The Adula Nappe: Stratigraphy, Structure and Kinematics of an Exhumed High-Pressure Nappe

Total Page:16

File Type:pdf, Size:1020Kb

The Adula Nappe: Stratigraphy, Structure and Kinematics of an Exhumed High-Pressure Nappe Unicentre CH-1015 Lausanne http://serval.unil.ch Year : 2013 THE ADULA NAPPE: STRATIGRAPHY, STRUCTURE AND KINEMATICS OF AN EXHUMED HIGH-PRESSURE NAPPE Cavargna-Sani Mattia Cavargna-Sani Mattia, 2013, THE ADULA NAPPE: STRATIGRAPHY, STRUCTURE AND KINEMATICS OF AN EXHUMED HIGH-PRESSURE NAPPE Originally published at : Thesis, University of Lausanne Posted at the University of Lausanne Open Archive. http://serval.unil.ch Droits d’auteur L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette loi. Nous déclinons toute responsabilité en la matière. Copyright The University of Lausanne expressly draws the attention of users to the fact that all documents published in the SERVAL Archive are protected by copyright in accordance with federal law on copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the author and/or publisher before any use of a work or part of a work for purposes other than personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose offenders to the sanctions laid down by this law. We accept no liability in this respect. FACULTÉ DES GÉOSCIENCES ET DE L’ENVIRONNEMENT INSTITUT DES SCIENCES DE LA TERRE THE ADULA NAPPE: STRATIGRAPHY, STRUCTURE AND KINEMATICS OF AN EXHUMED HIGH-PRESSURE NAPPE THÈSE DE DOCTORAT présentée à la Faculté des géosciences et de l’environnement de l’Université de Lausanne pour l’obtention du grade de Docteur en Sciences de l’environnement par Mattia Cavargna-Sani Master of science (MSc) in Geology, Université de Lausanne Jury Prof. Eric Verrecchia (Président du jury) Prof. Jean-Luc Epard (Directeur de thèse) Prof. Lukas Baumgartner (Expert interne) Prof. François Bussy (Expert interne) Prof. Neil Mancktelow (Expert externe) Dr Thorsten Nagel (Expert externe) LAUSANNE 2013 FACULTÉ DES GÉOSCIENCES ET DE L’ENVIRONNEMENT INSTITUT DES SCIENCES DE LA TERRE THE ADULA NAPPE: STRATIGRAPHY, STRUCTURE AND KINEMATICS OF AN EXHUMED HIGH-PRESSURE NAPPE THÈSE DE DOCTORAT présentée à la Faculté des géosciences et de l’environnement de l’Université de Lausanne pour l’obtention du grade de Docteur en Sciences de l’environnement par Mattia Cavargna-Sani Master of science (MSc) in Geology, Université de Lausanne Jury Prof. Eric Verrecchia (Président du jury) Prof. Jean-Luc Epard (Directeur de thèse) Prof. Lukas Baumgartner (Expert interne) Prof. François Bussy (Expert interne) Prof. Neil Mancktelow (Expert externe) Dr Thorsten Nagel (Expert externe) LAUSANNE 2013 MATTIA CAVARGNA-SANI THE ADULA NAPPE: STRATIGRAPHY, STRUCTURE AND KINEMATICS OF AN EXHUMED HIGH-PRESSURE NAPPE Abstract This study analyses the stratigraphy, structure and kinematics of the northern part of the Adula nappe of the Central Alps. The Adula nappe is one of the highest basement nappes in the Lower Penninic nappe stack of the Lepontine Dome. This structural position makes possible the investigation of the transition between the Helvetic and North Penninic paleogeographic domains. The Adula nappe is principally composed of crystalline basement rocks. The investigation of the pre-Triassic basement shows that it contains several Palaeozoic detrital metasedimentary formations dated from the Cambrian to the Ordovician. These formations contain also some volcanic or intrusive magmatic rocks. Ordovician metagranites dated at ~450 Ma are also a common rock-type of the Adula basement. These formations underwent Alpine and Variscan deformation and metamorphism. Permian granites (Zervreila orthogneiss, dated at ~290 Ma) have intruded this pre-structured basement in a post-orogenic geodynamic context. Due to their age, the Zervreila orthogneiss are good markers for lpine deformation. The stratigraphy of the Mesozoic and Paleogene sedimentary cover of the Adula nappe is essential to unraveling its pre- orogenic history. The autochthonous cover is assigned to a North Penninic Triassic series that testifies for a transition between the Helvetic and Briançonnais Triassic domains. The Adula domain goes through an emersion during the Middle Jurassic, and is part of a topographic high during the first phase of the Alpine rift. The sediments of the late Middle Jurassic show a drowning phase associated with a tectonic activity and a breccia formation. In the neighbouring domains, coeval with the drowning phase in the Adula domain, a strong extensional crustal delamination and a scattered magmatic activity is associated with the main opening of the North Penninic domain. The Upper Jurassic of the Adula nappe is characterized by a carbonate formation comparable with those in the Helvetic or Subbriaçonnais domains. Flysch s.l. deposition starts probably at the end of the Cretaceous. These sediments are deposited on a large unconformity testifying for a Cretaceous sedimentary gap. The Adula nappe exhibits a very complex structure. This structure is formed by several deformation phases. Two ductile deformations are responsible for the nappe emplacement. The first deformation phase is associated with a folding compatible with a top-to-south movement at the top of the nappe. The second phase is dominant and pervasive throughout the whole nappe. It goes with a strong north vergent folding and the main nappe emplacement. These two phases cause the exhumation and emplacement of a coherent, although pre-structured, piece of continental crust. Two further deformation phases postdate the nappe emplacement. 7 8 MATTIA CAVARGNA-SANI LA NAPPE DE L’ADULA: STRATIGRAPHIE, STRUCTURE ET CINÉMATIQUE D’UNE NAPPE DE HAUTE-PRESSION Résumé Ce travail concerne l’étude géologique de la partie nord de la nappe de l’Adula dans les Alpes centrales. La nappe de l’Adula est l’une des nappes cristallines la plus élevée dans la pile des nappes du Pennique inférieur des Alpes lepontines. Cette position particulière permet d’étudier la transition entre les nappes des domaines helvétique et pennique inférieur. La nappe de l’Adula est principalement composée de socle cristallin : l’étude de l’histoire géologique du socle est donc un des thèmes de cette recherche. Ce socle contient plusieurs formations métasédimentaires paléozoïques du Cambrien à l’Ordovicien. Ces métasédiments sont issus de formations clastiques comprenant souvent des roches magmatiques volcaniques et intrusives. Ces métasédiments ont subi les cycles orogéniques varisque et alpin. La nappe de l’Adula contient plusieurs corps magmatiques granitiques métamorphisés. Les premiers métagranites sont Ordovicien et témoignent d’un environnement de marge active. Ces granites sont aussi polymétamorphiques. Les deuxièmes métagranites sont représentés par les orthogneiss de type Zervreila. Ce métagranite est d’âge permien (~290 Ma). Il est mis en place dans un contexte tectonique post-orogénique. Ce granite est un maqueur de la déformation alpine car il n’est pas affecté par les orogenèses précédentes. Le contenu stratigraphique des roches mésozoïques et cénozoiques de la couverture sédimentaire de la nappe de l’Adula est important pour en étudier son histoire pré-alpine. La couverture autochtone est composée d’une série d’âge triasique d’affinité nord-pennique, un faciès qui marque la transition entre les domaines helvétiques et briançonnais au Trias. Le domaine paléogéographique représenté dans la nappe de l’Adula connaît une émersion pendant le Jurassique moyen. Cette émersion marque le commencement du rift dans le domaine alpin. La sédimentation de la fin du Jurassique moyen est marquée par une transgression marine accompagnée par des mouvements tectoniques et la formation d’une brèche. Cette transgression est contemporaine des importants mouvements tectoniques et des manifestations magmatiques dans les unités voisines qui marquent la phase principale d’ouverture du bassin nord-pennique. Le Jurassique supérieur est caractérisé par l’instauration d’une sédimentation carbonatée comparable à celle du domaine helvétique ou subbriançonnais. Une sédimentation flyschoïde, probablement du Crétacé à Tertiaire, est déposée sur une importante discordance qui témoigne d’une lacune au Crétacé. La structure complexe de la nappe de l’Adula témoigne de nombreuses phases de déformation. Ces phases de déformation sont en partie issues de la mise en place de la nappe et de déformations plus tardives. La mise en place de la nappe produit deux phases de déformation ductile : la première produit un plissement compatible avec un cisaillement top-vers-le sud dans la partie supérieure de la nappe; la deuxième produit un intense plissement qui accompagne la mise en place de la nappe vers le nord. Ces deux phases de déformation témoignent d’un mécanisme d’exhumation par déformation ductile d’un bloc cohérent. 9 10 REMERCIEMENTS Cette thèse a éte financée par le Fonds national suisse de la recherche scientifique (FNS), fond no 200021_132460 et par la Société Académique Vaudoise. Comme ces quatre années, heureusement, je ne les ai pas passées tout seul sur cette thèse, je tiens à remercier les personnes qui m’ont permis d’aboutir ce travail. Je tiens à remercier
Recommended publications
  • Linking Megathrust Earthquakes to Brittle Deformation in a Fossil Accretionary Complex
    ARTICLE Received 9 Dec 2014 | Accepted 13 May 2015 | Published 24 Jun 2015 DOI: 10.1038/ncomms8504 OPEN Linking megathrust earthquakes to brittle deformation in a fossil accretionary complex Armin Dielforder1, Hauke Vollstaedt1,2, Torsten Vennemann3, Alfons Berger1 & Marco Herwegh1 Seismological data from recent subduction earthquakes suggest that megathrust earthquakes induce transient stress changes in the upper plate that shift accretionary wedges into an unstable state. These stress changes have, however, never been linked to geological structures preserved in fossil accretionary complexes. The importance of coseismically induced wedge failure has therefore remained largely elusive. Here we show that brittle faulting and vein formation in the palaeo-accretionary complex of the European Alps record stress changes generated by subduction-related earthquakes. Early veins formed at shallow levels by bedding-parallel shear during coseismic compression of the outer wedge. In contrast, subsequent vein formation occurred by normal faulting and extensional fracturing at deeper levels in response to coseismic extension of the inner wedge. Our study demonstrates how mineral veins can be used to reveal the dynamics of outer and inner wedges, which respond in opposite ways to megathrust earthquakes by compressional and extensional faulting, respectively. 1 Institute of Geological Sciences, University of Bern, Baltzerstrasse 1 þ 3, Bern CH-3012, Switzerland. 2 Center for Space and Habitability, University of Bern, Sidlerstrasse 5, Bern CH-3012, Switzerland. 3 Institute of Earth Surface Dynamics, University of Lausanne, Geˆopolis 4634, Lausanne CH-1015, Switzerland. Correspondence and requests for materials should be addressed to A.D. (email: [email protected]). NATURE COMMUNICATIONS | 6:7504 | DOI: 10.1038/ncomms8504 | www.nature.com/naturecommunications 1 & 2015 Macmillan Publishers Limited.
    [Show full text]
  • Tectonic Imbrication and Foredeep Development in the Penokean
    Tectonic Imbrication and Foredeep Development in the Penokean Orogen, East-Central Minnesota An Interpretation Based on Regional Geophysics and the Results of Test-Drilling The Penokean Orogeny in Minnesota and Upper Michigan A Comparison of Structural Geology U.S. GEOLOGICAL SURVEY BULLETIN 1904-C, D AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur­ rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur­ vey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month­ ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of general in­ Books of the U.S.
    [Show full text]
  • Significance of Brittle Deformation in the Footwall
    Journal of Structural Geology 64 (2014) 79e98 Contents lists available at SciVerse ScienceDirect Journal of Structural Geology journal homepage: www.elsevier.com/locate/jsg Significance of brittle deformation in the footwall of the Alpine Fault, New Zealand: Smithy Creek Fault zone J.-E. Lund Snee a,*,1, V.G. Toy a, K. Gessner b a Geology Department, University of Otago, PO Box 56, Dunedin 9016, New Zealand b Western Australian Geothermal Centre of Excellence, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia article info abstract Article history: The Smithy Creek Fault represents a rare exposure of a brittle fault zone within Australian Plate rocks that Received 28 January 2013 constitute the footwall of the Alpine Fault zone in Westland, New Zealand. Outcrop mapping and Received in revised form paleostress analysis of the Smithy Creek Fault were conducted to characterize deformation and miner- 22 May 2013 alization in the footwall of the nearby Alpine Fault, and the timing of these processes relative to the Accepted 4 June 2013 modern tectonic regime. While unfavorably oriented, the dextral oblique Smithy Creek thrust has Available online 18 June 2013 kinematics compatible with slip in the current stress regime and offsets a basement unconformity beneath Holocene glaciofluvial sediments. A greater than 100 m wide damage zone and more than 8 m Keywords: Fault zone wide, extensively fractured fault core are consistent with total displacement on the kilometer scale. e Fluid flow Based on our observations we propose that an asymmetric damage zone containing quartz carbonate Hydrofracture echloriteeepidote veins is focused in the footwall.
    [Show full text]
  • Wakabayashi Intgeolr
    International Geology Review ISSN: 0020-6814 (Print) 1938-2839 (Online) Journal homepage: http://www.tandfonline.com/loi/tigr20 Whither the megathrust? Localization of large- scale subduction slip along the contact of a mélange John Wakabayashi & Christie D. Rowe To cite this article: John Wakabayashi & Christie D. Rowe (2015) Whither the megathrust? Localization of large-scale subduction slip along the contact of a mélange, International Geology Review, 57:5-8, 854-870, DOI: 10.1080/00206814.2015.1020453 To link to this article: http://dx.doi.org/10.1080/00206814.2015.1020453 Published online: 09 Mar 2015. Submit your article to this journal Article views: 189 View related articles View Crossmark data Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tigr20 Download by: [University of California, Berkeley] Date: 04 April 2016, At: 09:19 International Geology Review, 2015 Vol. 57, Nos. 5–8, 854–870, http://dx.doi.org/10.1080/00206814.2015.1020453 Whither the megathrust? Localization of large-scale subduction slip along the contact of a mélange John Wakabayashia* and Christie D. Roweb aDepartment of Earth and Environmental Sciences, California State University, Fresno, CA, USA; bDepartment of Earth and Planetary Sciences, McGill University, Montreal, Canada (Received 13 February 2015; accepted 14 February 2015) Long-lived subduction complexes, such as the Franciscan Complex of California, include tectonic contacts that represent exhumed megathrust horizons that collectively accommodated thousands of kilometres of slip. The chaotic nature of mélanges in subduction complexes has spawned proposals that these mélanges form as a result of megathrust displacement.
    [Show full text]
  • Good Practices in Multimodal Transport
    Sustainable Mobility and Tourism in Sensitive Areas of the Alps and the Carpathians: GOOD-PRACTICE COLLECTION FOR MULTIMODAL TRANSPORT WP 5 | Action 5.1 Miriam L. Weiß (EURAC research) revised by Sabine Stranz (GeoSys Wirtschafts- und Regionalentwicklungs GmbH) Bolzano & Graz, 19/11/2012 Authors: Miriam L. Weiß, Filippo Favilli, Désirée Seidel, Alessandro Vinci Coordination: Thomas Streifeneder EURAC research (PP 6) Revision: Sabine Stranz, GeoSys Wirtschafts- und Regionalentwicklungs GmbH Participating project partners: Rada Pavel, CJIT Maramures – County Center for Tourism Information, Romania GOOD-PRACTICE COLLECTION FOR MULTIMODAL TRANSPORT page 2 TABLE OF CONTENTS 1 Summary ................................................................................................................................................... 6 2 Approach – Analysis – Method ............................................................................................................... 10 3 Introduction............................................................................................................................................. 17 4 Objectives ................................................................................................................................................ 18 5 Good-practice Examples.......................................................................................................................... 19 5.1 Accessibility by Public Transport ....................................................................................................
    [Show full text]
  • Introduction to Structural Geology
    8/19/2016 What is Structural Geology? Geol 341 Structural Geology Introduction Goals Topics and Logistics • 1. Understand Earth’s structures and • http://www.geo.wvu.edu/~jtoro the processes that create them. • 2. Learn skills used to analyze and interpret geological structures How do Tool to Measure Strike and Dip we explain the major You need to buy one now features of SUUNTO MC2 Navigator the Earth? or Brunton TRUARC15 Mirror Compass with clinometer, Azimuth (360o) $40 to $50 Or a smartphone app (Lambert) Earth Field Notebook $8 each Moon 1 8/19/2016 Why are there mountains? How do faults relate to earthquakes? Active mountain front, Basin and Matterhorn, Swiss Alps Range Province, Nevada Interaction between Structural and It all starts with field observations Sedimentary Processes Brooks Range Foothills, AK Erosion Tectonic Burial Sedimentary burial Basal heat flux A basic tool: the geologic map A structural cross section: Interpret deep structure from surface data 2 8/19/2016 How can solid rock flow like taffy? Strain Field in a Shear Zone Morcles Nappe, Swiss Alps From Ramsay and Hubert, 1983 Microscopic view: How is deformation accomplished? Study structures at all scales 5 mm Looking inside the Earth Seismic Reflection Data from Santos Basin (Brazil) Seismic Acquisition Fossen, 2010 3 8/19/2016 Practical applications of Structure Methods of Structural Geology Where is the oil field? Experiments with Analogue Materials Salt H.M. Cadell, 1887 Mechanics: What happens to the stress field Stress Components when you drill a well? Or when a fault forms? zz z zx xz xz xx xx zx zz x Fracture systems and their role in fluid flow Preparation for Field Camp 4 8/19/2016 Orientation of a Plane Apparent Horizontality Elements of Geology, Lyell 1871 True Dip vs Apparent Dip True Dip vs Apparent Dip Map View N d= true dip True 20 a= apparent dip Dip Apparent True b= angle between strike (d) Line of section and line of section b tan a= tan d .
    [Show full text]
  • Editors RICHARD FOSTER FLINT GORDON
    editors EDWARD S RICHARD FOSTER FLINT GORDON EN, III ---IRKING ROUSE YALE U IVE, R T ' HAVEN, _ONNEC. ICUT RADIOCARBON Editors: EDWARD S. DEEVEY-RICHARD FOSTER FLINT-J. GORDON OG1 EN, III-IRVING ROUSE Managing Editor: RENEE S. KRA Published by THE AMERICAN JOURNAL OF SCIENCE Editors: JOHN RODGERS AND JOHN H. OSTROI7 Published semi-annually, in Winter and Summer, at Yale University, New Haven, Connecticut. Subscription rate $30.00 (for institutions), $20.00 (for individuals), available only by volume. All correspondence and manuscripts should be addressed to the Managing Editor, RADIOCARBON, Box 2161, Yale Station, New Haven, Connecticut 06520. INSTRUCTIONS TO CONTRIBUTORS Manuscripts of radiocarbon papers should follow the recommendations in Sugges- tions to Authors, 5th ed. All copy must be typewritten in double space (including the bibliography): manuscripts for vol. 13, no. 1 must be submitted in duplicate by February 1, 1971, and for vol. 13, no. 2 by August 1, 1971. Description of samples, in date lists, should follow as closely as possible the style shown in this volume. Each separate entry (date or series) in a date list should be considered an abstract, prepared in such a way that descriptive material is distinguished from geologic or archaeologic interpretation, but description and interpretation must be both brief and informative. Date lists should therefore not be preceded by abstracts, but abstracts of the more usual form should accompany all papers (e.g. geochemical contributions) that are directed to specific problems. Each description should include the following data, if possible in the order given: 1. Laboratory number, descriptive name (ordinarily that of the locality of collec- tion), and the date expressed in years B.P.
    [Show full text]
  • Rollback Orogeny Model for the Evolution of the Swiss Alps
    Research Collection Journal Article Rollback Orogeny Model for the Evolution of the Swiss Alps Author(s): Kissling, Edi; Schlunegger, Fritz Publication Date: 2018-04 Permanent Link: https://doi.org/10.3929/ethz-b-000268411 Originally published in: Tectonics 37(4), http://doi.org/10.1002/2017TC004762 Rights / License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Tectonics RESEARCH ARTICLE Rollback Orogeny Model for the Evolution 10.1002/2017TC004762 of the Swiss Alps Key Points: Edi Kissling1 and Fritz Schlunegger2 • Central Alpine orogeny driven by mantle llithosphere rollback 1Institute of Geophysics, ETH Zürich, Zürich, Switzerland, 2Institute of Geological Sciences, University of Bern, Bern, subduction • No hard collision between two Switzerland continents required to build up the Alps • Deep crustal root compensating loads Abstract The construction of the European Alps and the Himalayas has been related to the convergence of relatively low topography and and subsequent collision of two continental plates. Nearly all models of orogeny build on this concept, and all mantle slab of them relate the stacking of nappes and the buildup of topography to compressional forces at work in response to the collision between two continental plates. For the central European Alps, however, these models fail to explain the first-order observations of a mountain belt, which particularly includes the striking Correspondence to: isostatic imbalance between the low surface topography and the thick crust beneath the Alps. Here we E. Kissling, review and synthesize data on the geologic architecture of the central Alps, the chronology and pattern of [email protected] crustal deformation, and information about the deep crustal structure derived from seismic tomography.
    [Show full text]
  • Lithostratigraphy and U-Pb Zircon Dating in the Overturned Limb of the Siviez-Mischabel Nappe: a New Key for Middle Penninic Nappe Geometry
    1661-8726/08/020431-22 Swiss J. Geosci. 101 (2008) 431–452 DOI 10.1007/s00015-008-1261-5 Birkhäuser Verlag, Basel, 2008 Lithostratigraphy and U-Pb zircon dating in the overturned limb of the Siviez-Mischabel nappe: a new key for Middle Penninic nappe geometry FLORIAN GENIER1, JEAN-LUC EPARD 1, FRANÇOIS BUSSY 2 & TOMAS MAGNA2 Key words: alps, Middle Penninic, Siviez-Mischabel nappe, Permo-Carboniferous, Randa orthogneiss, zircon typology, U-Pb geochronology ABSTRACT Detailed field work and zircon analysis have improved the knowledge of the This coherent overturned sequence can be observed from the St-Niklaus area to lithostratigraphy at the base of the Siviez-Mischabel nappe in the Mattertal the Moosalp pass to the north. Detailed mapping revealed that the St-Niklaus (St-Niklaus-Törbel area). They confirm the existence of an overturned limb syncline is symmetrical and connects the overturned limb of the Siviez-Mischa- and clarify the structure of the St-Niklaus syncline. The following formations bel nappe to the normal series of the Upper Stalden zone. U-Pb zircon geo- can be observed: chronology on magmatic and detrital zircons allowed constraining ages of these formations. Detrital zircons display ages ranging from 2900 ± 50 to 520 ± 4 Ma • Polymetamorphic gneisses; composed of paragneisses, amphibolites and in the Törbel Formation, and from 514 ± 6 to 292 ± 9 Ma in the Moosalp Forma- micaschists (Bielen Unit, pre-Ordovician). tion. In addition, the Permian Randa orthogneiss is intrusive into the polymeta- • Fine-grained, greyish quartzite and graywacke with kerogen-rich hori- morphic gneisses and into the Permo-Carboniferous metasediments of the zons (Törbel Formation, presumed Carboniferous).
    [Show full text]
  • Q = Q2 -640 (In Years) When Considered Interesting, the Dates Have Been Corrected for Secular Variations by Means of the Calibration Curve Suggested by Suess (1970)
    [RADIOCARBON, VOL. 12, No. 2, 1970, P. 358-384] BERN RADIOCARBON DATES VII H. OESCHGER, T. RIESEN, and J. C. LERMAN Universitat Bern Physikalisches Institut, Sidlerstrasse 5, CH-3000 Bern, Switzerland INTRODUCTION This list contains a selection of dates from analyses carried out during the past few years. Samples are grouped in geologic-palynologic, and archaeologic sections according to main problem. When influence of human activity on pollen diagrams has been observed it has been ex- plicitly indicated. The descriptions and comments have been written in collaboration with collectors and submitters. For the samples from Swit- zerland, general reference has also been made to Welten (1958a) and to sections on palynology, geology, and archaeology in work edited by the Schweizerische Gesellschaft fur Ur- and Fruhgeschichte (1968-1970). Combustion of samples and gas counting have been done according to description in previous list (Radiocarbon, 1965, v. 7, p. 1-2). The samples were treated before combustion only with cold hydrochloric acid. No more elaborate procedure was performed. Results are expressed in conventional C14 years as defined in the Editorial Statement of Radio- carbon (w.r.t. NBS standard; t1/2 = 5568 yr; reference year A.D. 1950 = 0 B.P.). The given standard deviations Q (or "errors") are derived with the following formula Qf2 Q = V o`2 + where: Q = counting statistics including estimated uncertainties in fill- ing temperature, barometric pressure, working voltage, etc.; Of = esti- mated uncertainty due to isotope fractionation effects. The term Of has been included because no 13C/12C ratios have been measured on samples of present list; it was estimated to be 80 years from the observed distribu- tion of deviations of 613CPDB (ca.
    [Show full text]
  • International Society for Soil Mechanics and Geotechnical Engineering
    INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING This paper was downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). The library is available here: https://www.issmge.org/publications/online-library This is an open-access database that archives thousands of papers published under the Auspices of the ISSMGE and maintained by the Innovation and Development Committee of ISSMGE. UNDER THE HIGH PATRONAGE OF SOUS LE HAUT PATRONAGE DU Swiss F ederal C ouncil Conseil F édéral de la C onfédération Suisse Cantonal G overnment of Z ur ich C onseil d ’Etat du Canton de Z ur ich Cantonal G overnment of Va ud Conseil d ’Etat du Canton de Va ud T own Council of Z ur ich C onseil M unicipa l de la Vil l e de Z ur ich T own Council of L ausanne C onseil M unicipa l de la Vil l e de L ausanne Board of t he Swiss F ederal Institute of T echnology Conseil de l’E cole polytechnique fédérale GUESTS OF HONOUR Dr. P h . Etter President of the Swiss Confederation Dr. P. M eierhans Councillor to the Cantonal Government of Zurich P. O guey Councillor to the Cantonal Government of Vaud J. Baumann Municipal Councillor of Zurich J. P eit r equin Municipal Councillor of Lausanne Prof. Dr. H. Pallmann President of the Board of the Swiss Federal Institute of Technology, Zurich Prof. Dr. h. c. A. R ohn Formerly President of the Board of the Swiss Federal Institute of Technology, Zurich Prof.
    [Show full text]
  • Structures, Deformation Mechanisms and Tectonic Phases, Recorded In
    European Scientific Journal Jume 2019 edition Vol.15, No.18 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 Structures, Deformation Mechanisms and Tectonic Phases, Recorded in Paleoproterozoic Granitoids of West African Craton, Southern Part: Example of Kan’s Complex (Central of Côte d’Ivoire) K. K. Jean Marie Pria, Laboratoire de Géologie du Socle et de Métallogénie, UFR-STRM, Université Félix Houphouët-Boigny de Cocody, Abidjan, Côte d’Ivoire Laboratoire des Géosciences et Environnement, Département de Géologie, Université Ibn Tofaïl de Kénitra, Maroc Yacouba Coulibaly, N. N’guessan Houssou, M. Ephrem Allialy, T. K. L. Dimitri Boya, Laboratoire de Géologie du Socle et de Métallogénie, UFR-STRM, Université Félix Houphouët-Boigny de Cocody, Abidjan, Côte d’Ivoire Mohamed Tayebi, Lamia Erraoui, Souad M’Rabet, Laboratoire des Géosciences et Environnement, Département de Géologie, Université Ibn Tofaïl de Kénitra, Maroc Doi: 10.19044/esj.2019.v15n18p315 URL:http://dx.doi.org/10.19044/esj.2019.v15n18p315 Abstract The granito-gneissic complex of Kan is located in the central part of the Paleoproterozoic domain of Côte d’Ivoire. It consists essentially of migmatitic and mylonitic gneisses with basic intrusions and xenoliths. This Proterozoic domain belongs to the Man Leo shield, southern part of West African craton (WAC). The present study, essentially based on a structural analysis at outcrop scale, aims to identify deformation mechanisms and tectonic phases recorded in the granito-gneissic complex of Kan. Deformation mechanisms include: (1) flattening, (2) constriction, (3) simple shear (4), rotation (5), brittle shear, and (6) extension. The Kan complex deformation occurred during four major tectonic phases named D1, D2, D3 and D4.
    [Show full text]