pesq. Robson José do Nascimento _______________________________ Profº. Olinto Liparini Pereira (Orientador) À toda a minha família, sobretudo aos meus pais, Gilberto e Márcia, pelo apoio incondicional, e Aos meu irmãos, Thami e Julian, pelo carinho e incentivo, e também ao meu namorado Caio pelo estímulo e carinhosa cumplicidade DEDICO ii AGRADECIMENTOS Agradeço primeiramente a Deus pela orientação divina e por me proporcionar força nos momentos de desestímulo e solução nas horas aflitas. À minha família pelo amor, companheirismo, pelos ensinamentos sábios e pela presença e incentivos constantes, principalmente aos meus pais e irmãos por sempre estarem prontos a me ouvir e vibrarem com as minhas conquistas. Ao meu namorado Caio, pelo eterno carinho, cumplicidade, apoio e por sempre ter uma palavra de conforto nos momentos mais difíceis, me incentivando para seguir em frente. Ao Profº Olinto Liparini Pereira pela paciência, dedicação, entusiasmo, companheirismo, incentivo, e principalmente confiança para a execução deste trabalho. -
Paraphaeosphaeria Xanthorrhoeae Fungal Planet Description Sheets 253
252 Persoonia – Volume 38, 2017 Paraphaeosphaeria xanthorrhoeae Fungal Planet description sheets 253 Fungal Planet 560 – 20 June 2017 Paraphaeosphaeria xanthorrhoeae Crous, sp. nov. Etymology. Name refers to Xanthorrhoea, the plant genus from which Notes — The genus Paraconiothyrium (based on P. estuari- this fungus was collected. num) was established by Verkley et al. (2004) to accommodate Classification — Didymosphaeriaceae, Pleosporales, Dothi- several microsphaeropsis-like coelomycetes, some of which deomycetes. had proven abilities to act as biocontrol agents of other fungal pathogens. In a recent study, Verkley et al. (2014) revealed Conidiomata erumpent, globose, pycnidial, brown, 80–150 Paraconiothyrium to be paraphyletic, and separated the genus µm diam, with central ostiole; wall of 3–5 layers of brown tex- from Alloconiothyrium, Dendrothyrium, and Paraphaeosphae- tura angularis. Conidiophores reduced to conidiogenous cells. ria. Paraphaeosphaeria xanthorrhoeae resembles asexual Conidiogenous cells lining the inner cavity, hyaline, smooth, morphs of Paraphaeosphaeria, having pycnidial conidiomata ampulliform, phialidic with periclinal thickening or percurrent with percurrently proliferating conidiogenous cells and aseptate, proliferation at apex, 5–8 × 4–6 µm. Conidia solitary, golden brown, roughened conidia. Phylogenetically, it is distinct from brown, ellipsoid with obtuse ends, thick-walled, roughened, (6–) all taxa presently known to occur in the genus, the closest 7–8(–9) × (3–)3.5 µm. species on ITS being Paraphaeosphaeria sporulosa (GenBank Culture characteristics — Colonies flat, spreading, cover- JX496114; Identities = 564/585 (96 %), 4 gaps (0 %)). ing dish in 2 wk at 25 °C, surface folded, with moderate aerial mycelium and smooth margins. On MEA surface dirty white, reverse luteous. On OA surface dirty white with patches of luteous. -
Biology and Recent Developments in the Systematics of Phoma, a Complex Genus of Major Quarantine Significance Reviews, Critiques
Fungal Diversity Reviews, Critiques and New Technologies Reviews, Critiques and New Technologies Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance Aveskamp, M.M.1*, De Gruyter, J.1, 2 and Crous, P.W.1 1CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands 2Plant Protection Service (PD), P.O. Box 9102, 6700 HC Wageningen, The Netherlands Aveskamp, M.M., De Gruyter, J. and Crous, P.W. (2008). Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Diversity 31: 1-18. Species of the coelomycetous genus Phoma are ubiquitously present in the environment, and occupy numerous ecological niches. More than 220 species are currently recognised, but the actual number of taxa within this genus is probably much higher, as only a fraction of the thousands of species described in literature have been verified in vitro. For as long as the genus exists, identification has posed problems to taxonomists due to the asexual nature of most species, the high morphological variability in vivo, and the vague generic circumscription according to the Saccardoan system. In recent years the genus was revised in a series of papers by Gerhard Boerema and co-workers, using culturing techniques and morphological data. This resulted in an extensive handbook, the “Phoma Identification Manual” which was published in 2004. The present review discusses the taxonomic revision of Phoma and its teleomorphs, with a special focus on its molecular biology and papers published in the post-Boerema era. Key words: coelomycetes, Phoma, systematics, taxonomy. -
Mycosphere Notes 225–274: Types and Other Specimens of Some Genera of Ascomycota
Mycosphere 9(4): 647–754 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/4/3 Copyright © Guizhou Academy of Agricultural Sciences Mycosphere Notes 225–274: types and other specimens of some genera of Ascomycota Doilom M1,2,3, Hyde KD2,3,6, Phookamsak R1,2,3, Dai DQ4,, Tang LZ4,14, Hongsanan S5, Chomnunti P6, Boonmee S6, Dayarathne MC6, Li WJ6, Thambugala KM6, Perera RH 6, Daranagama DA6,13, Norphanphoun C6, Konta S6, Dong W6,7, Ertz D8,9, Phillips AJL10, McKenzie EHC11, Vinit K6,7, Ariyawansa HA12, Jones EBG7, Mortimer PE2, Xu JC2,3, Promputtha I1 1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 3 World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan Province, People’s Republic of China 4 Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China 5 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China 6 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 7 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 8 Department Research (BT), Botanic Garden Meise, Nieuwelaan 38, BE-1860 Meise, Belgium 9 Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Fédération Wallonie-Bruxelles, Rue A. -
Molecular Systematics of the Marine Dothideomycetes
available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora. -
(US) 38E.85. a 38E SEE", A
USOO957398OB2 (12) United States Patent (10) Patent No.: US 9,573,980 B2 Thompson et al. (45) Date of Patent: Feb. 21, 2017 (54) FUSION PROTEINS AND METHODS FOR 7.919,678 B2 4/2011 Mironov STIMULATING PLANT GROWTH, 88: R: g: Ei. al. 1 PROTECTING PLANTS FROM PATHOGENS, 3:42: ... g3 is et al. A61K 39.00 AND MMOBILIZING BACILLUS SPORES 2003/0228679 A1 12.2003 Smith et al." ON PLANT ROOTS 2004/OO77090 A1 4/2004 Short 2010/0205690 A1 8/2010 Blä sing et al. (71) Applicant: Spogen Biotech Inc., Columbia, MO 2010/0233.124 Al 9, 2010 Stewart et al. (US) 38E.85. A 38E SEE",teWart et aal. (72) Inventors: Brian Thompson, Columbia, MO (US); 5,3542011/0321197 AllA. '55.12/2011 SE",Schön et al.i. Katie Thompson, Columbia, MO (US) 2012fO259101 A1 10, 2012 Tan et al. 2012fO266327 A1 10, 2012 Sanz Molinero et al. (73) Assignee: Spogen Biotech Inc., Columbia, MO 2014/0259225 A1 9, 2014 Frank et al. US (US) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this CA 2146822 A1 10, 1995 patent is extended or adjusted under 35 EP O 792 363 B1 12/2003 U.S.C. 154(b) by 0 days. EP 1590466 B1 9, 2010 EP 2069504 B1 6, 2015 (21) Appl. No.: 14/213,525 WO O2/OO232 A2 1/2002 WO O306684.6 A1 8, 2003 1-1. WO 2005/028654 A1 3/2005 (22) Filed: Mar. 14, 2014 WO 2006/O12366 A2 2/2006 O O WO 2007/078127 A1 7/2007 (65) Prior Publication Data WO 2007/086898 A2 8, 2007 WO 2009037329 A2 3, 2009 US 2014/0274707 A1 Sep. -
Taxonomy and Multigene Phylogenetic Evaluation of Novel Species in Boeremia and Epicoccum with New Records of Ascochyta and Didymella (Didymellaceae)
Mycosphere 8(8): 1080–1101 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/8/9 Copyright © Guizhou Academy of Agricultural Sciences Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae) Jayasiri SC1,2, Hyde KD2,3, Jones EBG4, Jeewon R5, Ariyawansa HA6, Bhat JD7, Camporesi E8 and Kang JC1 1 Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, Guizhou Province 550025, P.R. China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3World Agro forestry Centre East and Central Asia Office, 132 Lanhei Road, Kunming 650201, P. R. China 4Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 1145, Saudi Arabia 5Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius 6Department of Plant Pathology and Microbiology, College of BioResources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei 106, Taiwan, ROC. 7No. 128/1-J, Azad Housing Society, Curca, P.O. Goa Velha, 403108, India 89A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy; A.M.B. CircoloMicologico “Giovanni Carini”, C.P. 314, Brescia, Italy; Società per gliStudiNaturalisticidella Romagna, C.P. 144, Bagnacavallo (RA), Italy *Correspondence: [email protected] Jayasiri SC, Hyde KD, Jones EBG, Jeewon R, Ariyawansa HA, Bhat JD, Camporesi E, Kang JC 2017 – Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae). -
Approaches to Species Delineation in Anamorphic (Mitosporic) Fungi: a Study on Two Extreme Cases
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 917 Approaches to Species Delineation in Anamorphic (mitosporic) Fungi: A Study on Two Extreme Cases BY OLGA VINNERE ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2004 ! ""# $"%"" & ' & & ( ) * + ') , -) ""#) . / . 0 1 2 '% . / *+ ) . ) 3$4) 4 ) ) 5/6 3$788#78!9 74 / ' ' & ' & & ' ' & ' & ) ' + +& & & & ' ) : ' & ' ' ' & + & & & 0 1 & ') 5 5 & & & + ' & ' ) - & ; + + ' & ' + ' ' & ' & ) * & ' ' & < & & ) * + ; & ' & & ' + & & & < & < ' ' & & ' ' & ' + ) ' + < ' & ') 5 + < 5 & ' 0 1 0 1 ) 2 & ' + + & 6. = ' & = ' ) . 7 & & 0 1 + + + ) 2 & ' & + & ' ' ' ) - ' & + ' + ' + & ' + ) . & & & & ' + ' ' & ) /= ' & ' & 6. ' ' ' + 7 ' + & ' ' ' ! ) > + ' ' ' + ) * & & ' & & ' = ' & & ' ' & < +') " # $ & ' ? / ( ' & ' % & ' ( -
Biodiversity of Plant Pathogenic Fungi in the Kerala Part of the Western Ghats
Biodiversity of Plant Pathogenic Fungi in the Kerala part of the Western Ghats (Final Report of the Project No. KFRI 375/01) C. Mohanan Forest Pathology Discipline Forest Protection Division K. Yesodharan Forest Botany Discipline Forest Ecology & Biodiversity Conservation Division KFRI Kerala Forest Research Institute An Institution of Kerala State council for Science, Technology and Environment Peechi 680 653 Kerala January 2005 0 ABSTRACT OF THE PROJECT PROPOSAL 1. Project No. : KFRI/375/01 2. Project Title : Biodiversity of Plant Pathogenic Fungi in the Kerala part of the Western Ghats 3. Objectives: i. To undertake a comprehensive disease survey in natural forests, forest plantations and nurseries in the Kerala part of the Western Ghats and to document the fungal pathogens associated with various diseases of forestry species, their distribution, and economic significance. ii. To prepare an illustrated document on plant pathogenic fungi, their association and distribution in various forest ecosystems in this region. 4. Date of commencement : November 2001 5. Date of completion : October 2004 6. Funding Agency: Ministry of Environment and Forests, Govt. of India 1 CONTENTS Acknowledgements……………………………………………………………….. 3 Abstract…………………………………………………………………………… 4 Introduction……………………………………………………………………….. 6 Materials and Methods…………………………………………………….……... 11 Results and Discussion…………………………………………………….……... 15 Diversity of plant pathogenic fungi in different forest ecosystems ……………. 27 West coast tropical evergreen forests…………………………………..….. -
What If Esca Disease of Grapevine Were Not a Fungal Disease?
Fungal Diversity (2012) 54:51–67 DOI 10.1007/s13225-012-0171-z What if esca disease of grapevine were not a fungal disease? Valérie Hofstetter & Bart Buyck & Daniel Croll & Olivier Viret & Arnaud Couloux & Katia Gindro Received: 20 March 2012 /Accepted: 1 April 2012 /Published online: 24 April 2012 # The Author(s) 2012. This article is published with open access at Springerlink.com Abstract Esca disease, which attacks the wood of grape- healthy and diseased adult plants and presumed esca patho- vine, has become increasingly devastating during the past gens were widespread and occurred in similar frequencies in three decades and represents today a major concern in all both plant types. Pioneer esca-associated fungi are not trans- wine-producing countries. This disease is attributed to a mitted from adult to nursery plants through the grafting group of systematically diverse fungi that are considered process. Consequently the presumed esca-associated fungal to be latent pathogens, however, this has not been conclu- pathogens are most likely saprobes decaying already senes- sively established. This study presents the first in-depth cent or dead wood resulting from intensive pruning, frost or comparison between the mycota of healthy and diseased other mecanical injuries as grafting. The cause of esca plants taken from the same vineyard to determine which disease therefore remains elusive and requires well execu- fungi become invasive when foliar symptoms of esca ap- tive scientific study. These results question the assumed pear. An unprecedented high fungal diversity, 158 species, pathogenicity of fungi in other diseases of plants or animals is here reported exclusively from grapevine wood in a single where identical mycota are retrieved from both diseased and Swiss vineyard plot. -
A Polyphasic Approach to Characterise Phoma and Related Pleosporalean Genera
available online at www.studiesinmycology.org StudieS in Mycology 65: 1–60. 2010. doi:10.3114/sim.2010.65.01 Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera M.M. Aveskamp1, 3*#, J. de Gruyter1, 2, J.H.C. Woudenberg1, G.J.M. Verkley1 and P.W. Crous1, 3 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Dutch Plant Protection Service (PD), Geertjesweg 15, 6706 EA Wageningen, The Netherlands; 3Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands *Correspondence: Maikel M. Aveskamp, [email protected] #Current address: Mycolim BV, Veld Oostenrijk 13, 5961 NV Horst, The Netherlands Abstract: Fungal taxonomists routinely encounter problems when dealing with asexual fungal species due to poly- and paraphyletic generic phylogenies, and unclear species boundaries. These problems are aptly illustrated in the genus Phoma. This phytopathologically significant fungal genus is currently subdivided into nine sections which are mainly based on a single or just a few morphological characters. However, this subdivision is ambiguous as several of the section-specific characters can occur within a single species. In addition, many teleomorph genera have been linked to Phoma, three of which are recognised here. In this study it is attempted to delineate generic boundaries, and to come to a generic circumscription which is more correct from an evolutionary point of view by means of multilocus sequence typing. Therefore, multiple analyses were conducted utilising sequences obtained from 28S nrDNA (Large Subunit - LSU), 18S nrDNA (Small Subunit - SSU), the Internal Transcribed Spacer regions 1 & 2 and 5.8S nrDNA (ITS), and part of the β-tubulin (TUB) gene region.