Radical Polymerizations II Special Cases

Total Page:16

File Type:pdf, Size:1020Kb

Radical Polymerizations II Special Cases Radical Polymerizations II Special Cases Devon A. Shipp Department of Chemistry, & Center for Advanced Materials Processing Clarkson University Potsdam, NY 13699-5810 Tel. (315) 268-2393, Fax (315) 268-6610 [email protected] 46 © Copyright 2016 Devon A. Shipp Living Polymerizations • Objectives • Requirements – Initiation must be fast – Continuous chain • Ri >> Rp growth – Termination must be – No termination eliminated • Or at least reduced to – Well-defined chains insignificance • Chain structure • Chain length • Problems with free • Molecular weight radical polymerization distribution – Initiation is slow • Block copolymer – Radical-radical synthesis termination is fast 47 Reversible-Deactivation Radical Polymerizations (RDRP) • Often called living radical polymerization activation Dormant polymer Active polymer radical + capping group deactivation Monomer (Propagation) t P h o g l i y e Δ[M] Monomer repeat unit Functional terminal d DP = i W s ( ω ) end ("capping") group [In] r 0 p a e l r u s c X i t e y In l n o M Y Y < 1.5 Initiator ( α ) end 48 % Monomer Conversion Features of Living Polymerizations • Linear increase in • Low polydispersity molecular weight – Mw/Mn < 1.5 (often ~ 1.1) – Vs. monomer conversion • First-order monomer • Pre-defined molecular consumption weight – Same as conventional radical polymerization – DPn = Mn/FWM = Δ[M] / [Initiator] 49 Terminology/Tests for Living Polymerization • Controversy over terminology – Controlled, living, pseudo-living, quasi-living, living/controlled, living/controlled, reversible-deactivation,… • IUPAC definition of living polymerization: – Absence of irreversible transfer and termination • Cannot be applied to any radical polymerization! • Some tests for RDRP: – Continued chain growth after addition monomer added – Molecular weight increases linearly with conversion – Active species (i.e. radicals) conc. remains constant – Narrow molecular weight distributions (low Mw/Mn) – Block copolymers may be prepared (subset of first test) – End groups are retained – yields end-functionalized chains 50 Moad and Solomon The Chemistry of Radical Polymerization, 2nd edition, 2006, page 453. Examples of RDRP Data • Atom transfer radical polymerization (ATRP) – Styrene. Mn at 100% (theoretical) = 10,000 (DP = 100) T.E. Patten, J. Xia, T. Abernathy, K. Matyjaszewski, Science, 1996, 272, 866. 51 K. Matyjaszewski, T.E. Patten, J. Xia, J. Am. Chem. Soc., 1997, 119, 674. Calculated MWDs 52 Moad and Solomon The Chemistry of Radical Polymerization, 2nd edition, 2006, page 454. Materials From RDRP 53 D.A. Shipp, Polym. Rev., 2011, 51, 99-103. RDRP: Types & Requirements • Main types • Requirements – Nitroxide-Mediated – All chains begin at the Polymerization same time • NMP • Fast initiation – Atom Transfer Radical Polymerization – Little or no termination • ATRP • Low radical concentration – Reversible Addition- – All chains grow at the Fragmentation Chain same rate Transfer Polymerization • RAFT • Fast exchange • Other types – Metal-mediated polymn – Iniferter – Iodo and methacrylate-based – Group transfer polymn degenerate transfer 54 Nitroxide-Mediated Polymerization • Nitroxides • TEMPO – Stable free radicals – 2,2,6,6 – Do not react with O-centered N O tetramethylpiperidim-N- radicals oxyl – React fast with C-centered radicals – Only good for styrene 6 9 -1 -1 (co)polymers • kd ~ 10 – 10 M s – Do not initiate polymerization • αH nitroxides N O – Styrene, acrylates, ka Pn-X Pn + X acrylonitrile, 1,3- kd Ph butadiene kp Monomer ka O N O N n k n Rizzardo, Solomon, et al. Ph Ph Ph d Ph Ph Ph US Patent 4,581,429, 1986. TEMPO Aust. J. Chem., 1990, 43, 1215-1230. Ph 55 Chem. Aust., 1987, 54, 32. Propagation Georges/Xerox Approach to NMP N O O O O O Heat O O n N O O O n Ph Ph Ph Ph TEMPO BPO n+1 Ph Heat O O O n N Ph Ph Propagation Molecular weight distributions of polystyrene produced by NMP using BPO and M.K. Georges et al., Macromolecules, 56 n TEMPO. M and Mw/Mn of samples I – IV are as follows: (Mn:Mw/Mn) 1700:1.28, 1993, 26, 2987-2988. 3200:1.27, 6800:1.21, 7800:1.27. Hawker Approach to NMP (Using TEMPO) Alkoxyamine 57 C.J. Hawker, J. Am. Chem. Soc., 1994, 116, 11185-11186. Newer108 Nitroxides: R. B. Grubbs α-Hydrido-Derivatives commercialized by Arkema in 2005 points to the continued interest in NMP from re- searchers who would rather not synthesize their own alkoxyamine initiators. As TIPNO and related alkoxyamines are now also commercially available (Sigma-Aldrich), research • Widerinvolving polymers range prepared by NMPof should monomers continue to grow. & functionalities Common nitroxides/ alkoxyamines 110 R. B. Grubbs Scheme 3. 2.2.1 In Situ Generation of Nitroxide Radicals and Alkoxyamines. In the earliest examples of NMP, alkoxyamines were generated during the course of the polymerization through the use of conventional radical initiators in the presence of nitroxides.51 Shortly thereafter, strategies to isolate unimolecular alkoxyamines from nitroxides and radical precursors were Functional developed.9,54 This general strategy has recently been modified to allow the low temperature R alkoxyamines synthesis of the BlocBuilder⃝ alkoxyamine by photolysis of a diacid-functional azo initiator in high yield.55 Anumberofsyntheticroutestoalkoxyamineshavebeendevelopedinwhichan active alkoxyamine is generated during the course of the polymerization from precursors that are not nitroxides (Scheme 4, color scheme available online).13 The propensity of nitric oxide (Scheme 4a), nitrosoalkanes/arenes (Scheme 4b) and nitrones (Scheme 4c) to react with two equivalents of a carbon-centered radical to form alkoxyamines has been exploited as an alternative route to new nitroxide controlling agents that have allowed the controlled preparation of polymers and block copolymers,56–58 including copolymers of methyl methacrylate (MMA), and, in some cases, have facilitated polymerization at lower temperatures.59 Density functional theory has been used in combination with electron spin 58 Figure 2. Structures of selected new alkoxyamines used for NMP: 17–18,69 19–20,70 21–22,71 P. Tordo, Y. resonanceGnanau, et spectrometry al., J. Am. Chem. to better Soc. understand, 2000, 122 these, 5929-5939 systems. and to predictR.B. Grubbs, the properties Polym. ofRev., 2011, 51, 104-137. 23–24,61 25,20 26,62 27.63 C.J. Hawker,the et resultingal., J. Am. nitroxides. Chem. Soc.60 , 1999, 121, 3904-3920. Downloaded By: [Grubbs, Robert B.] At: 13:14 2 May 2011 alkoxyamine to other polymers (to form block copolymers), to surfaces (to create polymer brushes), and to fluorescent labels (Figure 2).62,69,72–75 Alcohol (17),69 carboxylic acid (18),62,69 thiol/disulfide (20, 21),70 bis(thioether) (21),71 pyridyl (22),71 ketone (25),20 and carboxylate ester (24, 26, 27)20,61–63 functionalized alkoxyamines are among such NMP initiators recently prepared. In a number of these examples, the functional alkoxyamines (24–27) were prepared by the addition of functional group-bearing radical species to nitrosoalkanes.20,61–63 2.3 Improving NMP Rates Scheme 4. In general, efforts to increase the rate and/or lower the temperature for NMP have involved pushing the equilibrium between the dormant alkoxyamine and the active radical toward 2.2.2 One Step Routes to Alkoxyamines. When the above reactions of radicals with amine the propagating radical (increasing k /k in Scheme 1). In all of these manipulations, there oxide derivatives are carried out atd temperaturesa below those where alkoxyamine dissocia- Downloaded By: [Grubbs, Robert B.] At: 13:14 2 May 2011 is a finetion occurs, line between alkoxyamine a slow initiators but well-controlled can be prepared polymerization in one step—a number and a of fast, such uncontrolled examples polymerization; any changes that increase the concentration of propagating radicals are likely to decrease the livingness of the polymerization. As the earliest published examples of NMP were centered on bimolecular benzoyl per- oxide/TEMPO initiating systems, most of the earliest rate acceleration strategies involved the use of various additives (e.g., camphorsulfonic acid,76,77 2-fluoro-1-methylpyridinium 78 79 p-toluenesulfonate, acetic anhydride )toincreasetherateofhomolysis(increasekd in Scheme 1) of the alkoxyamine, to retard the recombination of the nitroxide radical with the polymer radical (decrease ka in Scheme 1), or to decompose excess nitroxide that might build up due to polymer radical termination.9 Nitroxides, such as TIPNO and DEPN, that are believed to decompose at polymerization temperatures at a slow enough rate to prevent the build up of excess nitroxide without negatively affecting control over the polymerization process have similarly proven useful in increasing NMP rates.37,80 Subsequent approaches have used a wider range of initiating radicals and mediating nitroxides to control the dormant alkoxyamine/active radical equilibrium. With bimolecular initiating systems, the use of lower temperature radical initiators, such as tert-butylperoxy 2-ethylhexyl carbonate with TEMPO,81 has shown some success. It has been demonstrated ARTICLE IN PRESS W.A. Braunecker, K. Matyjaszewski / Prog. Polym. Sci. 32 (2007) 93–146 101 successful moderators of vinyl acetate polymeriza- cross-coupling (deactivation) of the transient radical tion, although the mechanism of control is not R with persistent radical Y (kc), and termination of based on the SFRP principle but rather follows a two transient radicals to form product P (kt). degenerative transfer mechanism (cf. below) [73–76]. In this case, the rates of formation of the persistent radical and of loss of the transient radical 4.2.4. Metal mediated polymerization are given by the expressions in Eq. (3) (where the Transition metal compounds that can mediate term 2kt is used because a single termination step radical polymerization include those based on Co consumes two radicals) [47],Mo[77], Os [78], and Fe [79]. Controlled dR 2 d kdI kcRY 2ktR ; polymerization of methyl acrylate with Co porphyr- t ¼ À À (3) dY k I k RY dR 2k R2: ins is one of the most successful SFRP systems, dt ¼ d À c ¼ dt þ t having produced well-defined high molecular weight The two coupled differential equations were polyacrylates.
Recommended publications
  • Oligomeric A2 + B3 Approach to Branched Poly(Arylene Ether Sulfone)
    “One-Pot” Oligomeric A 2 + B 3 Approach to Branched Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondensation A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By ANDREA M. ELSEN B.S., Wright State University, 2007 2009 Wright State University WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES June 19, 200 9 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Andrea M. Elsen ENTITLED “One-Pot” Oligomeric A2 + B3 Approach to Branched Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondenstation BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science . _________________________ Eric Fossum, Ph.D. Thesis Director _________________________ Kenneth Turnbull, Ph.D. Department Chair Committee on Final Examination ____________________________ Eric Fossum, Ph.D. ____________________________ Kenneth Turnbull, Ph.D. ____________________________ William A. Feld, Ph.D. ____________________________ Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies Abstract Elsen, Andrea M. M.S., Department of Chemistry, Wright State University, 2009. “One-Pot” Oligomeric A 2 + B 3 Approach to Branched Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondensation The synthesis of fully soluble branched poly(arylene ether)s via an oligomeric A 2 + B 3 system, in which the A 2 oligomers are generated in situ, is presented. This approach takes advantage of the significantly higher reactivity toward nucleophilic aromatic substitution reactions, NAS, of B 2, 4-Fluorophenyl sulfone, relative to B 3, tris (4-Fluorophenyl) phosphine oxide. The A 2 oligomers were synthesized by reaction of Bisphenol-A and B 2, in the presence of the B 3 unit, at temperatures between 100 and 160 °C, followed by an increase in the reaction temperature to 180 °C at which point the branching unit was incorporated.
    [Show full text]
  • Cationic/Anionic/Living Polymerizationspolymerizations Objectives
    Chemical Engineering 160/260 Polymer Science and Engineering LectureLecture 1919 -- Cationic/Anionic/LivingCationic/Anionic/Living PolymerizationsPolymerizations Objectives • To compare and contrast cationic and anionic mechanisms for polymerization, with reference to free radical polymerization as the most common route to high polymer. • To emphasize the importance of stabilization of the charged reactive center on the growing chain. • To develop expressions for the average degree of polymerization and molecular weight distribution for anionic polymerization. • To introduce the concept of a “living” polymerization. • To emphasize the utility of anionic and living polymerizations in the synthesis of block copolymers. Effect of Substituents on Chain Mechanism Monomer Radical Anionic Cationic Hetero. Ethylene + - + + Propylene - - - + 1-Butene - - - + Isobutene - - + - 1,3-Butadiene + + - + Isoprene + + - + Styrene + + + + Vinyl chloride + - - + Acrylonitrile + + - + Methacrylate + + - + esters • Almost all substituents allow resonance delocalization. • Electron-withdrawing substituents lead to anionic mechanism. • Electron-donating substituents lead to cationic mechanism. Overview of Ionic Polymerization: Selectivity • Ionic polymerizations are more selective than radical processes due to strict requirements for stabilization of ionic propagating species. Cationic: limited to monomers with electron- donating groups R1 | RO- _ CH =CH- CH =C 2 2 | R2 Anionic: limited to monomers with electron- withdrawing groups O O || || _ -C≡N -C-OR -C- Overview of Ionic Chain Polymerization: Counterions • A counterion is present in both anionic and cationic polymerizations, yielding ion pairs, not free ions. Cationic:~~~C+(X-) Anionic: ~~~C-(M+) • There will be similar effects of counterion and solvent on the rate, stereochemistry, and copolymerization for both cationic and anionic polymerization. • Formation of relatively stable ions is necessary in order to have reasonable lifetimes for propagation.
    [Show full text]
  • Photopolymerization Reactions Under Visible Lights: Principle, Mechanisms and Examples of Applications J.P
    Progress in Organic Coatings 47 (2003) 16–36 Photopolymerization reactions under visible lights: principle, mechanisms and examples of applications J.P. Fouassier∗, X. Allonas, D. Burget Département de Photochimie Générale, UMR n◦7525, Ecole Nationale Supérieure de Chimie, 3 Rue Alfred Werner, 68093 Mulhouse Cedex, France Received 22 June 2002; received in revised form 19 November 2002; accepted 20 December 2002 Abstract A general overview of visible light photoinduced polymerization reactions is presented. Reaction mechanisms as well as practical efficiency in industrial applications are discussed. Several points are investigated in detail: photochemical reactivity of photoinitiating system (PIS), short overview of available photoinitiators (PIs) and photosensitizers (PSs), mechanisms involved in selected examples of dye sensitized polymerization reactions, examples of applications in pigmented coatings usable as paints, textile printing, glass reinforced fibers, sunlight curing of waterborne latex paints, curing of inks, laser-induced polymerization reactions, high speed photopolymers for laser imaging, PISs for computer-to-plate systems. © 2003 Elsevier Science B.V. All rights reserved. Keywords: Photopolymerization; Visible light; Radiation curing 1. Introduction Radical, cationic and anionic polymerizations can be ini- tiated by the excitation of suitable photoinitiating systems Radiation curing technologies provide a number of eco- (PISs) under lights. Most of these systems were originally nomic advantages over the usual thermal operation among sensitive to UV lights but by now a large number of various them: rapid through cure, low energy requirements, room systems allows to extend the spectral sensitivity to visible temperature treatment, non-polluting and solvent-free for- lights. According to the applications which are developed, mulations, low costs.
    [Show full text]
  • The Chemistry of Radical Polymerization
    THE CHEMISTRY OF RADICAL POLYMERIZATION THE CHEMISTRY OF RADICAL POLYMERIZATION GRAEME MOAD CSIRO Molecular and Health Technologies Bayview Ave, Clayton, Victoria 3168, AUSTRALIA and DAVID H. SOLOMON Department of Chemical and Biomolecular Engineering. University of Melbourne, Victoria 3010, AUSTRALIA Dr Graeme Moad CSIRO Molecular and Health Technologies Bayview Ave, Clayton, Victoria 3168 AUSTRALIA Email: [email protected] Prof David H. Solomon Department of Chemical and Biomolecular Engineering. University of Melbourne Victoria 3010 AUSTRALIA Email: [email protected] Contents Contents............................................................................................................................ v Index to Tables.............................................................................................................xvi Index to Figures ............................................................................................................ xx Preface to the First Edition .....................................................................................xxiii Preface to the Second Edition..................................................................................xxv Acknowledgments......................................................................................................xxvi 1 INTRODUCTION.................................................................................................. 1 1.1 References ...........................................................................................................
    [Show full text]
  • High Temperature, Living Polymerization of Ethylene by a Sterically-Demanding Nickel(II) Α-Diimine Catalyst
    polymers Article High Temperature, Living Polymerization of Ethylene by a Sterically-Demanding Nickel(II) α-Diimine Catalyst Lauren A. Brown, W. Curtis Anderson Jr., Nolan E. Mitchell, Kevin R. Gmernicki and Brian K. Long * ID Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA; [email protected] (L.A.B.); [email protected] (W.C.A.J.); [email protected] (N.E.M.); [email protected] (K.R.G.) * Correspondence: [email protected]; Tel.: +1-865-974-5664 Received: 15 December 2017; Accepted: 27 December 2017; Published: 2 January 2018 Abstract: Catalysts that employ late transition-metals, namely Ni and Pd, have been extensively studied for olefin polymerizations, co-polymerizations, and for the synthesis of advanced polymeric structures, such as block co-polymers. Unfortunately, many of these catalysts often exhibit poor thermal stability and/or non-living polymerization behavior that limits their ability to access tailored polymer structures. Due to this, the development of catalysts that display controlled/living behavior at elevated temperatures is vital. In this manuscript, we describe a Ni α-diimine complex that is capable of polymerizing ethylene in a living manner at temperatures as high as 75 ◦C, which is one of the highest temperatures reported for the living polymerization of ethylene by a late transition metal-based catalyst. Furthermore, we will demonstrate that this catalyst’s living behavior is not dependent on the presence of monomer, and that it can be exploited to access polyethylene-based block co-polymers. Keywords: polyethylene; living polymerization; nickel α-diimine; catalysis 1. Introduction Controlled/living polymerizations offer a precise means by which polymer structure, co-monomer incorporation levels, and even regio- and stereoselectivity can be tailored [1–7].
    [Show full text]
  • Synthesis of Polypeptides by Ring-Opening Polymerization of A-Amino Acid N-Carboxyanhydrides
    Top Curr Chem (2011) DOI: 10.1007/128_2011_173 # Springer-Verlag Berlin Heidelberg 2011 Synthesis of Polypeptides by Ring-Opening Polymerization of a-Amino Acid N-Carboxyanhydrides Jianjun Cheng and Timothy J. Deming Abstract This chapter summarizes methods for the synthesis of polypeptides by ring-opening polymerization. Traditional and recently improved methods used to polymerize a-amino acid N-carboxyanhydrides (NCAs) for the synthesis of homo- polypeptides are described. Use of these methods and strategies for the preparation of block copolypeptides and side-chain-functionalized polypeptides are also pre- sented, as well as an analysis of the synthetic scope of different approaches. Finally, issues relating to obtaining highly functional polypeptides in pure form are detailed. Keywords Amino acid Á Block copolymer Á N-Carboxyanhydride Á Polymerization Á Polypeptide Contents 1 Introduction 2 Polypeptide Synthesis Using NCAs 2.1 Conventional Methods 2.2 Transition Metal Initiators 2.3 Recent Developments 3 Copolypeptide and Functional Polypeptide Synthesis via NCA Polymerization 3.1 Block Copolypeptides 3.2 Side-Chain-Functionalized Polypeptides 4 Polypeptide Deprotection and Purification 5 Conclusions and Future Prospects References J. Cheng Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA T.J. Deming (*) Department of Bioengineering, University of California, Los Angeles, CA 90095, USA e-mail: [email protected] J. Cheng and T.J. Deming Abbreviations AM Activated
    [Show full text]
  • Aim: to Prepare Block Copolymers of Methyl Methacrylate (MMA) and Styrene
    Conducting A Reversible-Deactivation Radical Polymerization (RDRP) Aim: To Prepare Block Copolymers of Methyl Methacrylate (MMA) and Styrene. Polymers are ubiquitous in the modern world. They provide tremendous value because the chemical and physical properties of these materials are determined by the monomers that are used to put them together. One of the most powerful methods to construct polymers is radical-chain polymerization and this method is used in the commercial synthesis of polymers everyday. Methyl methacrylate is polymerized to form poly(methyl methacrylate) (PMMA) which is also known as acrylic glass or Plexiglas (about 2 billion pounds per year in the US). This material is lightweight, strong and durable. The polymer chains are rigid due to the tetrasubstituted carbon atom in the polymer backbone and they have excellent optical clarity. As a consequence, these materials are used in aircraft windows, glasses, skylights, signs and displays. Polystyrene (PS), which can also be synthesized from radical chain polymerization, has found extensive use as a material (also approximately 2 billion pounds per year in the US). One of the forms of PS, Styrofoam, is used extensively to make disposable cups, thermal insulation, and cushion for packaging. Scheme 1. Radical polymerization of methyl methacrylate or styrene. While there are extensive uses for these polymers, when synthesizing any material using a free-radical polymerization, samples are obtained with limited control over molecular weight and molecular weight distribution. New methods have been developed directly at Carnegie Mellon (https://www.cmu.edu/maty/) which lead to improved control in this process. This new method is a reversible-deactivation of the polymerization reaction where highly reactive radicals toggle back and forth between an active state, where the polymer chain is growing, and a dormant state, where the polymer chain is capped (Scheme 2).
    [Show full text]
  • Heats of Combustion and Solution of Liquid Styrene and Solid Polystyrene, and the Heat of Polymerization of Styrenel by Donald E
    U. S. Department of Commerce Research Paper RP1801 National Bureau of Sta ndards Volume 38, June 1947 Part of the Journal of Research of the National Bureau of Standards Heats of Combustion and Solution of Liquid Styrene and Solid Polystyrene, and the Heat of Polymerization of Styrenel By Donald E. Roberts, William W . Walton, and Ralph S. Jessup Bomb-calorimetric m easurements have yielded for the heats of combustion (-t:"Hc0) at 25° C of liquid styrcne and solid polystyrene to form gaseous carbon dioxide and liquid watcr the values 4394.88 ± 0.67 into kj/mole (1050.58 ± 0.14 kcal/mole) , and 4325.09 ± 0.42 int. kj/CsH s-unit (1033.89 ± 0.10 kcal/CsHs-unit), resp ectively, and for the heat of polymerization of liquid styrene to solid polystyrene at 25° C the value 69.79 ± 0.66 into kj/mole (16.68 ± 0.16 kcal/mole) . The results obtained on two samples of polystyrcne of different molecular weight were in agreement within the p'recision of the measurements. M easurements of the heat of olution of solid polystyrenc in liquid monomeric styrene gave the value 3.59 ± 0.21 l,nt. kj (0.86 ± 0.05 kcal) evolved per CsH s-unit of polystyrene at 25 ° C. Addition of this to the value for the heat of polymerization of liquid styrene to solid polystyrene gives the value 73.38 ± 0.69 into kj (17.54 ± 0.16 kcal) per mole of styrenc for the heat of polymerization of liquid styrene at 25° C, when the final product is a solution of polystyrene in styrene containing 6.9 percent by weight of polystyrene.
    [Show full text]
  • TEST - Alkenes, Alkadienes and Alkynes
    Seminar_2 1. Nomenclature of unsaturated hydrocarbons 2. Polymerization 3. Reactions of the alkenes (table) 4. Reactions of the alkynes (table) TEST - Alkenes, alkadienes and alkynes. Polymerization • Give the names • Write the structural formula • Write all isomeric compounds • The processes explanation 1. NOMENCLATURE OF UNSATURATED HYDROCARBONS ALKENE NOMENCLATURE We give alkenes IUPAC names by replacing the -ane ending of the corresponding alkane with -ene . The two simplest alkenes are ethene and propene. Both are also well known by their common names ethylene and propylene. Ethylene is an acceptable synonym for ethene in the IUPAC system. Propylene, isobutylene, and other common names ending in -ylene are not acceptable IUPAC names. 1. The longest continuous chain that includes the double bond forms the base name of the alkene. 2. Chain is numbered in the direction that gives the doubly bonded carbons their lower numbers. 3. The locant (or numerical position) of only one of the doubly bonded carbons is specified in the name; it is understood that the other doubly bonded carbon must follow in sequence. 4. Carbon-carbon double bonds take precedence over alkyl groups and halogens in determining the main carbon chain and the direction in which it is numbered. 5. The common names of certain frequently encountered alkyl groups, such as isopropyl and tert-butyl, are acceptable in the IUPAC system. Three alkenyl groups--vinyl, allyl, and isopropenyl--are treated the same way: 6. When a CH 2 group is doubly bonded to a ring, the prefix methylene is added to the name of the ring: 7. Cycloalkenes and their derivatives are named by adapting cycloalkane terminology to the principles of alkene nomenclature: No locants are needed in the absence of substituents; it is understood that the double bond connects C-1 and C 2.
    [Show full text]
  • Post-Polymerization Paper Technical
    Post-Polymerization Paper Technical By Igor V. Khudyakov, V-curing technology is often Formal kinetics leads to the Ph.D., D.Sc. selected because of the high- following simple equation for post- speed nature of the process. polymerization: Although curing is initiated by UV U [M] [M] = o (3) irradiation, polymerization continues in t . (l + k [R ] t)kt /kp the dark following irradiation. For the t n o purpose of this paper, chemistry that Here a subscript “o” stands occurs after irradiation is defined as for the initial moment when post- post-polymerization. polymerization is initiated. [Rn ]o is The kinetics of free-radical UV the initial concentration of macro- curing of vinyl monomers in solution radicals at the moment when is well-known. The cessation of irradiation is terminated. For vinyl irradiation of the photoinitiator monomers in solution kt /kp>> 1, (PI) in the presence of a monomer and post-polymerization leads to a (M) quickly leads to termination of negligible additional consumption polymerization due to lack of new of M (formation of polymer). The radicals from the PI.1 Reactive macro- rate constants kp and kt (each has radicals, which exist in the solution dimension of M-1∙s-1) characterizes at the moment irradiation is stopped, the free-radical polymerization chain undergo primarily bimolecular reaction in solution. The rate constant termination: of an elementary bimolecular reaction kt in a diluted solution does not depend . → Rn + Rm macromolecule (1) upon time or concentration of reagents While “dying,” macro-radicals react but depends only upon temperature with the monomer: and pressure.
    [Show full text]
  • Controlled Free Radical Polymerization of Styrene Initiated by a [BPO-Polystyrene-(4-Acetamido-TEMPO)] Macroinitiator
    Die Angewandte Makromolekulare Chemie 265 (1999) 69–74 (Nr. 4630) 69 Controlled free radical polymerization of styrene initiated by a [BPO-polystyrene-(4-acetamido-TEMPO)] macroinitiator Chang Hun Han, So¨ren Butz, Gudrun Schmidt-Naake* Institut fu¨r Technische Chemie, TU Clausthal, Erzstr. 18, 38678 Clausthal-Zellerfeld, Germany (Received 15 October 1998) SUMMARY: The bulk polymerization of styrene at 1258C was studied using a [BPO-polystyrene-(4-acet- amido-TEMPO)] macroinitiator synthesized by a styrene polymerization in the presence of 4-acetamido- 2,2,6,6-tetramethylpiperidine-N-oxyl (4-acetamido-TEMPO) and benzoyl peroxide (BPO). The rates of poly- merization were independent of the initial macroinitiator concentration and they were very similar to that for the thermal autopolymerization of styrene. Additionally, different types of N-oxyls did not have any effect on the polymerization rate. The number-average molecular weights (Mn) of the obtained polymers agreed very well with theoretical predictions, deviations were observed only at low macroinitiator concentrations. Increasing macroinitiator concentrations resulted in lower magnitudes of the growing molecular weights and reduced polydispersities (Mw/Mn) at the initial stage of the polymerization. The concentration of the polymer chains was calculated, and it was recognized that the concentration of polymer chains increased during the polymerization as a result of an additional radical formation due to the thermal self-initiation of styrene. This thermal self-initiation could be proved qualitatively by the addition of N-oxyl to a macroinitiator polymeriza- tion system. ZUSAMMENFASSUNG: Ausgehend von [BPO-Polystyrol-(4-Acetamido-TEMPO)]-Makroinitiatoren wurde die Substanzpolymerisation von Styrol bei 1258C untersucht. Die Polymerisationsgeschwindigkeit war unabha¨ngig von der eingesetzten Makroinitiator-Konzentration und stimmte im Rahmen der Meß- genauigkeit mit der der thermisch initiierten Autopolymerisation von Styrol u¨berein.
    [Show full text]
  • Azo Polymerization Initiators Comprehensive Catalog
    Azo Polymerization Initiators Comprehensive Catalog FUJIFILM Wako Pure Chemical Corporation 4-1 Nihonbashi Honcho 2-Chome, Japan Chuo-Ku, Tokyo 103-0023, Japan TEL+81-3-3244-0305 FUJIFILM Wako Chemicals U.S.A. Corporation 1600 Bellwood Road Richmond, USA VA 23237, U.S.A. TEL+1-804-271-7677 FUJIFILM Wako Chemicals Europe GmbH Fuggerstrasse 12 D-41468 Neuss GERMANY Germany TEL+49-2131-311-0 Wako Chemicals (Shanghai) Co., Ltd. C1-C2, 26F, Junyao International Plaza, China 789 Zhaojiabang Road, Shanghai 200032, China TEL+86-21-6407-0511 Specialty Chemicals Web Site http://www.wako-chem.co.jp/kaseihin_en/ 180401 K2 SI 01 Introduction/What is Radical Polymerization? What is Azo Polymerization Initiator? Radical Formation Mechanism 01 INDEX 01 Introduction/What is Radical Polymerization? P1 07 Detailed Explanations 1. Azo Nitrile P11-14 What are Azo Polymerization Initiator? What are Azo Polymerization Initiator? Radical Formation Mechanism P2 2. Azo Ester P15-16 An azo polymerization initiator is a compound having an azo group (R-N=N-R’), which decomposes with heat 3. Azo Amide P17-18 Characteristics of Azo Polymerization Initiators and Comparison with Peroxides P3 02 4. Azo Imidazoline P19-20 and/or light, and forms carbon radical. The formed carbon radical is excellent in reactivity, and progresses polym- Examples of radical reactions using Azo Polymerization Initiators P4 5. Azo Amidine P21-22 erization and halogenation reactions of different types of vinyl monomers. 03 Selection Guide P5-6 6. Macro Azo Initiator P23-26 04 Decomposition
    [Show full text]