Polymerization of Ethylene: from Free Radical Homopolymerization to Hybrid Radical/Catalytic Copolymerization

Total Page:16

File Type:pdf, Size:1020Kb

Polymerization of Ethylene: from Free Radical Homopolymerization to Hybrid Radical/Catalytic Copolymerization Polymerization of ethylene : from free radical homopolymerization to hybrid radical / catalytic copolymerization Etienne Grau To cite this version: Etienne Grau. Polymerization of ethylene : from free radical homopolymerization to hybrid radical / catalytic copolymerization. Polymers. Université Claude Bernard - Lyon I, 2010. English. NNT : 2010LYO10242. tel-01228981 HAL Id: tel-01228981 https://tel.archives-ouvertes.fr/tel-01228981 Submitted on 16 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N° d’ordre 242-2010 Année 2010 THESE présentée devant L’UNIVERSITE CLAUDE BERNARD - LYON 1 pour l’obtention du DIPLOME DE DOCTORAT Spécialité CHIMIE (arrêté du 7 août 2006) soutenue le 15 novembre 2010 par M. GRAU Etienne Polymerization of ethylene: from free radical homopolymerization to hybrid radical/catalytic copolymerization Directeur de thèse: M. BOISSON Christophe Met polymer polymer X JURY : M. L. BONNEVIOT Examinateur M. K. MATYJASZEWSKI, Rapporteur M. S. MECKING, Rapporteur M. C. BOISSON, Directeur de thèse M. V. MONTEIL, Co-encadrant M. R. SPITZ, Co-encadrant M. S. MARQUE, Examinateur M. M. GLOTIN, Examinateur N° d’ordre 242-2010 Année 2010 THESE présentée devant L’UNIVERSITE CLAUDE BERNARD - LYON 1 pour l’obtention du DIPLOME DE DOCTORAT Spécialité CHIMIE (arrêté du 7 août 2006) soutenue le 15 novembre 2010 par M. GRAU Etienne Polymerization of ethylene: from free radical homopolymerization to hybrid radical/catalytic copolymerization Directeur de thèse: M. BOISSON Christophe JURY : M. L. BONNEVIOT Examinateur M. K. MATYJASZEWSKI, Rapporteur M. S. MECKING, Rapporteur M. C. BOISSON, Directeur de thèse M. V. MONTEIL, Co-encadrant M. R. SPITZ, Co-encadrant M. S. MARQUE, Examinateur M. M. GLOTIN, Examinateur UNIVERSITE CLAUDE BERNARD - LYON 1 Président de l’Université M. le Professeur L. Collet Vice-président du Conseil Scientifique M. le Professeur J-F. Mornex Vice-président du Conseil d’Administration M. le Professeur G. Annat Vice-président du Conseil des Etudes et de la Vie Universitaire M. le Professeur D. Simon Secrétaire Général M. G. Gay COMPOSANTES SANTE Faculté de Médecine Lyon Est – Claude Bernard Directeur : M. le Professeur J. Etienne Faculté de Médecine Lyon Sud – Charles Mérieux Directeur : M. le Professeur F-N. Gilly UFR d’Odontologie Directeur : M. le Professeur D. Bourgeois Institut des Sciences Pharmaceutiques et Biologiques Directeur : M. le Professeur F. Locher Institut des Sciences et Techniques de Réadaptation Directeur : M. le Professeur Y. Matillon Département de Biologie Humaine Directeur : M. le Professeur P. Farge COMPOSANTES ET DEPARTEMENTS DE SCIENCES ET TECHNOLOGIE Faculté des Sciences et Technologies Directeur : M. le Professeur F. Gieres Département Biologie Directeur : M. le Professeur C. Gautier Département Chimie Biochimie Directeur : Mme le Professeur H. Parrot Département GEP Directeur : M. N. Siauve Département Informatique Directeur : M. le Professeur S. Akkouche Département Mathématiques Directeur : M. le Professeur A. Goldman Département Mécanique Directeur : M. le Professeur H. Ben Hadid Département Physique Directeur : Mme S. Fleck Département Sciences de la Terre Directeur : M. le Professeur P. Hantzpergue UFR Sciences et Techniques des Activités Physiques et Sportives Directeur : M. C. Collignon Observatoire de Lyon Directeur : M. B. Guiderdoni Ecole Polytechnique Universitaire de Lyon 1 Directeur : M. le Professeur J. Lieto Institut Universitaire de Technologie de Lyon 1 Directeur : M. le Professeur C. Coulet Institut de Science Financière et d'Assurance Directeur : M. le Professeur J-C. Augros Institut Universitaire de Formation des Maîtres Directeur : M R. Bernard A Maïlys sans qui je ne suis rien. &HWUDYDLODpWpUpDOLVpGDQVO·pTXLSH&KLPLHHW3URFpGpVGH3RO\PpULVDWLRQDXVHLQ GXODERUDWRLUH&3805&156&3(8QLYHUVLWpGH/\RQVRXV OD GLUHFWLRQ VFLHQWLILTXHGH9LQFHQW0217(,/5RJHU63,7=HW&KULVWRSKH%2,6621-HWLHQVjOHV UHPHUFLHU SDUWLFXOLqUHPHQW SRXU P·DYRLU DFFXHLOOL GDQV OHXU pTXLSH GH UHFKHUFKH OHXU GLVSRQLELOLWp HW SRXU P·DYRLU GRQQp O·RSSRUWXQLWp GH UpDOLVHU PD WKqVH VXU XQ VXMHW SDVVLRQQDQW -·DGUHVVH PHV VLQFqUHV UHPHUFLHPHQWV DX 3URI 'U .U]\V]WRI 0$7<-$6=(:6., 3URIHVVHXU j &DUQHJLH0HOORQ8QLYHUVLW\HWDX3URI'U6WHIDQ0(&.,1*3URIHVVHXU j .RQVWDQ]8QLYHUVLW\SRXUDYRLUDFFHSWpG·rWUHUDSSRUWHXUVGHFHPDQXVFULW -·H[SULPH WRXWH PD UHFRQQDLVVDQFH DX 'U 0LFKHO */27,1 'LUHFWHXU VFLHQWLILTXH G·$5.(0$HWDX3URI'U6\OYDLQ0$548(3URIHVVHXUjO·8QLYHUVLWpGH 3URYHQFHTXLP·RQW IDLWO·KRQQHXUGHELHQYRXORLUSDUWLFLSHUjPRQMXU\GHWKqVH (QILQMHUHPHUFLH3URI'U/DXUHQW%211(9,273URIHVVHXUjO·(16/\RQG·DYRLUDFFHSWp GH SUpVLGHU PRQ MXU\ GH WKqVH HW VXUWRXW SRXU VHV SDVVLRQQDQWHV HW ORQJXHV GLVFXVVLRQV VXU OD PRUSKRORJLHHWSKLORVRSKLHGX1L,HQSDUWLFXOLHU GHYDQWOD53( -HUHPHUFLH5RJHU63,7=O·H[GLUHFWHXUGX/&33PDLVSRXUWRXMRXUVO·kPHGX/&33SRXU P·DYRLUSURSRVpO·DVLOHSROLWLTXHDXVHLQGHVRQODERUDWRLUH*UDFHjYRXVHQSDUWLFXOLHUM·DSSULVHW H[SpULPHQWDL TX·LO \ DYDLW HQFRUH SOHLQ GH FKRVHV j IDLUH HQ FKLPLH GH SRO\PpULVDWLRQ SDU HIIHW ULFRFKHW MH UHPHUFLH GRQF 3URI 'U 3LHUUH $8'(%(57 TXL HQ PH GpFRQVHLOODQW FHWWH ©VFLHQFH YLHLOOLVVDQWHªTXHVRQWOHVSRO\PqUHVP·\DIDLWSORQJHUjFRUSVSHUGX 5RJHUMHYRXVUHPHUFLH GRQF SRXU VHV TXDWUH DQQpHV GH GLVFXVVLRQV FKDQFH UpVHUYpH XQLTXHPHQW DX[ ORFDWDLUHV GHV SUHPLHUV EXUHDX[ SXLVTXH TX·j UDLVRQ GH K GH GLVFXVVLRQ SDU EXUHDX OD YLVLWH VH OLPLWH XQLTXHPHQW j WURLV FKDQFHX[ SDU MRXU HQ SDUWLFXOLHU VXU GHV VXMHWV VFLHQWLILTXHV H[WUrPHPHQW YDULpVRXVXUGHVVXMHWVWUqVWHQGDQFLHX[TXHOSODLVLUGHSRXYRLUGLVFXWHUDYHFTXHOTX·XQD\DQWXQ HVSULWDXVVLRXYHUW(WELHQVUWRXWHVQRVGLVFXVVLRQVVXU*OHH%%7+RXVH«-HPHVRXYLHQGUDL DXVVLWUqVORQJWHPSVGHQRVGLVFXVVLRQVVDQVILQVXUODWKHUPRG\QDPLTXHGHO·pWK\OqQHTXLP·RQW SHUPLVGHPHSRXVVHUGDQVPHVUHWUDQFKHPHQWVHWTXLP·RQWIDLWSDVVHUSOXVLHXUVQXLWVEODQFKHVHW ZHHNHQGVjWULWXUHUOHVpTXDWLRQV GpVROp0DwO\V (QILQM·HVSqUHTXHYRXVFRQWLQXHUH]ORQJWHPSV j IRXUQLU XQH WHOOH pGXFDWLRQ DX[ MHXQHV WKpVDUGV TXH QRXV VRPPHV SRXU GHYHQLU GH PHLOOHXUV VFLHQWLILTXHVFULWLTXHVHWHQWKRXVLDVWHV -HUHPHUFLHDXVVLPRQHQFDGUDQWDXMRXUOHMRXU9LQFHQW0217(,/0rPHVLOHGpEXWjpWp SDUWLFXOLqUHPHQWGLIILFLOHDXILQDOWXP·DVIDLVFRQILDQFHHWPRLDXVVL7XP·DVSHUPLVGHSUHQGUH PHVPDUTXHVGDQVFHODERUDWRLUHHWJUkFHjWRQFDUDFWqUHDVVH]VHPEODEOHDXPLHQM·DLWURXYpDX FRXUVGXWHPSVXQDSSXLHWXQUHQIRUW(QILQTXHOSODLVLUG·DYRLUSXWLWLOOHUWRQK\SRFRQGULDVLWp TXRWLGLHQQHPHQW$ORUVM·HVSqUHTXHWHVFDUULqUHVVFLHQWLILTXHHWVHQWLPHQWDOHYRQWVHSDVVHUSRXUOH PLHX[HWjELHQW{WSHXWrWUHSRXUGHIXWXUHVLQWHUDFWLRQV -HUHPHUFLHHQILQPRQHQFDGUDQWRIILFLHO&KULVWRSKH%2,66217XP·DVIDLWFRQILDQFHHW SHUPLVGHPDQDJHUPRQWUDYDLOFRPPHMHO·HQWHQGDLV0rPHVLDXILQDOOHFRQWDFWHVWUHVWpDVVH] IDLEOH SHXWrWUHGjXQHWURSJUDQGHGLIIpUHQFHGHFDUDFWqUH M·HVSqUHTXHO·RQJDUGHUDFRQWDFW &H WUDYDLO Q·DXUDLW SDV SX rWUH IDLW VDQV WRXWHV OHV LQWHUDFWLRQV DYHF GHV SHUVRQQHV G·RULJLQHVGLYHUVHVTXHM·DLHXODFKDQFHGHF{WR\HUSHQGDQWPDWKqVH-HWLHQVGRQFjUHPHUFLHU-HDQ 3LHUUH %52<(5 SRXU OD FKLPLH HW OD SORPEHULHV 3LHUUH<YHV '8*$6 SRXU OD 7(0 'U 3LHUUH $QWRLQH$/%28,GX/36G·2UVD\SRXUOD5;VXUOHVODWH[GHV3(HWP·DYRLUDFFXHLOOLSHQGDQWXQ FRXUWVWDJH'U0HGKL=(*+$/GX/36G·2UVD\SRXUOD501VROLGHVXUGHV/DWH[GH3('U &KULVWRSKH &+$66(1,(8; GX 3&, GX 0DQV SRXU P·DYRLU DFFXHLO SHQGDQW MRXUV GH 6/6 LQWHQVLYH'DYLG$/%(57,1,GHO·,1/j/\RQSRXUO·$)0;DYLHU-$85$1'GX&7ȝj/\RQSRXU OD7RPR7(0'U/DXUHQW%211(9,27HW'U%HOHQ$/%(/$GHO·(16/\RQSRXUP·DYRLUIRUPp j FHWWH PHUYHLOOHXVH WHFKQLTXH TX·HVW OD 53( 'U )HUQDQGH %2,6621 HW $QQLFN :$721 SRXU O·DQDO\VH 501 GHV SRO\PqUHV 'U9LQFHQW/('(178GX/&700j0DUVHLOOH SRXU OHV FDOFXOV ')700'U5REHUW%58//DQG&KLWWD5$-(6+GX'.,j'DUPVWDGWSRXUOHVDQDO\VHV+7/& &&2OLYLHU%2<521SRXUOD+76(&HWSDUGRQjWRXWFHX[TXHM·DLRXEOLp 8Q JUDQG PHUFL j -HDQ3LHUUH %52<(5 O·HQF\FORSpGLH YLYDQWH GX ODERUDWRLUH HQ FKLPLH SUDWLTXH O\RQQDLVHULH HW FKRVHV LQXWLOHV DYHF VSLW]LSHGLD HW EUR\HUSHGLD ZLNL Q·D TX·D ELHQ VH WHQLU 7XP·DVDSSULVODSORPEHULHFHTXLP·HVWWUqVXWLOHDXMRXUG·KXLFKH]PRL FRPPHQWIDLUHXQ <SRXUDOLPHQWHUODPDFKLQHjODYHUHWXQODYDER HWFRPPHPDQLHUO·DUJRQ0DLVVXUWRXWHQWDQW TXHFREXUHDXWXP·DVVXSSRUWpDXMRXUOHMRXUVXUWRXWSHQGDQWOHVGLVFXVVLRQVDYHF5RJHU WXPH IHUDVSDVVHUODQRWHSRXUOH3UR]DFHW9DOLXPDEVROXPHQWQpFHVVDLUHVSRXUVXSSRUWHUFHU\WKPH 7X P·DVIDLWGpFRXYULUFHUWDLQHV%'HXURSpHQQHVDYHFVXFFqVM·DLHVVD\pGHW·LQLWLHUDXqPHDUW86DYHF pFKHF-HWHUHPHUFLHSRXUP·DYRLUGpJRQIOpOHPHORQGHWHPSVHQWHPSVHWF-·DLGpFRXYHUWGHVIDFHWWHV LQDWWHQGXHVGHWDSHUVRQQDOLWpRXLWXpFRXWHVGX:DJQHUWXDVXQF±XUHWSHXG·KXPRXU0DLV VXUWRXWMHPHUDSSHOOHUDLWDERQQHKXPHXUHWWDJHQWLOOHVVH -H WLHQV SDUWLFXOLqUHPHQW j UHPHUFLHU 3LHUUH<YHV '8*$6 TXL HQ ILQ GH WKqVH P·D IDLW GpFRXYULUO·pPXOVLRQ8QHJUDQGHDPLWLpHVWQpHHQWUHQRXVELHQDYDQW oDQHIDLWSDVWURSJD\" (QVHPEOHQRXVDYRQVSHUYHUWLOHODERDYHF8%8178HWGHVGLVFXVVLRQVVXUO·LQIRUPDWLTXH$YHFWRL HW.HVV\RQDSDUWDJpXQJUDQGQRPEUHGHERXIIHVjODERQQHIUDQTXHWWHHWQRVVRUWLHVGXGHUQLHU MHXGLGXPRLV$XIDLWMHJDUGHHQRWDJHTXHOTXH%'HW'9'jWRLHQDWWHQGDQWGHIDLUHXQpFKDQJH DYHFOHVPLHQVTXLGRUPHQWFKH]WRL(QHVSpUDQWFRQWLQXHUjWHYRLUSHQGDQWHQFRUHORQJWHPSV 0HUFLHWjELHQW{WDXWRXUG·XQDSpUR -HWLHQVDXVVLDUHPHUFLHUOHVDQFLHQVGXODEROHVWURLVILOOHVWKpVDUGHVTXLP·RQWPDOWUDLWp j PRQ DUULYpDX ODER $OH[DQGUD PHUFL GH P·DYRLU IRUPp 0DJDOL *DsOOH« HW SDUWLFXOLqUHPHQW &KULVWLDQ *5$,//$7 TXL DYDLW WRXMRXUV UpSRQVH
Recommended publications
  • Oligomeric A2 + B3 Approach to Branched Poly(Arylene Ether Sulfone)
    “One-Pot” Oligomeric A 2 + B 3 Approach to Branched Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondensation A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By ANDREA M. ELSEN B.S., Wright State University, 2007 2009 Wright State University WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES June 19, 200 9 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Andrea M. Elsen ENTITLED “One-Pot” Oligomeric A2 + B3 Approach to Branched Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondenstation BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science . _________________________ Eric Fossum, Ph.D. Thesis Director _________________________ Kenneth Turnbull, Ph.D. Department Chair Committee on Final Examination ____________________________ Eric Fossum, Ph.D. ____________________________ Kenneth Turnbull, Ph.D. ____________________________ William A. Feld, Ph.D. ____________________________ Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies Abstract Elsen, Andrea M. M.S., Department of Chemistry, Wright State University, 2009. “One-Pot” Oligomeric A 2 + B 3 Approach to Branched Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondensation The synthesis of fully soluble branched poly(arylene ether)s via an oligomeric A 2 + B 3 system, in which the A 2 oligomers are generated in situ, is presented. This approach takes advantage of the significantly higher reactivity toward nucleophilic aromatic substitution reactions, NAS, of B 2, 4-Fluorophenyl sulfone, relative to B 3, tris (4-Fluorophenyl) phosphine oxide. The A 2 oligomers were synthesized by reaction of Bisphenol-A and B 2, in the presence of the B 3 unit, at temperatures between 100 and 160 °C, followed by an increase in the reaction temperature to 180 °C at which point the branching unit was incorporated.
    [Show full text]
  • Cationic/Anionic/Living Polymerizationspolymerizations Objectives
    Chemical Engineering 160/260 Polymer Science and Engineering LectureLecture 1919 -- Cationic/Anionic/LivingCationic/Anionic/Living PolymerizationsPolymerizations Objectives • To compare and contrast cationic and anionic mechanisms for polymerization, with reference to free radical polymerization as the most common route to high polymer. • To emphasize the importance of stabilization of the charged reactive center on the growing chain. • To develop expressions for the average degree of polymerization and molecular weight distribution for anionic polymerization. • To introduce the concept of a “living” polymerization. • To emphasize the utility of anionic and living polymerizations in the synthesis of block copolymers. Effect of Substituents on Chain Mechanism Monomer Radical Anionic Cationic Hetero. Ethylene + - + + Propylene - - - + 1-Butene - - - + Isobutene - - + - 1,3-Butadiene + + - + Isoprene + + - + Styrene + + + + Vinyl chloride + - - + Acrylonitrile + + - + Methacrylate + + - + esters • Almost all substituents allow resonance delocalization. • Electron-withdrawing substituents lead to anionic mechanism. • Electron-donating substituents lead to cationic mechanism. Overview of Ionic Polymerization: Selectivity • Ionic polymerizations are more selective than radical processes due to strict requirements for stabilization of ionic propagating species. Cationic: limited to monomers with electron- donating groups R1 | RO- _ CH =CH- CH =C 2 2 | R2 Anionic: limited to monomers with electron- withdrawing groups O O || || _ -C≡N -C-OR -C- Overview of Ionic Chain Polymerization: Counterions • A counterion is present in both anionic and cationic polymerizations, yielding ion pairs, not free ions. Cationic:~~~C+(X-) Anionic: ~~~C-(M+) • There will be similar effects of counterion and solvent on the rate, stereochemistry, and copolymerization for both cationic and anionic polymerization. • Formation of relatively stable ions is necessary in order to have reasonable lifetimes for propagation.
    [Show full text]
  • Photopolymerization Reactions Under Visible Lights: Principle, Mechanisms and Examples of Applications J.P
    Progress in Organic Coatings 47 (2003) 16–36 Photopolymerization reactions under visible lights: principle, mechanisms and examples of applications J.P. Fouassier∗, X. Allonas, D. Burget Département de Photochimie Générale, UMR n◦7525, Ecole Nationale Supérieure de Chimie, 3 Rue Alfred Werner, 68093 Mulhouse Cedex, France Received 22 June 2002; received in revised form 19 November 2002; accepted 20 December 2002 Abstract A general overview of visible light photoinduced polymerization reactions is presented. Reaction mechanisms as well as practical efficiency in industrial applications are discussed. Several points are investigated in detail: photochemical reactivity of photoinitiating system (PIS), short overview of available photoinitiators (PIs) and photosensitizers (PSs), mechanisms involved in selected examples of dye sensitized polymerization reactions, examples of applications in pigmented coatings usable as paints, textile printing, glass reinforced fibers, sunlight curing of waterborne latex paints, curing of inks, laser-induced polymerization reactions, high speed photopolymers for laser imaging, PISs for computer-to-plate systems. © 2003 Elsevier Science B.V. All rights reserved. Keywords: Photopolymerization; Visible light; Radiation curing 1. Introduction Radical, cationic and anionic polymerizations can be ini- tiated by the excitation of suitable photoinitiating systems Radiation curing technologies provide a number of eco- (PISs) under lights. Most of these systems were originally nomic advantages over the usual thermal operation among sensitive to UV lights but by now a large number of various them: rapid through cure, low energy requirements, room systems allows to extend the spectral sensitivity to visible temperature treatment, non-polluting and solvent-free for- lights. According to the applications which are developed, mulations, low costs.
    [Show full text]
  • The Chemistry of Radical Polymerization
    THE CHEMISTRY OF RADICAL POLYMERIZATION THE CHEMISTRY OF RADICAL POLYMERIZATION GRAEME MOAD CSIRO Molecular and Health Technologies Bayview Ave, Clayton, Victoria 3168, AUSTRALIA and DAVID H. SOLOMON Department of Chemical and Biomolecular Engineering. University of Melbourne, Victoria 3010, AUSTRALIA Dr Graeme Moad CSIRO Molecular and Health Technologies Bayview Ave, Clayton, Victoria 3168 AUSTRALIA Email: [email protected] Prof David H. Solomon Department of Chemical and Biomolecular Engineering. University of Melbourne Victoria 3010 AUSTRALIA Email: [email protected] Contents Contents............................................................................................................................ v Index to Tables.............................................................................................................xvi Index to Figures ............................................................................................................ xx Preface to the First Edition .....................................................................................xxiii Preface to the Second Edition..................................................................................xxv Acknowledgments......................................................................................................xxvi 1 INTRODUCTION.................................................................................................. 1 1.1 References ...........................................................................................................
    [Show full text]
  • High Temperature, Living Polymerization of Ethylene by a Sterically-Demanding Nickel(II) Α-Diimine Catalyst
    polymers Article High Temperature, Living Polymerization of Ethylene by a Sterically-Demanding Nickel(II) α-Diimine Catalyst Lauren A. Brown, W. Curtis Anderson Jr., Nolan E. Mitchell, Kevin R. Gmernicki and Brian K. Long * ID Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA; [email protected] (L.A.B.); [email protected] (W.C.A.J.); [email protected] (N.E.M.); [email protected] (K.R.G.) * Correspondence: [email protected]; Tel.: +1-865-974-5664 Received: 15 December 2017; Accepted: 27 December 2017; Published: 2 January 2018 Abstract: Catalysts that employ late transition-metals, namely Ni and Pd, have been extensively studied for olefin polymerizations, co-polymerizations, and for the synthesis of advanced polymeric structures, such as block co-polymers. Unfortunately, many of these catalysts often exhibit poor thermal stability and/or non-living polymerization behavior that limits their ability to access tailored polymer structures. Due to this, the development of catalysts that display controlled/living behavior at elevated temperatures is vital. In this manuscript, we describe a Ni α-diimine complex that is capable of polymerizing ethylene in a living manner at temperatures as high as 75 ◦C, which is one of the highest temperatures reported for the living polymerization of ethylene by a late transition metal-based catalyst. Furthermore, we will demonstrate that this catalyst’s living behavior is not dependent on the presence of monomer, and that it can be exploited to access polyethylene-based block co-polymers. Keywords: polyethylene; living polymerization; nickel α-diimine; catalysis 1. Introduction Controlled/living polymerizations offer a precise means by which polymer structure, co-monomer incorporation levels, and even regio- and stereoselectivity can be tailored [1–7].
    [Show full text]
  • Synthesis of Polypeptides by Ring-Opening Polymerization of A-Amino Acid N-Carboxyanhydrides
    Top Curr Chem (2011) DOI: 10.1007/128_2011_173 # Springer-Verlag Berlin Heidelberg 2011 Synthesis of Polypeptides by Ring-Opening Polymerization of a-Amino Acid N-Carboxyanhydrides Jianjun Cheng and Timothy J. Deming Abstract This chapter summarizes methods for the synthesis of polypeptides by ring-opening polymerization. Traditional and recently improved methods used to polymerize a-amino acid N-carboxyanhydrides (NCAs) for the synthesis of homo- polypeptides are described. Use of these methods and strategies for the preparation of block copolypeptides and side-chain-functionalized polypeptides are also pre- sented, as well as an analysis of the synthetic scope of different approaches. Finally, issues relating to obtaining highly functional polypeptides in pure form are detailed. Keywords Amino acid Á Block copolymer Á N-Carboxyanhydride Á Polymerization Á Polypeptide Contents 1 Introduction 2 Polypeptide Synthesis Using NCAs 2.1 Conventional Methods 2.2 Transition Metal Initiators 2.3 Recent Developments 3 Copolypeptide and Functional Polypeptide Synthesis via NCA Polymerization 3.1 Block Copolypeptides 3.2 Side-Chain-Functionalized Polypeptides 4 Polypeptide Deprotection and Purification 5 Conclusions and Future Prospects References J. Cheng Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA T.J. Deming (*) Department of Bioengineering, University of California, Los Angeles, CA 90095, USA e-mail: [email protected] J. Cheng and T.J. Deming Abbreviations AM Activated
    [Show full text]
  • Aim: to Prepare Block Copolymers of Methyl Methacrylate (MMA) and Styrene
    Conducting A Reversible-Deactivation Radical Polymerization (RDRP) Aim: To Prepare Block Copolymers of Methyl Methacrylate (MMA) and Styrene. Polymers are ubiquitous in the modern world. They provide tremendous value because the chemical and physical properties of these materials are determined by the monomers that are used to put them together. One of the most powerful methods to construct polymers is radical-chain polymerization and this method is used in the commercial synthesis of polymers everyday. Methyl methacrylate is polymerized to form poly(methyl methacrylate) (PMMA) which is also known as acrylic glass or Plexiglas (about 2 billion pounds per year in the US). This material is lightweight, strong and durable. The polymer chains are rigid due to the tetrasubstituted carbon atom in the polymer backbone and they have excellent optical clarity. As a consequence, these materials are used in aircraft windows, glasses, skylights, signs and displays. Polystyrene (PS), which can also be synthesized from radical chain polymerization, has found extensive use as a material (also approximately 2 billion pounds per year in the US). One of the forms of PS, Styrofoam, is used extensively to make disposable cups, thermal insulation, and cushion for packaging. Scheme 1. Radical polymerization of methyl methacrylate or styrene. While there are extensive uses for these polymers, when synthesizing any material using a free-radical polymerization, samples are obtained with limited control over molecular weight and molecular weight distribution. New methods have been developed directly at Carnegie Mellon (https://www.cmu.edu/maty/) which lead to improved control in this process. This new method is a reversible-deactivation of the polymerization reaction where highly reactive radicals toggle back and forth between an active state, where the polymer chain is growing, and a dormant state, where the polymer chain is capped (Scheme 2).
    [Show full text]
  • Chem 51B Chapter 15 Notes
    Lecture Notes Chem 51B S. King Chapter 15 Radical Reactions I. Introduction A radical is a highly reactive intermediate with an unpaired electron. Radicals are involved in oxidation reactions, combustion reactions, and biological reactions. Structure: compare with: compare with: Stability: Free radicals and carbocations are both electron deficient and they follow a similar order of stability: R R H H , > R C > R C > R C > H C R H H H • like carbocations, radicals can be stabilized by resonance. H H H H C C C C H C CH3 H C CH3 H H • unlike carbocations, no rearrangements are observed in free radical reactions. Q. How are free radicals formed? A. Free radicals are formed when bonds break homolytically: 103 Look @ the arrow pushing: Notice the fishhook arrow! It shows movement of a single electron: Compare with heterolytic bond cleavage: A double-headed arrow shows movement of a pair of electrons: Nomenclature: bromide ion bromine atom Bromine (molecule) II. General Features of Radical Reactions Radicals are formed from covalent bonds by adding energy in the form of heat or light (hν). Some radical reactions are carried out in the presence of radical initiators, which contain weak bonds that readily undergo homolysis. The most common radical initiators are peroxides (ROOR), which contain the weak O−O bond. A. Common Reactions of Radicals: Radicals undergo two common reactions: they react with σ-bonds and they add to π-bonds. 1. Reaction of a Radical X• with a C−H bond A radical X• abstracts a H atom from a C−H bond to form H−X and a carbon radical: 104 2.
    [Show full text]
  • Peroxides and Peroxide- Forming Compounds
    FEATURE Peroxides and peroxide- forming compounds By Donald E. Clark Bretherick5 included a discussion of nated. However, concentrated hydro- organic peroxide5 in a chapter on gen peroxide (Ͼ30%), in contact with norganic and organic peroxides, highly reactive and unstable com- ordinary combustible materials (e.g., because of their exceptional reac- pounds and used “oxygen balance” to fabric, oil, wood, or some resins) Itivity and oxidative potential are predict the stability of individual com- poses significant fire or explosion haz- widely used in research laboratories. pounds and to assess the hazard po- ards. Peroxides of alkali metals are not This review is intended to serve as a tential of an oxidative reaction. Jack- particularly shock sensitive, but can 6 guide to the hazards and safety issues son et al. addressed the use of decompose slowly in the presence of associated with the laboratory use, peroxidizable chemicals in the re- moisture and may react violently with handling, and storage of inorganic and search laboratory and published rec- a variety of substances, including wa- organic peroxy-compounds and per- ommendations for maximum storage ter. Thus, the standard iodide test for oxide-forming compounds. time for common peroxide-forming peroxides must not be used with these The relatively weak oxygen-oxygen laboratory solvents. Several solvents, water-reactive compounds.1 linkage (bond-dissociation energy of (e.g., diethyl ether) commonly used in Inorganic peroxides are used as ox- 20 to 50 kcal moleϪ1) is the character- the laboratory can form explosive re- idizing agents for digestion of organic istic structure of organic and inor- action products through a relatively samples and in the synthesis of or- ganic peroxide molecules, and is the slow oxidation process in the pres- ganic peroxides.
    [Show full text]
  • Radical Initiators
    Question #61073 – Chemistry – Organic Chemistry Question: List the various methods of generation of free radicals. Discuss in detail various redox sources of free radical generation. Answer: Methods of generation of free radicals Thermal Cracking At temperatures greater than 500º C, and in the absence of oxygen, mixtures of high molecular weight alkanes break down into smaller alkane and alkene fragments. This cracking process is important in the refining of crude petroleum because of the demand for lower boiling gasoline fractions. Free radicals, produced by homolysis of C–C bonds, are known to be intermediates in these transformations. Studies of model alkanes have shown that highly substituted C–C bonds undergo homolysis more readily than do unbranched alkanes. In practice, catalysts are used to lower effective cracking temperatures. Homolysis of Peroxides and Azo Compounds In contrast to stronger C–C and C–H bonds, the very weak O–O bonds of peroxides are cleaved at relatively low temperatures ( 80 to 150 ºC ), as shown in the following equations. The resulting oxy radicals may then initiate other reactions, or may decompose to carbon radicals, as noted in the shaded box. The most commonly used peroxide initiators are depicted in the first two equations. Organic azo compounds (R–N=N–R) are also heat sensitive, decomposing to alkyl radicals and nitrogen. Azobisisobutyronitrile (AIBN) is the most widely used radical initiator of this kind, decomposing slightly faster than benzoyl peroxide at 70 to 80 ºC. The thermodynamic stability of nitrogen provides an overall driving force for this decomposition, but its favorable rate undoubtedly reflects weaker than normal C-N bonds.
    [Show full text]
  • Heats of Combustion and Solution of Liquid Styrene and Solid Polystyrene, and the Heat of Polymerization of Styrenel by Donald E
    U. S. Department of Commerce Research Paper RP1801 National Bureau of Sta ndards Volume 38, June 1947 Part of the Journal of Research of the National Bureau of Standards Heats of Combustion and Solution of Liquid Styrene and Solid Polystyrene, and the Heat of Polymerization of Styrenel By Donald E. Roberts, William W . Walton, and Ralph S. Jessup Bomb-calorimetric m easurements have yielded for the heats of combustion (-t:"Hc0) at 25° C of liquid styrcne and solid polystyrene to form gaseous carbon dioxide and liquid watcr the values 4394.88 ± 0.67 into kj/mole (1050.58 ± 0.14 kcal/mole) , and 4325.09 ± 0.42 int. kj/CsH s-unit (1033.89 ± 0.10 kcal/CsHs-unit), resp ectively, and for the heat of polymerization of liquid styrene to solid polystyrene at 25° C the value 69.79 ± 0.66 into kj/mole (16.68 ± 0.16 kcal/mole) . The results obtained on two samples of polystyrcne of different molecular weight were in agreement within the p'recision of the measurements. M easurements of the heat of olution of solid polystyrenc in liquid monomeric styrene gave the value 3.59 ± 0.21 l,nt. kj (0.86 ± 0.05 kcal) evolved per CsH s-unit of polystyrene at 25 ° C. Addition of this to the value for the heat of polymerization of liquid styrene to solid polystyrene gives the value 73.38 ± 0.69 into kj (17.54 ± 0.16 kcal) per mole of styrenc for the heat of polymerization of liquid styrene at 25° C, when the final product is a solution of polystyrene in styrene containing 6.9 percent by weight of polystyrene.
    [Show full text]
  • TEST - Alkenes, Alkadienes and Alkynes
    Seminar_2 1. Nomenclature of unsaturated hydrocarbons 2. Polymerization 3. Reactions of the alkenes (table) 4. Reactions of the alkynes (table) TEST - Alkenes, alkadienes and alkynes. Polymerization • Give the names • Write the structural formula • Write all isomeric compounds • The processes explanation 1. NOMENCLATURE OF UNSATURATED HYDROCARBONS ALKENE NOMENCLATURE We give alkenes IUPAC names by replacing the -ane ending of the corresponding alkane with -ene . The two simplest alkenes are ethene and propene. Both are also well known by their common names ethylene and propylene. Ethylene is an acceptable synonym for ethene in the IUPAC system. Propylene, isobutylene, and other common names ending in -ylene are not acceptable IUPAC names. 1. The longest continuous chain that includes the double bond forms the base name of the alkene. 2. Chain is numbered in the direction that gives the doubly bonded carbons their lower numbers. 3. The locant (or numerical position) of only one of the doubly bonded carbons is specified in the name; it is understood that the other doubly bonded carbon must follow in sequence. 4. Carbon-carbon double bonds take precedence over alkyl groups and halogens in determining the main carbon chain and the direction in which it is numbered. 5. The common names of certain frequently encountered alkyl groups, such as isopropyl and tert-butyl, are acceptable in the IUPAC system. Three alkenyl groups--vinyl, allyl, and isopropenyl--are treated the same way: 6. When a CH 2 group is doubly bonded to a ring, the prefix methylene is added to the name of the ring: 7. Cycloalkenes and their derivatives are named by adapting cycloalkane terminology to the principles of alkene nomenclature: No locants are needed in the absence of substituents; it is understood that the double bond connects C-1 and C 2.
    [Show full text]