Aim: to Prepare Block Copolymers of Methyl Methacrylate (MMA) and Styrene
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Oligomeric A2 + B3 Approach to Branched Poly(Arylene Ether Sulfone)
“One-Pot” Oligomeric A 2 + B 3 Approach to Branched Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondensation A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By ANDREA M. ELSEN B.S., Wright State University, 2007 2009 Wright State University WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES June 19, 200 9 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Andrea M. Elsen ENTITLED “One-Pot” Oligomeric A2 + B3 Approach to Branched Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondenstation BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science . _________________________ Eric Fossum, Ph.D. Thesis Director _________________________ Kenneth Turnbull, Ph.D. Department Chair Committee on Final Examination ____________________________ Eric Fossum, Ph.D. ____________________________ Kenneth Turnbull, Ph.D. ____________________________ William A. Feld, Ph.D. ____________________________ Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies Abstract Elsen, Andrea M. M.S., Department of Chemistry, Wright State University, 2009. “One-Pot” Oligomeric A 2 + B 3 Approach to Branched Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondensation The synthesis of fully soluble branched poly(arylene ether)s via an oligomeric A 2 + B 3 system, in which the A 2 oligomers are generated in situ, is presented. This approach takes advantage of the significantly higher reactivity toward nucleophilic aromatic substitution reactions, NAS, of B 2, 4-Fluorophenyl sulfone, relative to B 3, tris (4-Fluorophenyl) phosphine oxide. The A 2 oligomers were synthesized by reaction of Bisphenol-A and B 2, in the presence of the B 3 unit, at temperatures between 100 and 160 °C, followed by an increase in the reaction temperature to 180 °C at which point the branching unit was incorporated. -
Cationic/Anionic/Living Polymerizationspolymerizations Objectives
Chemical Engineering 160/260 Polymer Science and Engineering LectureLecture 1919 -- Cationic/Anionic/LivingCationic/Anionic/Living PolymerizationsPolymerizations Objectives • To compare and contrast cationic and anionic mechanisms for polymerization, with reference to free radical polymerization as the most common route to high polymer. • To emphasize the importance of stabilization of the charged reactive center on the growing chain. • To develop expressions for the average degree of polymerization and molecular weight distribution for anionic polymerization. • To introduce the concept of a “living” polymerization. • To emphasize the utility of anionic and living polymerizations in the synthesis of block copolymers. Effect of Substituents on Chain Mechanism Monomer Radical Anionic Cationic Hetero. Ethylene + - + + Propylene - - - + 1-Butene - - - + Isobutene - - + - 1,3-Butadiene + + - + Isoprene + + - + Styrene + + + + Vinyl chloride + - - + Acrylonitrile + + - + Methacrylate + + - + esters • Almost all substituents allow resonance delocalization. • Electron-withdrawing substituents lead to anionic mechanism. • Electron-donating substituents lead to cationic mechanism. Overview of Ionic Polymerization: Selectivity • Ionic polymerizations are more selective than radical processes due to strict requirements for stabilization of ionic propagating species. Cationic: limited to monomers with electron- donating groups R1 | RO- _ CH =CH- CH =C 2 2 | R2 Anionic: limited to monomers with electron- withdrawing groups O O || || _ -C≡N -C-OR -C- Overview of Ionic Chain Polymerization: Counterions • A counterion is present in both anionic and cationic polymerizations, yielding ion pairs, not free ions. Cationic:~~~C+(X-) Anionic: ~~~C-(M+) • There will be similar effects of counterion and solvent on the rate, stereochemistry, and copolymerization for both cationic and anionic polymerization. • Formation of relatively stable ions is necessary in order to have reasonable lifetimes for propagation. -
Photopolymerization Reactions Under Visible Lights: Principle, Mechanisms and Examples of Applications J.P
Progress in Organic Coatings 47 (2003) 16–36 Photopolymerization reactions under visible lights: principle, mechanisms and examples of applications J.P. Fouassier∗, X. Allonas, D. Burget Département de Photochimie Générale, UMR n◦7525, Ecole Nationale Supérieure de Chimie, 3 Rue Alfred Werner, 68093 Mulhouse Cedex, France Received 22 June 2002; received in revised form 19 November 2002; accepted 20 December 2002 Abstract A general overview of visible light photoinduced polymerization reactions is presented. Reaction mechanisms as well as practical efficiency in industrial applications are discussed. Several points are investigated in detail: photochemical reactivity of photoinitiating system (PIS), short overview of available photoinitiators (PIs) and photosensitizers (PSs), mechanisms involved in selected examples of dye sensitized polymerization reactions, examples of applications in pigmented coatings usable as paints, textile printing, glass reinforced fibers, sunlight curing of waterborne latex paints, curing of inks, laser-induced polymerization reactions, high speed photopolymers for laser imaging, PISs for computer-to-plate systems. © 2003 Elsevier Science B.V. All rights reserved. Keywords: Photopolymerization; Visible light; Radiation curing 1. Introduction Radical, cationic and anionic polymerizations can be ini- tiated by the excitation of suitable photoinitiating systems Radiation curing technologies provide a number of eco- (PISs) under lights. Most of these systems were originally nomic advantages over the usual thermal operation among sensitive to UV lights but by now a large number of various them: rapid through cure, low energy requirements, room systems allows to extend the spectral sensitivity to visible temperature treatment, non-polluting and solvent-free for- lights. According to the applications which are developed, mulations, low costs. -
The Chemistry of Radical Polymerization
THE CHEMISTRY OF RADICAL POLYMERIZATION THE CHEMISTRY OF RADICAL POLYMERIZATION GRAEME MOAD CSIRO Molecular and Health Technologies Bayview Ave, Clayton, Victoria 3168, AUSTRALIA and DAVID H. SOLOMON Department of Chemical and Biomolecular Engineering. University of Melbourne, Victoria 3010, AUSTRALIA Dr Graeme Moad CSIRO Molecular and Health Technologies Bayview Ave, Clayton, Victoria 3168 AUSTRALIA Email: [email protected] Prof David H. Solomon Department of Chemical and Biomolecular Engineering. University of Melbourne Victoria 3010 AUSTRALIA Email: [email protected] Contents Contents............................................................................................................................ v Index to Tables.............................................................................................................xvi Index to Figures ............................................................................................................ xx Preface to the First Edition .....................................................................................xxiii Preface to the Second Edition..................................................................................xxv Acknowledgments......................................................................................................xxvi 1 INTRODUCTION.................................................................................................. 1 1.1 References ........................................................................................................... -
Acrylamide, Sodium Acrylate Polymer (Cas No
ACRYLAMIDE/SODIUM ACRYLATE COPOLYMER (CAS NO. 25085‐02‐3) ACRYLAMIDE, SODIUM ACRYLATE POLYMER (CAS NO. 25987‐30‐8) 2‐PROPENOIC ACID, POTASSIUM SALT, POLYMER WITH 2‐PROPENAMIDE (CAS NO. 31212‐13‐2) SILICONE BASED EMULSION NEUTRALISED POLYACRYLIC BASED STABILIZER (NO CAS NO.) This group contains a sodium salt of a polymer consisting of acrylic acid, methacrylic acid or one of their simple esters and three similar polymers. They are expected to have similar environmental concerns and have consequently been assessed as a group. Information provided in this dossier is based on acrylamide/sodium acrylate copolymer (CAS No. 25085‐02‐3). This dossier on acrylamide/sodium acrylate copolymer and similar polymers presents the most critical studies pertinent to the risk assessment of these polymers in their use in drilling muds. This dossier does not represent an exhaustive or critical review of all available data. Where possible, study quality was evaluated using the Klimisch scoring system (Klimisch et al., 1997). Screening Assessment Conclusion – Acrylamide/sodium acrylate copolymer, acrylamide, sodium acrylate polymer and 2‐propenoic acid, potassium salt, polymer with 2‐propenamide are polymers of low concern. Therefore, these polymers and the other similar polymer in this group are classified as tier 1 chemicals and require a hazard assessment only. 1. BACKGROUND Acrylamide/sodium acrylate copolymer is a sodium salt of a polymer consisting of acrylic acid, methacrylic acid or one of their simple esters. Acrylates are a family of polymers which are a type of vinyl polymer. Synthetic chemicals used in the manufacture of plastics, paint formulations and other products. Acrylate copolymer is a general term for copolymers of two or more monomers consisting of acrylic acid, methacrylic acid or one of their simple esters. -
7: Source-Based Nomenclature for Copolymers (1985)
7: Source-Based Nomenclature for Copolymers (1985) PREAMBLE Copolymers have gained considerable importance both in scientific research and in industrial applications. A consistent and clearly defined system for naming these polymers would, therefore, be of great utility. The nomenclature proposals presented here are intended to serve this purpose by setting forth a system for designating the types of monomeric-unit sequence arrangements in copolymer molecules. In principle, a comprehensive structure-based system of naming copolymers would be desirable. However, such a system presupposes a knowledge of the structural identity of all the constitutional units as well as their sequential arrangements within the polymer molecules; this information is rarely available for the synthetic polymers encountered in practice. For this reason, the proposals presented in this Report embody an essentially source-based nomenclature system. Application of this system should not discourage the use of structure-based nomenclature whenever the copolymer structure is fully known and is amenable to treatment by the rules for single-strand polymers [1, 2]. Further, an attempt has been made to maintain consistency, as far as possible, with the abbreviated nomenclature of synthetic polypeptides published by the IUPAC-IUB Commission on Biochemical Nomenclature [3]. It is intended that the present nomenclature system supersede the previous recommendations published in 1952 [4]. BASIC CONCEPT The nomenclature system presented here is designed for copolymers. By definition, copolymers are polymers that are derived from more than one species of monomer [5]. Various classes of copolymers are discussed, which are based on the characteristic sequence arrangements of the monomeric units within the copolymer molecules. -
Heats of Combustion and Solution of Liquid Styrene and Solid Polystyrene, and the Heat of Polymerization of Styrenel by Donald E
U. S. Department of Commerce Research Paper RP1801 National Bureau of Sta ndards Volume 38, June 1947 Part of the Journal of Research of the National Bureau of Standards Heats of Combustion and Solution of Liquid Styrene and Solid Polystyrene, and the Heat of Polymerization of Styrenel By Donald E. Roberts, William W . Walton, and Ralph S. Jessup Bomb-calorimetric m easurements have yielded for the heats of combustion (-t:"Hc0) at 25° C of liquid styrcne and solid polystyrene to form gaseous carbon dioxide and liquid watcr the values 4394.88 ± 0.67 into kj/mole (1050.58 ± 0.14 kcal/mole) , and 4325.09 ± 0.42 int. kj/CsH s-unit (1033.89 ± 0.10 kcal/CsHs-unit), resp ectively, and for the heat of polymerization of liquid styrene to solid polystyrene at 25° C the value 69.79 ± 0.66 into kj/mole (16.68 ± 0.16 kcal/mole) . The results obtained on two samples of polystyrcne of different molecular weight were in agreement within the p'recision of the measurements. M easurements of the heat of olution of solid polystyrenc in liquid monomeric styrene gave the value 3.59 ± 0.21 l,nt. kj (0.86 ± 0.05 kcal) evolved per CsH s-unit of polystyrene at 25 ° C. Addition of this to the value for the heat of polymerization of liquid styrene to solid polystyrene gives the value 73.38 ± 0.69 into kj (17.54 ± 0.16 kcal) per mole of styrenc for the heat of polymerization of liquid styrene at 25° C, when the final product is a solution of polystyrene in styrene containing 6.9 percent by weight of polystyrene. -
TEST - Alkenes, Alkadienes and Alkynes
Seminar_2 1. Nomenclature of unsaturated hydrocarbons 2. Polymerization 3. Reactions of the alkenes (table) 4. Reactions of the alkynes (table) TEST - Alkenes, alkadienes and alkynes. Polymerization • Give the names • Write the structural formula • Write all isomeric compounds • The processes explanation 1. NOMENCLATURE OF UNSATURATED HYDROCARBONS ALKENE NOMENCLATURE We give alkenes IUPAC names by replacing the -ane ending of the corresponding alkane with -ene . The two simplest alkenes are ethene and propene. Both are also well known by their common names ethylene and propylene. Ethylene is an acceptable synonym for ethene in the IUPAC system. Propylene, isobutylene, and other common names ending in -ylene are not acceptable IUPAC names. 1. The longest continuous chain that includes the double bond forms the base name of the alkene. 2. Chain is numbered in the direction that gives the doubly bonded carbons their lower numbers. 3. The locant (or numerical position) of only one of the doubly bonded carbons is specified in the name; it is understood that the other doubly bonded carbon must follow in sequence. 4. Carbon-carbon double bonds take precedence over alkyl groups and halogens in determining the main carbon chain and the direction in which it is numbered. 5. The common names of certain frequently encountered alkyl groups, such as isopropyl and tert-butyl, are acceptable in the IUPAC system. Three alkenyl groups--vinyl, allyl, and isopropenyl--are treated the same way: 6. When a CH 2 group is doubly bonded to a ring, the prefix methylene is added to the name of the ring: 7. Cycloalkenes and their derivatives are named by adapting cycloalkane terminology to the principles of alkene nomenclature: No locants are needed in the absence of substituents; it is understood that the double bond connects C-1 and C 2. -
Acrylonitrile-Butadiene-Styrene Copolymer (ABS)
Eco-profiles of the European Plastics Industry Acrylonitrile-Butadiene-Styrene Copolymer (ABS) A report by I Boustead for Plastics Europe Data last calculated March 2005 abs 1 IMPORTANT NOTE Before using the data contained in this report, you are strongly recommended to look at the following documents: 1. Methodology This provides information about the analysis technique used and gives advice on the meaning of the results. 2. Data sources This gives information about the number of plants examined, the date when the data were collected and information about up-stream operations. In addition, you can also download data sets for most of the upstream operations used in this report. All of these documents can be found at: www.plasticseurope.org. Plastics Europe may be contacted at Ave E van Nieuwenhuyse 4 Box 3 B-1160 Brussels Telephone: 32-2-672-8259 Fax: 32-2-675-3935 abs 2 CONTENTS ABS..................................................................................................................................................4 ECO-PROFILE OF ABS ..............................................................................................................6 abs 3 ABS ABS takes its name from the initial letters of the three immediate precursors: acrylonitrile (CH 2=CH-CN) butadiene (CH 2=C-CH=CH 3) styrene (C 6H5-CH=CH 2) and is a two phase polymer system consisting of a glassy matrix of styrene- acrylonitrile copolymer and the synthetic rubber, styrene-butadiene copolymer. The optimal properties of this polymer are achieved by the appropriate grafting between the glassy and rubbery phases. ABS copolymers have toughness, temperature stability and solvent resistance properties superior to those of high impact polystyrene and are true engineering polymers. They can be formed using all of the common plastics techniques and can also be cold formed using techniques usually associated with metals. -
Post-Polymerization Paper Technical
Post-Polymerization Paper Technical By Igor V. Khudyakov, V-curing technology is often Formal kinetics leads to the Ph.D., D.Sc. selected because of the high- following simple equation for post- speed nature of the process. polymerization: Although curing is initiated by UV U [M] [M] = o (3) irradiation, polymerization continues in t . (l + k [R ] t)kt /kp the dark following irradiation. For the t n o purpose of this paper, chemistry that Here a subscript “o” stands occurs after irradiation is defined as for the initial moment when post- post-polymerization. polymerization is initiated. [Rn ]o is The kinetics of free-radical UV the initial concentration of macro- curing of vinyl monomers in solution radicals at the moment when is well-known. The cessation of irradiation is terminated. For vinyl irradiation of the photoinitiator monomers in solution kt /kp>> 1, (PI) in the presence of a monomer and post-polymerization leads to a (M) quickly leads to termination of negligible additional consumption polymerization due to lack of new of M (formation of polymer). The radicals from the PI.1 Reactive macro- rate constants kp and kt (each has radicals, which exist in the solution dimension of M-1∙s-1) characterizes at the moment irradiation is stopped, the free-radical polymerization chain undergo primarily bimolecular reaction in solution. The rate constant termination: of an elementary bimolecular reaction kt in a diluted solution does not depend . → Rn + Rm macromolecule (1) upon time or concentration of reagents While “dying,” macro-radicals react but depends only upon temperature with the monomer: and pressure. -
Controlled Free Radical Polymerization of Styrene Initiated by a [BPO-Polystyrene-(4-Acetamido-TEMPO)] Macroinitiator
Die Angewandte Makromolekulare Chemie 265 (1999) 69–74 (Nr. 4630) 69 Controlled free radical polymerization of styrene initiated by a [BPO-polystyrene-(4-acetamido-TEMPO)] macroinitiator Chang Hun Han, So¨ren Butz, Gudrun Schmidt-Naake* Institut fu¨r Technische Chemie, TU Clausthal, Erzstr. 18, 38678 Clausthal-Zellerfeld, Germany (Received 15 October 1998) SUMMARY: The bulk polymerization of styrene at 1258C was studied using a [BPO-polystyrene-(4-acet- amido-TEMPO)] macroinitiator synthesized by a styrene polymerization in the presence of 4-acetamido- 2,2,6,6-tetramethylpiperidine-N-oxyl (4-acetamido-TEMPO) and benzoyl peroxide (BPO). The rates of poly- merization were independent of the initial macroinitiator concentration and they were very similar to that for the thermal autopolymerization of styrene. Additionally, different types of N-oxyls did not have any effect on the polymerization rate. The number-average molecular weights (Mn) of the obtained polymers agreed very well with theoretical predictions, deviations were observed only at low macroinitiator concentrations. Increasing macroinitiator concentrations resulted in lower magnitudes of the growing molecular weights and reduced polydispersities (Mw/Mn) at the initial stage of the polymerization. The concentration of the polymer chains was calculated, and it was recognized that the concentration of polymer chains increased during the polymerization as a result of an additional radical formation due to the thermal self-initiation of styrene. This thermal self-initiation could be proved qualitatively by the addition of N-oxyl to a macroinitiator polymeriza- tion system. ZUSAMMENFASSUNG: Ausgehend von [BPO-Polystyrol-(4-Acetamido-TEMPO)]-Makroinitiatoren wurde die Substanzpolymerisation von Styrol bei 1258C untersucht. Die Polymerisationsgeschwindigkeit war unabha¨ngig von der eingesetzten Makroinitiator-Konzentration und stimmte im Rahmen der Meß- genauigkeit mit der der thermisch initiierten Autopolymerisation von Styrol u¨berein. -
Terminology for Reversible-Deactivation Radical Polymerization Previously Called “Controlled” Radical Or “Living” Radical Polymerization (IUPAC Recommendations 2010)*
Pure Appl. Chem., ASAP Article doi:10.1351/PAC-REC-08-04-03 © 2009 IUPAC, Publication date (Web): 18 November 2009 Terminology for reversible-deactivation radical polymerization previously called “controlled” radical or “living” radical polymerization (IUPAC Recommendations 2010)* Aubrey D. Jenkins1, Richard G. Jones2,‡, and Graeme Moad3,‡ 122A North Court, Hassocks, West Sussex, BN6 8JS, UK; 2University of Kent, Canterbury, Kent CT2 7NH, UK; 3CSIRO Molecular and Health Technologies, Bag 10, Clayton South, VIC 3169, Australia Abstract: This document defines terms related to modern methods of radical polymerization, in which certain additives react reversibly with the radicals, thus enabling the reactions to take on much of the character of living polymerizations, even though some termination in- evitably takes place. In recent technical literature, these reactions have often been loosely re- ferred to as, inter alia, “controlled”, “controlled/living”, or “living” polymerizations. The use of these terms is discouraged. The use of “controlled” is permitted as long as the type of con- trol is defined at its first occurrence, but the full name that is recommended for these poly- merizations is “reversible-deactivation radical polymerization”. Keywords: active-dormant equilibria; aminoxyl-mediated; AMRP; atom transfer; ATRP; chain polymerization; degenerative transfer; DTRP; controlled; IUPAC Polymer Division; living; nitroxide-mediated; NMRP; radical; RAFT; reversible-deactivation; reversible-addi- tion-fragmentation chain transfer. CONTENTS 1. INTRODUCTION 2. BASIC DEFINITIONS 3. DEFINITIONS OF THE TYPES OF POLYMERIZATION TO BE CONSIDERED 4. DEFINITIONS OF RELATED TERMS 5. MEMBERSHIP OF SPONSORING BODIES 6. REFERENCES 1. INTRODUCTION In conventional radical polymerization, the component steps in the process are chain initiation, chain propagation, chain termination, and sometimes also chain transfer.