<<

1

1 The : an extruding sheath fold basement nappe in the Lepontine

2 dome of the Central Alps

3

4 Albrecht Steck, Jean-Luc Epard, Henri Masson

5 Institut des Sciences de la Terre, Université de Lausanne, bâtiment Geopolis, Dorigny, 1015 Lausanne,

6 .

7 e-mail: [email protected]

8

9 Abstract

10

11 The Lepontine gneiss dome represents a unique region of the Central Alps where Oligocene-Miocene

12 facies grade rocks and fold of the deepest tectonic level of the Alpine orogenic belt are

13 exposed in a tectonic window. The Cenozoic structures of the Maggia nappe reveals a giant tens of kilometre

14 scale tubular fold structure that cross-cut through the surrounding lower Penninic nappes from its root situated in

15 the southern steep-belt of the Alps near . The Mesozoic sedimentary cover of the Maggia nappe is

16 typical for the stratigraphic domain. The age of formation of the lower Penninic fold-nappes by ductile

17 detachment of the upper European crust during its underthrusting below the higher Penninic and Austroalpine

18 orogenic lid and Adriatic indenter was estimated between 40 and 30 Ma. Maximal pressures of 8-9 kbars and

19 temperatures of 600-700 °C were attended during and after the nappe emplacement some 30-22 Ma ago. The

20 Maggia and surrounding nappes are crosscut by the isograds of the Barrovian regional .

21

22 Keywords Swiss Alps, Alpine tectonics, Penninic nappes, sheath fold structure

23

24 1. Introduction

25

26 The block diagram of the Central Alps of Switzerland and illustrates the tectonic position of

27 Maggia nappe in the Lepontine gneiss dome (Fig. 1, modified after Steck, 2008)). The geology of the Lepontine

28 gneiss dome of the Central Alps of Switzerland and Italy is documented on numerous geological maps and 2

29 stratigraphic studies of the twenties century (e.g. Geologische Karte und Tektonische Karte der Schweiz (2005).

30 The here considered lower Penninic nappes are composed of polycyclic basement intruded by Permo-

31 Carboniferous and overlain by their autochthonous Mesozoic-Cenozoic sedimentary cover of European

32 affinity (Steck et al., 2013). A modern geological study of the Central Alps started with the fieldwork of Schmidt

33 & Preiswerk (1905), Preiswerk et al. (1934) and Niggli et al. (1936) after the discovery of the lower Penninic

34 fold nappe structures during the perforation of the Simplon railway gallery by Schardt (1903). The first

35 description of the Antigorio fold nappe with its amplitude of 9 km by Gerlach (1869) was followed by the

36 confirmation of the fold nappe geometry of the Simplon structures and the higher Saint Bernard and Monte Rosa

37 nappes by Schardt (1903), Schmidt & Preiswerk (1905), Argand (1916), Milnes (1974), Steck (1984), Escher

38 (1988) and Froitzheim (2001). Schmid et al. (2004) and Berger et al. (2005) considered the Maggia nappe as a

39 thrust sheet situated in a high tectonic level of the lower Penninic nappe stack and attributed it to the middle

40 Penninic Briançonnais domain as already proposed by Preiswerk et al. (1934). The high tectonic position on top

41 of the Cimalunga unit was also formerly proposed by Steck et al. (2013). New field work and the integration of

42 the observations of Bächlin et al. (1974) and Spicher and Wenk (1981) conducted us to the conclusion, that the

43 Maggia nappe plunges in the southern steep belt of the Alps as a tubular fold structure below the higher

44 Mergoscia and Cimalunga units (Fig. 2). The interpretation of the Maggia nappe as a sheath fold like tubular

45 fold structure will be discussed in the present study. The study of the Mesozoic Cristallina sedimentary cover of

46 the northern Sambuco lobe of the Maggia nappe similar to that of the Helvetic Gotthard massif conducted us to

47 the conclusion that the Maggia nappe belongs to the Helvetic or European domain. Some units of the

48 suture, as the Mergoscia and Cimalunga Mélanges, possess relicts of an eclogitic late Eocene high-pressure

49 metamorphism. The entire nappe pile was afterwards formed concomitant with and overprinted by an Oligocene-

50 Miocene Barrovian-type orogenic regional metamorphism. The aim of this study is to describe the enigmatic

51 Maggia nappe in the frame of the Alpine and discuss possible models of its formation.

52

53 2. Geological Setting of the Maggia and surrounding nappes.

54

55 The Lower Penninic nappe stack is composed from base to top of the Leventina, Verampio, Antigorio, Simano

56 (the latter subdivided in Simano and Campo Tencia units, after Preiswerk, 1934), Lebendun, Maggia, Mergoscia,

57 Cimalunga, Adula, Orselina-Bellinzona, Monte Leone and Valais calc-schist nappes that were detached from the

58 upper European crust during its SE-directed underthrusting below the middle and higher Penninic nappes, the 3

59 Dent Blanche-Sesia thrust sheet and Adriatic indenter (Table 1). Milnes (1974; Steck, 1984; Steck et al. 2013)

60 considered the Lower Penninic nappes of the Lepontine gneiss dome as fold-nappes. The fold-nappe geometry of

61 the Maggia nappe is well exposed in its northern Sambuco lobe with its autochthonous Mesozoic sedimentary

62 cover the Cristallina unit on its upper and lower fold limb (Figs. 2 and 4).

63 The deepest level of the Alpine nappe stack is overprinted by an amphibolite facies grade Barrovian-

64 type regional metamorphism (e.g. Niggli & Niggli, 1965; Trommsdorff, 1966; Engi et al., 1995; Rubatto et al.,

65 2009). An older late Eocene facies metamorphism affected the Mergoscia, Cimalunga and Adula nappes

66 (e.g. Heinrich, 1986; Trommsdorff, 1990; Pfeifer et al. 1991; Becker, 1993; Gebauer, 1996; Brower et al. 2005;

67 Herwartz et al. 2011; Sandmann et al. 2014). The external limit of the Oligocene-Miocene amphibolite facies

68 grade metamorphism is indicated by the albite An0-3- = plagioclase An >17-hornblende-isograd

69 (Wenk & Keller, 1969; the isograd position is modified in the Monte Rosa region after Steck et al., 2001, 2015).

70 The nappe stack of the Central Lepontine gneiss dome is represented on Table 1 and the Alpine structures of the

71 central part of the Lepontine gneiss dome are illustrated on the map and profiles of Figs. 2 and 3.

72 The Maggia nappe was for a first time represented on a geological map of the Lepontine gneiss dome

73 by Preiswerk,1932 in Niggli et al. (1936) and Preiswerk et al. (1934) as a NW-SE oriented synform

74 perpendicular to the SW-NE trend of the Central Alps. Already Preiswerk (1919), in a structural study of the

75 Campolungo pass region recognised the superposition of the Maggia transverse synform on the deeper Antigorio

76 nappe to the west and the Campo Tencia and Simano (= gneiss) nappes to the east. Preiswerk’s model

77 was confirmed by our own observations (Steck, 1998; Steck et al., 2013). Grütter and Kündig considered in the

78 same review paper of Niggli et al. (1936) the Maggia nappe as a tectonic root that separates the deeper Antigorio

79 from the higher Campo Tencia nappe. An idea that was also suggested by other studies (Grujic & Mancktelow,

80 1996, Maxelon & Mancktelow, 2005, Rütti et al., 2005). The latter model is contrary to the Alpine structural

81 data collected by Preiswerk (1919), Wenk (1955), Steck (1998) and correctly documented on Fig 12 of Maxelon

82 & Mancktelow (2005). The superposition of the Antigorio and Campo Tencia nappes by the frontal Maggia

83 nappe proposed by Preiswerk in Niggli et al. (1936) is confirmed by new fieldwork on the Pizzo Massari – Pizzo

84 Prevat geological profile (Fig. 4). The frontal fold hinge of the Campo Tencia Nappe and the sedimentary

85 syncline of the Campolungo pass transect form a down facing fold structure testifying that the Sambuco klippe is

86 situated above the Campo Tencia nappe front. The geometry of the down facing Mogno Mesozoic sedimentary

87 syncline was also confirmed by observations in the Prato-Camblee water gallery (personal communication by

88 Franz Keller, Fig. 5; Steck et al. (2013). 4

89 Keller et al. (1980) separate on their 1:25’000 scale geological map “Campo Tencia” the northern

90 Sambuco klippe from its southern continuation the Maggia synform. The Alpigia gneisses, separating the

91 Sambuco klippe from the southern Maggia synform, were attributed by Keller et al. (1980) to the Antigorio

92 nappe. This attribution is supported by the identical Early Permian U-Pb zircon ages of the tonalites,

93 granodiorites and granites dated between 289 ± 2 Ma and 296 ± 2 Ma by Bergomi et al. (2007) in the Antigorio

94 nappe and between 288 ± 2 and 294 ± 2 Ma in the Alpigia unit by Hirsiger et al. (2015). The tonalites,

95 granodiorites and granites of the Matorello gneiss in the northern Sambuco klippe and the similar Cocco gneiss

96 in the centre of the Maggia synform have a Late Carboniferous age dated at 300-304 ± 8 Ma for the Matorello

97 and at 308 ± 7 Ma for the Cocco gneiss (U-Pb zircon ages, Bussien et al., 2011). The latter data corroborate the

98 Keller et al. (1980) proposal that the Sambuco spoon and the Maggia synform belong to the same Maggia

99 complex and not the Sambuco unit to the Helvetic and the southern Maggia synform to the Briançonnais domain

100 as proposed by Berger et al. (2005). The Early Permian Mezzalama of the Monte Rosa nappe and the

101 Randa-granite of the Briançonnais Siviez-Mischabel basement are dated at 270±4 Ma (Bussy in Steck et al.

102 1999; Pawlig & Baumgartner, 2001). Based on the structural study of the northern and middle part of the

103 Maggia synform we first concluded that the Maggia synform continues to the south and superpose there the

104 deeper Mergoscia and Cimalunga nappes (Steck et al. 2013), an idea also supported by Schmid et al. (2004,

105 2017), Berger et al. (2005), Berger & Mercolli (2006) and Bousquet et al. (2012). New field observations on the

106 southern end of the Maggia nappe conducted us to a totally different model of the Maggia structure that we

107 discuss later in this study. The Maggia nappe plunges near Bellinzona as a tubular fold below the Mergoscia

108 nappe in the southern steep belt (Chapter 3. Alpine structures).

109 Preiswerk in Niggli et al. (1936) considered the Maggia nappe as a synformal klippe situated on top of

110 the Lower Penninic nappes and as a lateral equivalent of the Middle Penninic Sankt-Bernhard nappe of the

111 Briançonnais domain. This attribution to the Briançonnais domain was later adopted by Schmid et al. (2004;

112 2017), Berger et al. (2005) and Bousquet et al. (2012). It is in agreement with Preiswerk’s idea based on the high

113 level tectonic position of the Maggia nappe. New stratigraphic studies of the Mesozoic cover sediments suggest

114 an attribution of the Maggia nappe to the Helvetic palaeographic domain (Masson & Steck, 2015). The Sambuco

115 klippe of the northern Maggia nappe retains its autochthonous stratigraphic cover, the Cristallina Mesozoic

116 sediments of a typical Helvetic affinity, similar to the autochthonous cover of the Gotthard massif (Liszkay-

117 Nagy, 1965). The Triassic starts with a thin band of 30-50 cm of quartzose and arkosic sandstone overlain by a

118 band of < 2 m of white dolomite. The latter dolomite is followed by the Naret Formation, a series of 100 m of 5

119 heterogeneous, , staurolite and kyanite bearing sandstones with some thin layers of yellow calcite and

120 dolomite marbles similar to the Rhaetian of the Gotthard cover, the lower and upper garnet schists of Liszkay-

121 Nagy (1965). The Lower and Middle Jurassic is composed of variable types of some garnet, kyanite and

122 staurolite bearing graphitic sandstones and conglomerates, gritty and banded marbles, overlain by pure Upper

123 Jurassic white calcite marble on top. The Pertusio zone, at the limit of the Maggia and Campo Tencia nappes, is

124 composed of complex refolded centimetre-decimetre slices of quartzite and white calcite marble of a probable

125 middle and upper Jurassic age respectively and the up to ten metre white marbles of the zone at the limit

126 between the Maggia and Mergoscia nappes of a probable Upper Jurassic age are interpreted as the reduced

127 Mesozoic cover of the Maggia nappe forming the southern Helvetic continental margin. The fossil-free and

128 strong deformation of these sedimentary slices makes their stratigraphic interpretation questionable and open.

129 Never the less it is herein suggested that the Sambuco-Maggia nappe belongs together with the Antigorio and the

130 Gotthard fold nappe to the Helvetic stratigraphic domain. The Campolungo Triassic sedimentary cover of the

131 Campo Tencia nappe is characterized by its huge over 300m wide zone of banded black and white dolomitic

132 marbles overlying a thin band of basal quartzite. It may be attributed to a transition zone between the Helvetic

133 and Briançonnais domains. A similar large series of Triassic dolomitic marbles characterize the units of the

134 Briançonnais domain (Ellenberger, 1953; Escher, 1988)

135 The Mergoscia and Cimalunga nappes are composed of tectonic mélanges of polycyclic basement

136 gneisses, Meso-Cenozoic continental and marine sediments and oceanic ophiolites, successively overprinted by

137 an approximate Late Eocene eclogite and Oligocene-Early Miocene amphibolite facies regional metamorphism

138 (Engi et al. 1995; Rubatto et al. 2009; Sandmann et al. 2014). The Orselina nappe is a similar tectonic mélange

139 overprinted by the Oligocene-Early Miocene amphibolite facies metamorphism but without eclogite facies relicts

140 (Fig. 2; Steck et al., 2013; Pfeifer et al. 2018). The Mergoscia and Cimalunga tectonic mélanges and the Adula

141 nappe with their Late Eocene eclogite facies metamorphism (Becker, 1993; Brouwer et al. 2005; Herwartz et al.

142 2011; Sandmann et al. 2014), the Bosco and Bombogno-Orselina-Bellinzona mélanges, the Monte Leone and

143 Valais calc-schist nappes mark a major zone of deep subduction and accretion in the Nappe stack of the

144 Lepontine Alps situated below the middle Penninic nappes of the Briançonnais paleogeographic domain. This

145 Late Eocene zone of deep subduction and accretion in the Alpine thrust belt is named Valais suture on Table 1

146 (Engi et al. 1995; 2001; Gebauer, 1996; Cavargna-Sani et al. 2014).

147

148 3. Alpine structures of the Sambuco – Maggia nappe 6

149

150 The decode of the Alpine structure and history of the Maggia nappe was a main subject of the present field work.

151 The Maggia unit forms a high Alpine nappe of the Lepontine gneiss dome. It overlies the deeper Antigorio

152 nappe to the west and Campo Tencia and Verzasca nappes to the east. The measured fold axis and stretching

153 lineations of this study corroborate the data of the structural map of the Alps by Wenk (1955). The gneiss

154 structures result from multiple ductile folding during and after the nappe emplacement. The unequivocal

155 distinction of the successive formed folds and their axial surface schistosities was established in the Helvetic Aar

156 and Gotthard F2 basement folds and in the frontal parts of the lower Penninic F2-F3 Verampio, Antigorio,

157 Maggia and higher basement fold nappes (Liszkay-Nagy, 1965; Masson et al. 1980; Steck, 1984, 1987, 1990,

158 1998, 2011). Four schistosities S1-S4 and six phases of folding F1-F6 are distinguished in the Maggia and

159 surrounding nappes. Late crenulation folds F7 with a sub-horizontal to low-angle west dipping axial surface

160 were formed during a phase of vertical shortening below the Simplon normal fault (Table 2, Steck, 1987). Note

161 that the first alpine schistosity S1, sub-parallel to the lithologic banding observed by Liszkay-Nagy (1965 and

162 this study) in the Nufenen-pass region is missing in many descriptions (Huber et al. 1980; Huber, 1981; Maxelon

163 & Mancktelow, 2005). This early first schistosity is also clearly observable in the Mesozoic sediments of the

164 autochthonous cover of the Aar and Gotthard massifs F2 basement folds. But first folds F1 are infrequent and

165 rarely demonstrable (Steck, 1984, 1987, 2011).

166 Early schistosites S1-S3 and a SE-plunging stretching lineation L1-L3 were developed in the gneiss

167 fold nappes during their NW-directed ductile shear décollement from the upper European crust during its

168 underthrusting below the middle and higher Penninic nappes, the Dent Blanche-Sesia thrust sheet and Adriatic

169 indenter. A dominant and late axial surface schistosity S4, post nappe folds F4 and an associated SE-plunging

170 stretching lineation L4 were developed after the NW-directed nappe emplacement, creating the southwest-

171 verging Verzasca antiform and Sambuco-Maggia synform during a phase of dextral shear in the zone of Alpine

172 collision between the European plate and the Adriatic indenter (Fig. 2 and 3). The pre-existing NW-directed S1-

173 S3-related sense-of-shear structures were inverted by rotation around the axis and stretching lineation of the

174 younger Verzasca F4-antiform (Allaz et al., 2005; Steck et al., 2013). The unequivocal discernment of the

175 different phases of schistosities and stretching lineations is difficult and in many places impossible. The final

176 planar and linear gneiss structures result from internal rotation and transposition by continuous ductile

177 deformation (Figs. 2 and 3). The post-nappe steepening of the southern Alpine belt with the formation of the 7

178 Vanzone and Cressim F5 backfolds occurred during the so-called Argand’s phase of backfolding (Fig. 1 and

179 Table 2; Argand, 1911; Milnes, 1974).

180 The northern end of the SE-plunging Maggia F4-synform was later overprinted by younger NE-trending

181 Foroglio and Cristallina F6 folds creating a type 2-fold interference pattern after Ramsay (1967). The Neogene

182 uplift of the Lepontine gneiss dome since over 18 Ma (Steck & Hunziker, 1994) accompanied by its erosion

183 were responsible for the separation of the Sambuco lobe from its southern continuation the Maggia synform

184 (Figs. 1 and 2).

185 The fold axes and parallel stretching lineations of the synformal Maggia nappe plunge from north to

186 south, between the Val , , Bignasco and the Verzasca reservoir, over a distance of 30 km with a

187 regular low angle of 0-10° to the SE. To the south-east of the Verzasca reservoir the fold axes plunge increases

188 rapidly from 10° to 70°, ending in an east closing steep plunging F5 antiform of the Mergoscia nappe (Fig. 2).

189 New detailed field work in the Sementina and upper Gorduno valleys confirm the geological observations of

190 Bächlin et al. (1974): The Ruscada- and Cocco-gneisses of the Maggia nappe dip to the SE with a steep angle of

191 over 75° in a tubular fold structure below the eclogitic Mergoscia mélange nappe (Fig. 2). It is “der

192 schlundartige Wirbel von Bellinzona”, the gorge like whirl of Bellinzona represented by Wenk (1955) on his

193 map of Alpine fold axes. Spicher & Wenk (1981) describe the steep converging structure near Bellinzona as a

194 late vortex-like root zone, in a neutral sense of the term, formed under highly ductile conditions in Oligocene-

195 Early Miocene time, after the nappe emplacement and during a late orogenic phase of folding and re-

196 crystallisation in the deep mobile belt (Read 1955) of the Alps. It is herein considered that the on the geological

197 map established sheath fold like tubular structure originate from the overprint and squeeze of the Maggia F1-F3

198 thrust root during the late F4-F5 folding phases related to dextral shear in the southern steep belt of the Alps

199 (Figs. 2, 3 and 6). The southern root of the Maggia nappe possesses the geometry of a tubular sheath fold like

200 structure surrounded by the Antigorio and Campo Tencia-Verzasca nappes at its base and the eclogitic

201 Mergoscia and Cimalunga mélanges on the top (Fig. 2 and 6). The geometry of this sheath fold like tubular

202 structure results from multiple folding and not from the mechanism of simple shear alone proposed by the

203 Cobbold & Quinquins (1980) model. Sheath folds or sheath fold like structures of centimetre- to metre-

204 dimension are common in other Alpine ductile thrust zones, for instance at the base of the Helvetic Doldenhorn

205 thrust fold (Krayenbühl & Steck, 2009), there characterised by multiple ductile folding. Lacassin and Mattauer

206 (1985) described a kilometre-scale sheath fold in the Mattmark region on top of the NW-directed Monte Rosa

207 nappe thrust. The pictures of fold interference patterns published by these authors suggest also a zone of multiple 8

208 shear folding. Cobbold and Quinquins (1980) discussed and studied experimentally a sheath fold model as a

209 mechanism of simple shear affecting a pre-existing deflection of an irregular surface. The formation of the

210 Maggia sheath fold like tubular structure results not from the process of simple shear alone described in the

211 Cobbold and Quinquins (1980) model, but probably by a more complex process of multiple shear folding in a

212 thrust zone. The intersection of folds of successive generations may be an ideal site for the formation of a sheath

213 fold like structure.

214

215 4. Age and pressure-temperature conditions of the ductile Lower Penninic nappe

216 detachment zone

217

218 The ductile detachment of the Lower Penninic nappes from the upper European crust started at the base of the

219 Alpine Middle and Upper Penninic nappe stack, an overburden of 25 km, after its emplacement dated between

220 52-35 Ma (Markley et al., 1998; Skora et al., 2015) and after or synchronous of the 40-35 Ma of the Paleocene-

221 Eocene planktonic foraminifera in the Sion-Courmayeur zone, Valais flysch (or contourite) nappe near Sion

222 (Bagnoud et al., 1998) and before the formation of the Vanzone and Cressim back folds and the Southern Steep

223 belt of the Central Alps since about 30 Ma (Milnes, 1974; Berger et al., 1996; Steck and Hunziker, 1994; Schmid

224 et al., 1996; Steck et al., 2013). The detachment of the Lower Penninic nappes in the zone of underthrusting of

225 the European crust below the higher Alpine orogenic lid occurred consequently in the Early Oligocene between

226 40 and 30 Ma by ductile shear under increasing greenschist to amphibolite facies metamorphic conditions and

227 this before reaching the thermal peak. Stable assemblages of kyanite-staurolite-garnet-biotite crystallised during

228 the formation of the main S3 schistosity and the NW-directed L3 shear and remained stable during the W-

229 verging Verzasca and Maggia F4 folding. Most of the acicular or prismatic hornblende, staurolite and kyanite

230 synkinematic crystals are oriented parallel to L2-3 stretching lineations, others postkinematic are non-oriented

231 (Allaz et al. 2005). Maximum pressures reaching 8-9 kbars and temperatures of 600-700°C where attended in the

232 Maggia region (Todd & Engi, 1997; Allaz et al., 2005; Brower et al., 2005; Burri et al. 2005; Boston et al. 2017).

233 The isograds of the Barrovian regional metamorphism cut through the nappe limits (Fig. 7, e.g. Niggli & Niggli,

234 1965; Trommsdorff, 1966; Wenk & Keller, 1969; Burri et al. 2005). The northern limit of the over 6 km wide

235 Tertiary migmatite zone cross the southern root of the Maggia nappe to the south of the village of Maggia and

236 occupies the southern steep belt of the Alps from the entrance of the Valle and to the west to

237 the Bergell intrusion to the east (Fig. 7, Burri et al., 2005; Steck et al., 2013). In situ migmatites were dated in 9

238 the Bellinzona region by the age of Cenozoic synkinematic leucosome veins of the high amphibolite facies grade

239 metamorphism of the K-feldspar-silimanite zone at 32-22 Ma with U-Pb SHRIMP zircon ages by Rubatto et al.

240 (2009), allanite U-Pb ages by Gregory et al. (2012) and U-Pb monazite ages by Boston et al. (2017). These

241 Cenozoic migmatites are of the same age as cross cutting crustal derived pegmatites and aplites (Romer et al.,

242 1996; Schärer et al., 1996). The concentration of Tertiary migmatite and discordant aplites and pegmatites in the

243 southern steep belt and the geometry of the Andesine An >40 amphibolite-isograd around the southern Maggia-

244 root suggest a greater terrestrial heat flow in vertical zones of the Lepontine gneiss dome (Fig. 7, Wenk &

245 Keller, 1969). Schärer et al. (1996) suggest that frictional heating in the dextral shear zone of the southern steep

246 belt of the Alps may also be responsible for this phase of post-nappe heating. This signifies that the up heating to

247 thermal peak conditions of the southern steep belt outlast the pre-existing extrusion and emplacement of the

248 Maggia nappe. Thermal peak conditions and emplacement of crustal derived aplites and pegmatites are coeval to

249 a Late Oligocene to Miocene incipient phase of vertical shortening and lateral, mainly SW-NE directed

250 extension of the Alpine nappe stack, dextral shear in the southern steep belt of the Alps and the formation of the

251 Simplon low-angle detachment of the Lepontine dome and Dent Blanche depression pull-apart structure (Fig. 1;

252 Steck, 1990; Steck & Hunziker, 1994; Steck et al., 2013).

253

254 5. Discussion of models for the extrusion structures in fold nappes.

255

256 A fundamental question exists in the interpretation of the Penninic nappes, are they simple thrust sheets as the

257 Sesia-Dent Blanche (Salassic) and Australpine thrust sheets, are they folds deforming crustal sheets or are they

258 nappes formed by a mechanism of ductile folding alone. The question is still discussed. Froitzheim et al. (1996)

259 and Schmid et al. (2004) consider the Maggia nappe as a thrust sheet. In contrast, Wenk (1955), Milnes (1974),

260 Maxelon & Mancktelow (2005), Steck (1984, 2008) and Steck et al. (2013) interpreted the Lower Penninic

261 nappes of the Lepontine gneiss dome as fold-nappes formed by multiple ductile shear folding and decollement of

262 the upper European crust under greenschist to amphibolite facies metamorphic conditions during its south

263 directed underthrusting below the higher Penninic and Salassic orogenic lid and Adriatic indenter. The geometry

264 and penetrative texture of the gneiss fold nappes suggest a mechanism of ductile folding under greenschist to

265 amphibolite facies conditions. The study of Cenozoic deformed granitic basement rocks of the Alpine Aar

266 massif – Leventina nappe transect by Voll (1976) reveal their ductile behaviour related to the quartz

267 synkinematic crystallisation at temperatures over 300°C and feldspar crystallization at amphibolite facies 10

268 conditions. Early brittle thrusting under lower temperature conditions cannot completely be excluded. A model

269 for fold nappe extrusion by ductile squeezing of the deep zone of the Europe-Adria collision is suggested by

270 Merle & Guillier (1989). A more realistic mechanism of ductile detachment of basement gneiss folds by pure

271 and simple shear from the under-thrust European crust was proposed by Epard & Escher (1996), Escher &

272 Beaumont (1997) and Pfiffner et al. (2000). Field data confirm the fold nappe geometry of the Maggia nappe

273 front. The northern Sambuco lobe of the Maggia nappe possess slices of its autochthonous Mesozoic

274 sedimentary cover on its upper and lower fold limb. The sedimentary cover is farther south reduced and strongly

275 deformed to thin quartzite and limestone bands of the Pertusio and Someo cover series (Fig. 2 and 4). The

276 question of the autochthony of these sediments is open. It is herein suggested that these slices of Mesozoic

277 sediments represent a reduced autochthonous cover of the Maggia nappe and the southern border of the

278 European continental margin. The Maggia nappe roots in the southern steep belt of the Alps in direct contact

279 with the eclogitc Mergoscia and Cimalunga mélanges units (Fig. 2 and Table 1; Bächlin et al.1974). It is

280 probable that the Maggia nappe emplacement is related to the deep subduction and later extrusion and accretion

281 of these ultra-high pressure units in the Valais suture (Table 1). The action of strong buoyancy and diapirism of

282 deep subducted and later extruded and accreted upper crustal slabs was suggested in the model of Chemenda et

283 al. (1995). A vertical pull and imbrication of the Maggia fold nappe by the deep subducted high pressure rocks

284 of the Valais suture during their extrusion is probable. Engi et al. (2001) suggest the notion of tectonic

285 accretionary channel (TAC) for such enigmatic zones of deep subduction, extrusion and accretion of the Alps.

286

287 6. Conclusions

288

289 The tectonic window of the Central Alps allows the study of the structural variation through superposed

290 tectonic levels of the orogenic belt. It permits a modern image of the so-called “Stockwerk Tektonik” of

291 Wegmann (1953). NW-directed thrusting and multiple ductile folding of detached European crustal rocks

292 characterise the deepest exposed tectonic level of the Central Alpine nappe stack. The Maggia nappe represents a

293 north-directed pipe-like extruding fold-nappe structure. It has the geometry of a tubular sheath fold like structure

294 that roots in the southern steep belt of the Central Alps (Figs.2 and 6). Its Mesozoic stratigraphic cover assigns

295 the Maggia fold nappe to the Helvetic paleogeographic domain. It is bordered by the higher tectonic units of the

296 Valais suture composed of the high pressure Mergoscia and Cimalunga mélanges, the Adula high pressure

297 nappe, the medium pressure Orselina mélange and the Valais calc-schist nappe situated below the Middle 11

298 Penninic nappes of the Briançonnais domain and the Monte Rosa nappe. The formation of the Lower Penninic

299 nappe pile occurred between some 40 and 30 Ma ago by ductile detachment of the upper European crust starting

300 with high-pressure conditions in the Mergoscia and Cimalunga mélanges followed by increasing greenschist and

301 amphibolite facies conditions in the zone of underthrusting below the higher orogenic lid and Adriatic indenter.

302 The thermal peak of the Tertiary Barrovian regional metamorphism was attended between 30 and 22 Ma after

303 the Alpine nappe emplacement and related to the uplift and E-W extension of the Oligocene-Miocene Lepontine

304 gneiss dome structure.

305

306 Acknowledgments We thank Djordje Grujic and an anonymous reviewer for their constructive suggestions that

307 helped improving this manuscript and Prof. Wolf-Christian Dullo for editorial handling and comments. 12

308 References

309

310 Allaz, J., Maeder, X., Vannay, J.-C. & Steck, A. (2005). Formation of alumosilicate-bearing quartz veins in

311 the Simano nappe (Central Alps): structural, thermobarometric and oxygen isotope constraints.

312 Schweizerische Mineralogische und Petrographische Mitteilungen 85, 191-214.

313 Argand, E. (1911). Les nappes de recouvrement des Alpes Pennines et leurs prologements structuraux.

314 Beiträge zur Geologischen Karte der Schweiz [N.F.] 31, 26.

315 Bächlin, R., Bianconi, F., Codoni, A., Dal Vesco, E., Knoblauch, P., Kündig, E., Reinhard, M., Spänhauer,

316 F., Spicher, A., Trommsdorff, V. & Wenk, E. (1974). Blatt 1313 Bellinzona. Geologischer Atlas der

317 Schweiz 1:25’000, Federal Office of Topography, Ch-3084 Wabern.

318 Bagnoud, A., Wernli, R., Sartori, M. (1998). Découverte de foraminifères planctoniques paléogènes dans la

319 zone de Sion-Courmayeur à Sion (Valais, Suisse). Eclogae geologicae Helvetiae 91/3, 421-429.

320 Becker, H. (1993). Garnet and eclogite Sm-Nd mineral ages from the Lepontine dome (swiss

321 Alps): New evidence for Eocene High-pressure metamorphism in the central Alps. Geology 21, 599-602.

322 Berger, A. & Mercolli, I. (2006). Tectonic and petrographic map of the Central Lepontine Alps. Carte

323 geologica speziale N. 127, 1:100’000, Federal Office of Topography, Ch-3084 Wabern.

324 Berger, A., Mercolli, I. & Engi, M. (2005). The central Lepontine Alps: Notes accompanying the tectonic

325 and petrographic map sheet Sopra Ceneri (1:100’000). Schweizerische Mineralogische und Petrographische

326 Mitteilungen 85, 109-146.

327 Berger, A., Rosenberg, C. & Schmid, S.M. (1996). Ascent, emplacement and exhumation of the Bergell

328 pluton within the Southern Steep Belt of the central Alps. Schweizerische Mineralogische und

329 Petrographische Mitteilungen 76, 357-382.

330 Bergomi, M.A., Tunesi, A., Shi, Y.-R., Colombi, A. & Liu, D.-Y. (2007). SHRIMPH U-Pb geochronical

331 constraints of pre-Alpine magmatism in the Lower Penninic units of the Ossola Valley (Western Alps,

332 Italy), Geochronological Research Abstracts, 9, 07780, European geosciences Union.

333 Bianconi, F. (1971). Geologia e petrografia delle regione del Campolungo. Materiali per la Carta

334 Geologica della Svizzera N.S. 142, 238 p.

335 Bianconi, F., Beffa, F.A., Steiger, R.H., Günthert, A., Hasler, P., Baumer, P. & Huber, C.W. (2014). Foglio

336 1252 Ambri-Piotta.- Atlante geologico della Svizzera 1:25 000, Carta 138, Federal Office of Topography,

337 Ch-3084 Wabern. 13

338 Bianconi, F. & Strasky, S. (2015). Foglio 1252 Ambri-Piota. Atlante geologico della Svizzera 1:25 000,

339 Note explicative 138, Federal Office of Topography, Ch-3084 Wabern.

340 Boston, K.R., Rubatto, D., Hermann, J., Engi, M. & Amelin, Y. (2017). Geochronology of accessory

341 allanite and monazite in the Barrovian metamorphic sequence of the Central Alps, Switzerland. Lithos 286-

342 287, 502-518.

343 Bousquet, R., Goffé, B., Vidal, O., Patriat, M. & Oberhänsli, R. (2002). The tectono-metamorphic history of

344 the valaisan dmain from the Western to the Central Alps: New constraints for the evolution of the Alps.

345 Bulletin of the Geological Society of America114, 207-225.

346 Bousquet, R., Schmid, S.M., Zeitlinger, G., Oberhänsli, R., Rosenberg, C., Molli, G., Robert, C.,

347 Wiederkehr, M. & Rossi, Ph. (2012). Tectonic framework of the Alps. Map 1: 1 000 000. Commission for

348 the Geological Map of the World. Subkommission for Magmatic and Metamorphic Maps. IUGS and IUGG,

349 . http://www.cegm.org.

350 Brower, F.M., Burri, T., Engi, M. & Berger, A. (2005). Eclogite relics in the Central Alps: PT-evolution,

351 Lu-Hf ages and implications for formation of tectonic mélange zones. Schweizerische Mineralogische und

352 Petrographische Mitteilungen 85, 147-174.

353 Burri, T., Berger, A. & Engi, M. (2005). Tertiary migmatites in the Central Alps: regional distribution, field

354 relations, conditions of formation, and tectonic implications. Schweizerische Mineralogische und

355 Petrographische Mitteilungen 85, 215-232.

356 Bussien, D., Bussy, F., Magna, T.& Masson, H. (2011). Timing of Palaeozoic magmatism in the Maggia

357 and Sambuco nappes and paleogeographic implications (Central Lepontine Alps). Swiss Journal of

358 Geosciences 104, 1-29.

359 Cavargna-Sani, M., Epard, J.-L., Bussy, F. & Ulianov, A. (2014a). Basement lithostratigraphy of the Adula

360 nappe: implications of Palaeozoic evolution and Alpine kinematics. International Journal of Earth Sciences

361 103, 61-82.

362 Cavargna-Sani, M., Epard, J.-L. & Steck, A. (2014b). Structure, geometry and kinematics of the northern

363 Adula nappe (Central Alps). Swiss Journal of Geosciences 107, 135-156.

364 Chemenda, A.I., Mattauer, M., Malavieille, J. & Bocun, A.N. (1995). A mechanism for syn-collisional rock

365 exhumation and associated mormal faulting: Results from physical modelling. Earth and planetary Sciences

366 letters 132, 225-232. 14

367 Cobbold, P.R. & Quinquins, H. (1980). Development of sheath folds in shear regimes. Journal of Structural

368 Geology 2, 119-126.

369 Ellenberger, F. (1953). La série du Barrhorn et les rétrocharriages penniques. C.R. Académie des Sciences

370 (Paris) 236, 218-220.

371 Engi, M., Berger, A. & Roselle, G.T. (2001). Role of the tectonic accretion channel in collisional orogeny.

372 Geology 29, 1143-1146

373 Engi, M., Todd, C.S. & Schmatz, D.R. (1995). Tertiary metamorphic conditions in the eastern Lepontine

374 Alps. Schweizerische Mineralogische und Petrographische Mitteilungen 75, 347-369.

375 Epard, J.-L., Escher, A. (1996). Transition from basement to cover: a geometric model. Journal of

376 Structural Geology, 18, 533-548.

377 Escher, A. (1988). Structure de la nappe du Grand Saint-Bernard entre le val de Bagnes et les Mischabel.

378 Rapports géologique du Service hydrologique et géologique national 7.

379 Escher, A. & Beaumont, C., 1997. Formation, burial and exhumation of basement nappes at crustal scale: a

380 geometric model based on the western Swiss-Italian Alps. Journal of Structural Geology, 19, 955-974.

381 Froitzheim, N. (2001). Origin of the Monte Rosa nappe in the Pennine Alps – A new working hypothesis.

382 Bulletin of the Geological Society of America, 113/5, 604-614.

383 Froitzheim, N., Schmid, S.M. & Frey, M. (1996). Mesozoic palaeography and the timing of eclogite facies

384 metamorphism in the Alps: A working hypothesis. Eclogae Geologicae Helvetiae 89, 81-110.

385 Galster, F., Cavargna-Sani, M., Epard, J.-L. & Masson, H. (2012). New stratigraphic data from the lower

386 Penninic between the Adula nappe and the Gotthard massif and consequences for the tectonics and the

387 paleogeography of the Central Alps. Tectonophysics 579, 37-55.

388 Gebauer, D. (1996). A P-T-t path for an (ultra?-) high pressure ultramafic/mafic rock association and its

389 felsic country-rocks based on SHRIMP-dating of magmatic and metamorphic zircon domains. Example:

390 Alpe Arami (Central Swiss Alps). In: Basu, A. and Hart, S. (eds): Earth processes: Reading the isotopic

391 code, Geophysical Monograph 95, American Geophysical Union, Washington, 307-330.

392 Gregory, J.C., Rubatto, D., Hermann, J., Berger, A. & Engi, M. (2012). Allanite behaviour during incipient

393 melting in the southern Central Alps. Geochimica et Cosmochimica Acta 84, 433-458.

394 Grond, R., Wahl, F. & Pfiffner, M. (1995). Poly-phase Alpine deformation and metamorphism in the

395 northern Cima Lunga unit, Central Alps (Switzerland). Schweizerische Mineralogische und Petrographische

396 Mitteilungen 75(3), 371-386. 15

397 Grujic, D. & Mancktelow, N.S. (1996). Structure of the northern Maggia and Lebendun nappes, Central

398 Alps, Switzerland. Eclogae Geologicae Helvetiae 89, 461–504.

399 Heinrich, C.A. (1986). Eclogite facies regional metamorphism of hydrous mafic rocks in the Central Alpine

400 Adula nappe. Journal of Petrology 27, 123-154.

401 Herwartz, D., Nagel, T.J., Munker, C., Scherrer, E.E. &Froitzheim, N. (2011). Tracing two orogenic cycles

402 in one eclogite sample by Lu-Hf garnet chronometry. Nature Geoscience 4, 178-183.

403 Hirsiger, C., Bussy, F., Epard, J.-L., Masson, H., Steck, A. & Ulianov, A. (2015). The Lower Permian

404 Alpigia magmatic complex and its country rock (Upper Maggia Valley, Central Alps): petrology,

405 geochronology and structural position. 13th Swiss Geoscience Meeting, 2015, Abstracte volume 54.

406 Huber, M.L. (1981). Geologisch-strukturelle Untersuchungen im oberen Maggiagebiet (Tessin, Schweiz).

407 Ph.D. dissertation, ETH Zürich, 221 p.

408 Huber, M.L., Ramsay, J. & Simpson, C. (1980). Deformation in the Maggia and Antigorio nappes,

409 Lepontine Alps. Eclogae Geologicae Helveltiae 73, 593-606.

410 Keller, F., Wenk, E., Bianconi, F. & Hasler, P. (1980). Blatt 1272 P. Campo Tencia, Geologischer Atlas der

411 Schweiz, 1: 25'000, Atlasblatt 73, Federal Office of Topography, Ch-3084 Wabern.

412 Krayenbuhl, T. & Steck, A. (2009). Structure and kinematics of the Jungfrau syncline, Faflertal (Vais,

413 Alps), and its regional significance. Swiss Journal of Geosciences 102, 441-456.

414 Lacassin, R. & Mattauer, M. (1985). Kilometer scale sheath fold at Mattmark and implications for transport

415 direction in the Alps. Nature 316(6022), 739-724.

416 Liszkay-Nagy, M. (1965). Geologie der Sedimentbedeckung des südwestlichen Gotthard-Massivs im

417 Oberwallis. Ecloge geologicae Helveticae 58, 901-965.

418 Markley, M.J., Teyssier, C., Cosca, M.A., Caby, M.A., Hunziker, J.C. & Sartori, M. (1998). Alpine

419 deformation and 40Ar/39Ar geochronology of synkinematic white mica in the Siviez-Mischabel Nappe,

420 western Pennine Alps, Switzerland. Tectonics 17, 407–425.

421 Masson, H., Herb, R. & Steck, A. (1980). Helvetic Alps of Western Switzerland. Excursion No I in

422 Geology of Switzerland a guide-book by Trümpy, R. edited by Schweizerische Geologische Kommission,

423 Wepf & Co, Basel, NewYork.

424 Masson, H. & Steck, A., 2015. The Maggia-Sambuco nappe: stratigraphy, correlations and tectonic

425 consequences (Central Alps). 13th Swiss Geosciences Meeting, Basel 2015, Abstract Volume 1, 16-17.

426 Maxelon, M. & Mancktelow, N.S. (2005). Three-dimensional geometry and tectonostratigraphy of the 16

427 Pennine zone, Central Alps, Switzerland and Northern Italy. Earth-Sciences Reviews 71, 171–227.

428 Milnes, A. G. (1974). Post-nappe folding in the western Lepontine Alps. Eclogae Geologicae Helveltiae 67,

429 333-348.

430 Niggli, E. & Niggli, C. (1965). Karten der Verbreitung einiger Mineralien der Alpidischen Metamorphose in

431 den Schweizeralpen (Stilpnomelan, Alkali-Amphibol, Chloritoid, Staurolith, Disthen, Sillimanit). Eclogae

432 Geologicae Helveltiae 58, 335-368.

433 Niggli, P., Preiswerk, H., Grütter, O., Bossard, L. & Kündig, E. (1936). Geologische Beschreibung der

434 Tessineralpen zwischen Maggia und Bleniotal. Beiträge zur Geologischen Karte der Schweiz N.F. 71.

435 Lieferung.

436 Pfeifer, H.R., Colombi. A., Ganguin, J., Hunziker, J.C., Oberhansli, R. & Santini, L. (1991). Relics of high-

437 pressure metamorphism in different of the Central Alpa, an updating inventory. Schweizerische

438 Mineralogische und Petrographische Mitteilungen 71, 441-451.

439 Pfeifer, H.R., Kobe Huldrich †, Colombi, A., Steck, A., Pozzorini, D. & Gouffon, Y. (2019). Map sheet

440 1312: Atlante geologico et Note esplicative, Ufficio federale di topografia,Wabern, Svizzera.

441 Pfiffner, M.A., Ellis, S. & Beaumont, C. (2000). Collision tectonics in the Swiss Alps: Insight from

442 geodynamic modelling. Tectonics 19, 1065-1094.

443 Preiswerk, H. (1919). Die überkippte Tauchfalte am Campolungopass und ihre früheren Deutungen. “Heim-

444 Festschrift”, Vierteljahresschrift Naturforschende Gesellschaft Zürich, LXIV, 1–15.

445 Preiswerk, H., Bossard, L., Grütter, O., Niggli, P., Kündig, E. & Ambühl, E. (1934). Geologische Karte der

446 Tessineralpen zwischen Maggia- und Bleniotal. Geologische Spezialkarte Nr. 116. Bern: Schweizerische

447 Geologische Kommission.

448 Ramsey, J. (1967). Folding and fracturing of rocks. : McGraw-Hill.

449 Read, H.H. (1955). Granite series in mobile belts. Special Publication of geological Society of America 62,

450 409-430.

451 Romer, R., Schärer, U. & Steck, A. (1996). Alpine and pre-Alpine magmatism in the root zone of the

452 western Alps. Contribution to Mineralogy and Petrography 123, 138-158.

453 Rubatto, D., Herrmann, J., Berger, A. & Engi, M. (2009). Protracted fluid-induced melting during Barrovian

454 metamorphism in the Central Alps. Contributions to Mineralogy and Petrology, 158, 703-722.

455 Rütti, R., Maxelon, M. & Mancktelow, N.S. (2005). Structure and kinematics of the northern Simano nappe,

456 Central Alps, Switzerland. Eclogae Geologicae Helveltiae 98, 63-81. 17

457 Sandmann, S., Nagel, T.J., Herwartz, D., Fonseca, R.O.C. & Kursawski, R.M. (2014). Lu-Hf garnet

458 systematics of a polymetamorphic basement unit: new evidence for coherent exhumation of the Adula

459 Nappe (Central Alps) from eclogite facies conditions. Contributions to Mineralogy and Petrology, 168:

460 1075.

461 Schärer, U., Cosca, M., Hunziker, J. & Steck, A. (1996). Termination of major ductile strike-slip shear and

462 differential cooling along the Insubric Line (Central Alps). Earth and Planetary Sciences letters 142, 331-

463 351.

464 Schardt, H. (1903). Note sur le profil géologique et la tectonique du massif du Simlon compares au travaux

465 antérieurs. Eclogae Geologicae Helvetiae 8, 173-200.

466 Schmid, S.M., Berger, A., Davidson, C., Giere, R., Hermann, J., Nievergelt, P., Puschnig, A.R. &

467 Rosenberg, C. (1996). The Bergell pluton (southern Switzerland, northern Italy): overview accompanying a

468 geological-tectonic map of the intrusion and surrounding country rocks. Schweizerische Mineralogische und

469 Petrographische Mitteilungen 76, 329-355.

470 Schmid, S.M., Fügenschuh, B., Kissling, E. & Schuster, R. (2004). Tectonic map and overall architecture of

471 the Alpine orogeny. Eclogae Geologicae Helveticae 97, 93-117.

472 Schmid, S.M., Kissling, E., Diehl, T., van Hinsbergen, D.J.J. & Molli, G. (2017). Ivrea mantle wedge, arc of

473 Western Alps, and kinematic evolution of the Alps-Apennines orogenic system. Swiss Journal of

474 Geosciences 110, 581-612.

475 Schmidt, C. & Preiswerk, H. (1905). Geologische Karte der Simplongruppe. Beiträge zur Geologischen

476 Karte der Schweiz. 26, Spezialkarte No 48.

477 Schmidt, M.W. (1989). Petrography and structural evolution of ophiolitic remnants in the Bellinzona Zone,

478 Southern Steep Belt, Central Alps (CH/I). Schweizerische Mineralogische und Petrographische

479 Mitteilungen 69, 393-405.

480 Simpson, C. (1982). The structure of the northern lobe of the Maggia nappe, Ticino, Switzerland. Eclogae

481 Geologicae Helvetiae 75, 495-516.

482 Skora, S., Mahlen, N.J., Johnson, C.M., Baumgartner, L.P., Lapen T.J., Beard, B.L. & Szilvagyi, E.T. (2015).

483 Evidence for protracted prograde metamorphism followed by rapid exhumatio oft he Zermatt-Saas Fee

484 ophiolite. Journal of metamorphic Geology 33, 711-734.

485 Spicher, A. & Wenk, E. (1981). Blatt 1313 Bellinzona. Geologischer Atlas der Schweiz 1:25’000,

486 Erläuterungen, Federal Office of Topography, Ch-3084 Wabern. 18

487 Steck, A. (1984). Structures de déformation tertiaries dans les Alpes centrales (transversal Aar-Simplon-

488 Ossola). Eclogae Geologicae Helveltiae 77, 55-100.

489 Steck, A. (1987). Le massif du Simplon – Réflexions sur la cinématique des nappes de gneiss.

490 Schweizerische Mineralogische und Petrographische Mitteilungen 67, 27-45

491 Steck, A. (1990). Une cartes des zones de cisaillement ductile des Alpes centrales. Eclogae Geologicae

492 Helvetiae 83, 603-627.

493 Steck, A. (1998). The Maggia cross-fold: An enigmatic structure of the Lower Penninic nappes of the

494 Lepontine Alps. Eclogae Geologicae Helvetiae 91, 333–343.

495 Steck, A. (2011). Blatt 1269 Aletschgletscher und Erläuterungen. Geologischer Atlas Schweiz 1:25’000,

496 Karte 131, Federal Office of Topography, Ch-3084 Wabern.

497 Steck, A., Della Torre, F., Keller, F., Pfeifer, H.R., Hunziker, J. & Masson. H. (2013). Tectonics of the

498 Lepontine Alps: ductile thrusting and folding in the deepest tectonic levels of the Central Alps. Swiss

499 Journal of Geosiences 106, 427-450.

500 Steck, A., Epard, J.L., Escher, A., Gouffon, Y. & Masson, H. (2001). Notice explicative de la carte

501 géologique de Suisse occidentale 1:100’000. Carte géologique special N°123, Office fédérale des Eaux et de

502 la Géologie, (Berne).

503 Steck, A. & Hunziker, J. (1994). The Tertiary structural and thermal evolution of the Central Alps –

504 compressional and extensional structures in an orogenic belt. Tectonophysics 238, 229-254.

505 Steck, A., Masson, H. & Robyr, M. (2015). Tectonics of the Monte Rosa and surrounding nappes

506 (Switzerland and Italy): Tertiary phases of subduction, thrusting and folding in the Pennine Alps. Swiss

507 Journal of Geosiences 108, 3-34.

508 Tektonische Karte der Schweiz, 1:500’000, 2005. Federal Office for Water and Geology. Bern.

509 Todd, C.S. & Engi, M. (1997). Metamorphic field gradients in the Central Alps. Journal of Metamorphic

510 Geology 15, 513-530.

511 Trommsdorff, V. (1966). Progressive Metamorphose kieseliger Karbonatgesteine in den Zentraalpen

512 zwischen Bernina und Simplon. Schweizerische Mineralogische und Petrographische Mitteilungen, 46,

513 431-460.

514 Trommsdorff, V. (1990). Metamorphism and tectonics in the central Alps: the Alpine evolution lithospheric

515 mélange of the Cimalunga and Adula. Memorie della Socita Geologica Italiana 45, 39-49.

516 Voll, G. (1976). Recrystallisation of quartz, biotite and feldspars from Erstfeld to the Leventina nappe, 19

517 Swiss Alps and its geological significance. Schweizerische Mineralogische und Petrographische

518 Mitteilungen, 56, 641-647.

519 Wegmann, E. (1953). Über gleichzeitige Bewegungsbilder verschiedener Stockwerke. Geologische

520 Rundschau 41, 21-33.

521 Wenk, E. (1955). Eine Strukturkarte der Tessineralpen. Schweizerische Mineralogische und

522 Petrographische Mitteilungen, 35, 311-319.

523 Wenk, E. & Keller, F. (1969). Isograden in Amphibolitseries der Zentraalpen. Schweizerische

524 Mineralogische und Petrographische Mitteilungen, 49, 157-191.

525 Zingg, A., Handy, M.R., Hunziker, J.C. & Schmid, S.M. (1990). Tectonometamorphic history of the Ivrea

526 zone and its relationship to the crustal evolution of the Southern Alps. Tectonophysics, 182, 169-192.

527 Zingg, A. & Hunziker, J.C. (1990). The age of movements along the Insubric line west of Locarno

528 (Northern Italy and southern Switzerland)., 83/3 Eclogae Geologicae Helveltiae, 629-644.

529

530

531

532

533

534 20

535 Table and figure captions

536

537 Table 1: Tectonic units of the Central Alps of Switzerland and Italy enumerated from north to south and bottom

538 to top. The radiometric ages of the phases of high pressure metamorphism suggest a displacement of the zones of

539 deep subduction and accretion from south to north in the Alpine nappe stack: the Senonian Canavese, Eocene

540 Piemont and Late Eocene - Oligocene Valais sutures (Zingg & Hunziker, 1990; Zingg et al. 1990; Brower et al.

541 2005; Sandmann et al. 2014; Skora et al. 2015).

542

543 Table 2: Comparison of models of the Cenozoic structural evolution of the lower Penninic nappes published by

544 Huber et al. (1980), Huber (1981), Simpson (1982), Grujic & Mancktelow (1996), Maxelon & Mancktelow

545 (2005) and this study.

546

547 Fig. 1: Blockdiagram of the Central Alps, modified after Steck et al. (2008). The Maggia-Sambuco nappe is

548 situated in the centre of the Lepontine gneiss dome. CT = Campo Tencia nappe, GN = Gurnigel flysch, 2DK =

549 Seconda zona diorito-kinzigitica, UH = Ultrahelvetic, ZH = Zone Houillère. Campo Tencia and Simano nappes

550 of Preiswerk (1934) form a composite nappe designated as Simano nappe on the Tectonic map of Switzerland

551 (2005) and on Figs. 2 and 3.

552

553 Fig. 2: Tectonic and structural map of the central Lepontine gneiss dome. A-E indicate the positons of the

554 geological profiles through the Maggia nappe of Fig. 3. Abbreviations: Cr = Cristallina Mesozoic cover, H =

555 Helvetic nappes, ML = Monte Leone nappe, Pe = Pertusio Meszoic cover, P.d.L. = Poncione dei Laghetti Klippe

556 (Maggia nappe), PV = Pizzo del Vallone nappe, So = Someo Mesozoic cover, VALAIS CALC-SCHISTS

557 designates a complex zone, the eastern continuation of the Sion-Courmayeur zone composed of the Bedretto

558 zone of Bianconi & Starsky (2015). Fig. 2 is based on the 1:25 000 Geologischer Atlas der Schweiz 1313

559 Bellinzona (Bächlin et al. 1974), 73 Campo Tencia (Keller et al. 1980), 1262 Ambri-Piota (Bianconi & Strasky,

560 2015), 1291 Bosco/Gurin (Della Torre et al. 2015), 1312 Locarno (Pfeifer et al. 2018), unpublished originals of

561 Eduard Wenk and Paul Graeter of 1292 Maggia and our one new structural data.

562

563 Fig. 3: Geological profiles A-E (on Fig. 2) and representation of Alpine deformational structures on Schmidt net,

564 lower hemisphere. The Maggia nappe forms a F4-synform to the north in the profiles B – E and plunges to the 21

565 west of Bellinzona in a steep structure (profile A). The late steepening of the fold axis is related to back folding

566 and designated F5. Note the frontal down facing fold of the Campo Tencia nappe (profile E).

567

568 Fig. 4: Tectonic map and geological Pizzo Massari-Pizzo Prevat profile through the frontal down facing Campo

569 Tencia nappe F2-fold and its autochthonous Campolungo Triassic sedimentary cover, the Bedretto calc-schist

570 nappe (Bianconi, 1971; Bianconi & Starsky, 2015) and the Sambuco gneisses with its autochthonous Cristallina

571 Mesozoic sedimentary cover in an inverted position at the nappe base and an upper normal position in the

572 syncline to the west of the Pizzo Massari.

573

574 Fig. 5: The cut out of the geological map of Keller et al. (1980) illustrates the uniform about 20° S-plunging axis

575 of the Mogno F2 down facing syncline. The southern and deeper continuation of the Triassic dolomite and calc-

576 schist, observed by Dazio Dal Vesco in the Prato-Camblee water gallery confirms the geometry of the down

577 facing Mogno syncline (oral communication by Franz Keller).

578

579 Fig. 6: Block diagram of the Sambuco – Maggia sheath fold like structure.

580

581 Fig. 7: Map of isograds of the Cenozoic Barrovian amphibolite facies metamorphism of the Central Alps. The

582 limits of the Lower Penninic nappes are crosscut by the isograds of the amphibolite facies metamorphism.

583 Highest temperature where attended at 30-22 Ma after the nappe emplacement. Isograds of metapelites after

584 Niggli & Niggli (1965), siliceous dolomites after Trommsdorff (1966), metabasites after Wenk & Keller (1969),

585 Steck et al. (2001) and migmatites after Burri et al. (2005) are represented. ALPINE NAPPES METAMORPHISM CENOZOIC METAMORPHISM TECTONIC DIVISION MESO-CENOZOIC CRYSTALLINE BASEMENT SEDIMENTARY COVER AGE (Ma)

ZEOLITE FACIES N AAR MASSIF FOLD LOWER HELVETIC NAPPES HELVETIC GOTTHARD NAPPE WILDHORN NAPPE GREENSCHIST FACIES ~32-15 bottom ULTRAHELVETIC LUCOMAGNO-LEVENTINA NAPPE PIORA SYNCLINE

VERAMPIO NAPPE TEGGIOLO SYNCLINE

ANTIGORIO NAPPE TEGGIOLO COVER

SIMANO NAPPE FRASCO COVER

CAMPO TENCIA NAPPE CAMPOLUNGO COVER AMPHIBOLITE FACIES

LEBENDUN NAPPE

OSBARINO-VALGRANDE NAPPE ~38-30 LOWER PENNINIC PIZZO DEL VALLONE NAPPE

European crust MAGGIA (-SAMBUCO) NAPPE CRISTALLINA-PERTUSIO-SOMEO COVER

ADULA NAPPE ECLOGITE→ AMPHIBOLITE FACIES ≥38 MERGOSCIA-CIMALUNGA TECTONIC MELANGES VALAIS SUTURE ORSELINA-BELLINZONA TECTONIC MELANGES AMPHIBOLITE FACIES

MONTE LEONE NAPPE HOLZERSPITZ COVER GREENSCHIST FACIES

VALAIS CALC-SCHIST NAPPE BLUESCHIST FACIES

SIVIEZ-MISCHABEL NAPPE BARRHORN COVER 40-35 MIDDLE PENNINIC (BRIANÇONNAIS) MONTE ROSA NAPPE FURGG COVER PIEMONT SUTURE ~50-38 ECLOGITE→ AMPHIBOLITE FACIES UPPER PENNINIC ANTRONA - ZERMATT-SAAS FEE OPHIOLITIC NAPPES

TERTIARY MAGMATISM BERGELL TONALITE 30 NON METAMORPHIC

SALASSIC SESIA ZONE CANAVESE SUTURE ≥70-65 ECLOGITE→ AMPHIBOLITE FACIES GREENSCHIST FACIES BORDER

top IVREA ZONE CANAVESE COVER SOUTHERN ALPS S STRONA-CENERI ZONE LOMBARDIAN COVER NON METAMORPHIC Steck, Epard & Masson (this study) and Liszkay-Nagy (1965), Steck (1987, 1998), Steck et al. (2013)

Main deformational early deformation in NW-directed W-verging recumbent-folds Southern late backfolds F6 phases Mesozoic sediments main nappe emplacement steep belt vertical shortening S1, F1 S2-S3, F2-F3 S4, F4 F5 F7

first schistosity Maggia and Lower Verzasa antiform Vanzone antiform Chièra synform Main structures and Penninic nappes Maggia synform Cressim antiform Cristallina synform rare early folds Gotthard fold Ziccher fold verticalisation of Foroglio antiform Bosa and Wandfluhhorn antiform Maggia root to the Salmone antiform W of Bellinzona Masera synform Simplon fault

Metamorphic grade greenschist facies amphibolite pfacies retrograde prograde ~ 32-30 Ma Age of deformation temperature culmination at 30-22Ma and metamorphism ~Late Eocene Oligocene 18 Ma - present Late Oligocene-Early Miocene Huber, Ramsay & Simpson (1980), Grujic & Mancktelow (1996), Maxelon & Mancktelow (2005)

Main deformational D1 D2 D3 D4 D5 phases thrusting and main post-nappe folding transverse folds Northern Backfolds vertical shortening isoclinal folding Southern Steep Belt

Main structures Teggiolo zone Antigorio antiform (-nappe) Peccia-Basodino synform Cristallina synform Simplon fault Ledendun synform Campo Tencia synform Chièra synform Campolungo synform Maggia steep zone Southern Steep Belt Wandfluhhorn antiform

Metamorphic grade prograde amphibolite facies amphibolite facies retrograde

Age Late Eocene-Oligocene Oligocene (pre-Bergell) Late Oligocene Neogene Vaduz

Luzern Zernez

sse ola Thun M GN Austroalpine Tirano

Mesozoic op ard calc-schists h tth iol ics Go ites et T lv am S e r Ad bo uretta Châtel St. Denis H a ula A buco CT Bergell Sam Leventina Gruf sse Sim la GN an Cr Mo o CL essim ne pi Antigorio M zona l e ag Bellin a Brig n gia ub s o S lp e e Mergoscia a imm L ré S l te sa n P ri o Mesozoic GN e M B ZH Niesen Sion Locarno ône-Simplon Line ri Rh l e UH chabe n GN is sa e M t e Ro In - or Tsaté h e C f z F nc nt - ra ie t la o a e - A iv n 2DK ss R o B e M a n la ig M S t n e o o M i o . n ll r r M u R t e e t g . p v o B D l e I e a n S u V zo s l n g a a Tsaté TsatéV e n M.Mary s c ZH Aosta Line Sesia o Biella Valais Zer phiolites matt P -Sa ontis as Mo nte R osa in a e H lb d i en te de l D -h AAR n nb R Lucoma b le or A gno A l b h H S n rn - IST CA F > SWITZERLAND GOMS o 7 T SCH MPO 6 1 ADULA -h 1 T LC- LU C 7 e > O A NG hièra - it An S C O h lb s G AI Pizzo ? o a L r a 45 C n cl VA Cr 90 Massari b io E A l g F M e A. P n la 4 d ITALY Piota O e p H 90

T i 05 Cristallina 40 C E n U

PV SAMBUCO N - a 20 ?

CA PIOTA C Z r (MAGGIA) Fusion M IA s

P a a O SYNCLINE S H 30 T I «SIMANO» p E M p F 45 NC r 6 DALPIGIA IA L A p u MOGNO E n N o O ANTIFORM 20 V g L Mogno 10 E O r O t I F N N G 4 G T 04 U F Peccia 0 I TE 6 20 F4 S N D o F IM A F N gli Pe 6 A 10 6 ML N o 50 rn or C N E luhho F F O df 4 B n 43 T a 65 ic E F F i 1 W F M 30 n

L ANTIGORIO4a o Alpine structures 4b Bignasco A

M Frasco 05 G a 0 tectonic boundary g G 20 0 g 07 I V C fault i I a A 10 15 07 M 10 e A O r L syncline, synform a N 40 z U

s 30 G V N

o O M e a G antiformal syncline B MB rz BO So s A a 75 as 10 anticline, antiform

BOSCO g c c P. d. L. Pèzz 20 B g a a a IO s synformal anticline i F e P F Someo a 6 V 20 6 o M e 10 F1 fold axial trace A 18 r ge 12 75 65 M R lett Maggia 60 75 E 25 o 30 F2-F3 fold axial trace V 75 80 20 20 F4 70 90 70 70 F3 78 75 45 A 25 90 F4 fold axial trace AN 85 10F 75 70 R Salmon 4 60 85 90 F 80 F5 fold axial trace C e 15 F 70 5 O 3 I 90 75 80 BELLINZONA N 80 F6 fold axial trace I D MERGOSCIA 10 80 90 Bellinzona R A F 70 65 A D 6 70 65 85 22 F2-F4 fold axis and B F 65 70 TONALITE O 4 10° 10 90 S I F CENTOVALLI LINE stretching lineation plunge O P 6 Ziccher era Locarno A Ticino main schistosity S1-3 ML as 10 MR 31 M giore TONALE LINE 30 dip angle ORSELINA Z-S ag o EA M iner C R S go STRONA-CENERI 01 F V a CANAVESE LINE 20 km Steck, Epard & Masson, 2019 Z-S I 2° L N

E Campolungo section N F NW 4 SE F2 Pizzo Massari 3 000m F 2760m Pizzo Meda 3000m 2614m 4 F2 2000m 2000 m Cs Do 2000m Qz F F2 D Mogno section 4 antiformal syncline

W F4 E C Campo-Tencia section F4 Pizzo del Piatto di Röd F2 Verzasca antiform CAMPO TENCIA NAPPE Pizzo Mascarpino l’Uomo ALPIGIA Corona di Redorta N Pizzo di BrunescD Mogno 2000m F2 VERZASCA COCCO NA 1000m ANTIGORIO PP Maggia E 0m C B Val di Coglio-Osura section F4 F4 Maggia-Verzasca fold

B SW F4 NE

F 2278m VERZASCA NAPPE 2000m 4 Verzasca 2000m Someo V 1000m Maggia al d’Osura Val Verzasca 1000m COCCO EVENTINA 0m V L 0m M ER A Z G A G SC IA A S Structures of the Maggia transect: Y A N N F TI N O FO R R F4 antiform M M Bellinzona steepbelt F A V 4 E synform R Z A S F C 5 A

A N Schmidt net, lower hemisphere: T IF O R schistosity S1-3 A S M N stretching lineation L1-4 (+fold axis) 2390m Cima dell’Uomo MAGGIA 2000m 2000m foldaxes A A G ROOT I UN G L M 1000m 1000m G E A

axial surface Ticino A

O R M I

R G M C

0m

S 0m

O

E

S

L

I C

N I A A F Steck, Epard & Masson, 2019 F5 4 C 2 R F Lago 6 IS F T Trem orgio A N L L I N P izzo Massari A F2 27 6 0 m A IN L F2 L P izzo Meda A T 2614m IS R

T C N E 25 8 1m M E Do S A S ) B T IA IS G H 2318 m G C )( A S Lago (M C- 25 5 8 m di Leit O AL IC P reva t UC C SS Qz MB RIA A GO T NT S LUN SEME BA M CIA CA F2 TEN PO CAM P izzo C am p ol ungo

1000m x e F2 lin c n y x s F2 g in c F2 a

f P izzo Massari

6 n F

27 6 0 m d w P izzo o P izzo Meda o w d P reva t n 2614m 258 1m 25 5 8 m F2 f

a

c

i

n

g

a

n

t

i Cs c

l Do i n

2000 m e Qz x x 1000m A. Steck, H. Masson, 2019 Th e Mogno dow n facing syn cline

MognoMogno +

20 axi al plu nge Triassic dolomite and Valais calc-sch ist ou tcrops in Prato-Camblee w ater gallery (alt. 1135m), after Ezi o Dal Vesco,

PRATO - CAMBLEE GALLERY personal commu nication by Franz Keller 45° stau rolite and kya nite bearing garnet micasch ists of Campo Tencia nappe

20 cu t ou t of map sh eet 1272 P. Campo Tencia 0 300m by Keller et al. (198 0) © sw isstopo A D U L CRISTALLINA NCIA A CAMPOLUNGO O TE MP CA E O LOB BUC PE) SAM NAP GGIA (MA 20 PERTUSIO 10 RIO O SIMAN TIG O AN 5 10 VENTINA LE

P. 10 LA GH ETTI K. 10 A V C ADUL M E IM R A Z AL G A U A G SC 12 NGA CI IA A A OS 10 S NTIFORM G SOMEO Y ER NF M M OR ITE A M NAL GG 10 TO 2000 m IA N 15 E APPE 75 LIN ALE 0 m TON

ANTIGORIO SCCIAIA (PIODA DI CRANA) RGGOS MMEER

Maggia root

Km ~ 20

Steck, Epard & Masson 2019 AROSA N VERRUCANO RN O nz H rie R B E of HELVETIC MESOZOIC L D a e VALAIS CALC-SCHISTS k IE ak BÜNDNERSCHIEFER e N L o f Aar AUSTROALPINE Th RD un N A R TAVETSCH TH

r O OT e H AAR G d D n IL a Hornblend K W -3- e = N 0 R n NPF O

H I A L L e E t 7-Ho G i 1 r lb An> nbl e en E A s d IN la L N LUCOM NO e R c AG ADULA E O o PLATTA H i in IN N g urolite in D

E a A A GOMS t D a M L l G S P TAMBO N O P O E D + T AVERS SAMBUCO E SIMANO N S e (MAGGIA) C TE IA U TS t MPO NC L GASTERN IS i A IA E R CH C V -S n E E LC N a S N T A U I T T C M I A S D y A N AI N A L KN O A E E 0 V T 4 T I B > ic in Mera R E E ANTIGORIO n o N N L A O R UR O I O E LE D H Y C RKG D A TE IM n O IL M N A L FORCOLA L. i R O UN e N W U G d A R N M A n JÄ ARO O e GE Z Rhône RCHRÜ -C bl R O V N N n G IO G V E r O R o MFL S Toce B M e H M Z - BERGELL L BO r 0 GRUF A A

19 IS BOSCO A z 4 R M a S n> 3 E G C B IO a s Moesa . A Diopside-Calcite in A P g c g g G a Pla M i A A a I R N A NOVATE ZH E MARGNA ANTIGORIO A V R S C IVIEZ ZH R-S L I BERNINA -M N D IS E BELLINZONA TE C D O A LI L N H I A A D MERGOSCIA N A R Migmatite Belt O T T TONALE A O B I S B E S P O L Ticino VEROSS O C LORSELINA Como TONALE LINE

E H A C AT R TSATÉ GR E N JEN A H RT G A O N - A L P 50 km T N B O E R T T IN E N N U G N E A M U I D CA R L O L FURGG L FRILIHORN A

Toce G I STO O R TSATÉ CKHORN P E N E ISOGRADS OF THE OLIGOCENE-MIOCENE GORNERGRAT re C o i MONTE ROSA g g AMPHIBOLITE FACIES GRADE METAMORPHISM CIMES BLANCHES A a E M

R o V g OF THE CENTRAL ALPS ZERMATT- I a SAAS FEE 2DK E L N - I A L N O E R after 23 S T S 23 E V NIGGLI & NIGGLI, 1965; TROMMSDORFF, 1966; TSATÉ A 23 2DK N WENK & KELLER, 1969; STECK et al. 2001 A

9 C A LINE AOST SESIA and BURRI et al. 2005