Oligomeric A2 + B3 Approach to Branched Poly(Arylene Ether Sulfone)

Total Page:16

File Type:pdf, Size:1020Kb

Oligomeric A2 + B3 Approach to Branched Poly(Arylene Ether Sulfone) “One-Pot” Oligomeric A 2 + B 3 Approach to Branched Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondensation A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By ANDREA M. ELSEN B.S., Wright State University, 2007 2009 Wright State University WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES June 19, 200 9 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Andrea M. Elsen ENTITLED “One-Pot” Oligomeric A2 + B3 Approach to Branched Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondenstation BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science . _________________________ Eric Fossum, Ph.D. Thesis Director _________________________ Kenneth Turnbull, Ph.D. Department Chair Committee on Final Examination ____________________________ Eric Fossum, Ph.D. ____________________________ Kenneth Turnbull, Ph.D. ____________________________ William A. Feld, Ph.D. ____________________________ Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies Abstract Elsen, Andrea M. M.S., Department of Chemistry, Wright State University, 2009. “One-Pot” Oligomeric A 2 + B 3 Approach to Branched Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondensation The synthesis of fully soluble branched poly(arylene ether)s via an oligomeric A 2 + B 3 system, in which the A 2 oligomers are generated in situ, is presented. This approach takes advantage of the significantly higher reactivity toward nucleophilic aromatic substitution reactions, NAS, of B 2, 4-Fluorophenyl sulfone, relative to B 3, tris (4-Fluorophenyl) phosphine oxide. The A 2 oligomers were synthesized by reaction of Bisphenol-A and B 2, in the presence of the B 3 unit, at temperatures between 100 and 160 °C, followed by an increase in the reaction temperature to 180 °C at which point the branching unit was incorporated. The presence of branching was confirmed via 31 P NMR spectroscopy and the thermal properties of the polymers were evaluated utitilizing TGA and DSC analyses. iii Table of Contents 1. Introduction…………………………………………………………………………….1 Linear polymers………………………………………………………...…2 Dendrimers………………………………………………………………...5 Branched poymers………………………………………………………...9 Poly(arylene ether sulfone)s……………………………………………..14 Current project…………………………………………………………...17 2. Experimental…………………………………………………………………………..19 Synthesis of 4,4-bis -(4-methylphenoxy)diphenyl sulfone, 1b ……………20 Synthesis of mono-substituted tris -(4-Fluorophenyl)phosphine oxide, 3a ………...………………………………………..20 Representative procedure for model reactions…………………………...20 Representative polymerization procedure………………………………..21 General procedure for reverse precipitations……………………….…....21 Preparation of GC/MS calibration curve………………………………...22 Polymerization of A 2 + B 2 +B 2’ monomers, linear analog………………22 Synthesis of A 2 capped oligomers, 2a…………………………………...22 Synthesis of branched poly(arylene ether sulfone)s, 6g …………………23 3. Results and Discussion………………………………………………………………..24 Nucleophilic aromatic substitution………………………………………24 Reactivity determination…………………………………………………24 GC/MS calibration curve………………………………………………...26 Simulation of in situ oligomeric A 2 formation…………………………..30 iv Synthesis of branched poly(arylene ether sulfone)s……………………..33 Incorporation of B 3 monomer……………………………………………38 Estimation of degree of branching, DB …………………………………..39 Thermal Analysis………………………………………………………...44 Conclusions………………………………………………………………47 4. References……………………………………………………………………………..48 v List of Figures I. Introduction: Figure 1 . Chain Entanglements……………………………………………………...…....1 Figure 2 . Intrinsic or inherent viscosity versus M n for a generic linear polymer……...…2 Figure 3 . Young’s Modulus versus temperature plot for a generic linear polymer…........3 Figure 4 . Poly(amido amine)……………………………..………………………….…...6 Figure 5 . Generic scheme of a branched polymer…………...…………………………...9 Figure 6 . Comparison of mechanical properties versus degree of branching for linear, dendritic and branched polymers………………………………………………………...10 Figure 7a . Comparison of linear, dendritic and branched polymer viscosity versus degree of branching……………………………………………………………………………...11 Figure 7b . Comparison of linear, dendritic and branched polymer viscosity versus Mw………………………………………………………………………………………..11 II. “One-Pot” Oligomeric A 2 + B 3 Polymerization of Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondensation Figure 8 . 4-Fluorophenyl sulfone, tris-(4-Fluorophenyl)phosphine oxide and bis-(4- Fluorophenyl)phenyl phosphine oxide…………………………………………………..25 1 Figure 9 . The 300 MHz H NMR spectrum (CDCl 3) of 1b ……………………………..27 13 Figure 10 . The 75 MHz C NMR (CDCl 3) spectrum of 1b …………………………….28 31 Figure 11 . The 121 MHz P NMR (CDCl 3) spectrum of 3a mixture…………………..30 Figure 12 . GPC overlay of 6b and 6b 1…………………………………………………..34 Figure 13 . Overlay of “one-pot” polymers, 6a-f………………………………………..35 Figure 14 . Overlay of MeOH soluble, insoluble and crude polymer……………………36 vi Figure 15 . Overlay of 6d , 6f and 6g ……………………………………………………..38 1 Figure 16 . The 300 MHz H NMR spectrum (CDCl 3) of 6c ……………………………39 Figure 17 . Potential B 3 structural units…………………………………………………40 31 Figure 18 . The 121 MHz P NMR (CDCl 3) spectrum of 6d mixture…………………..41 Figure 19 . Overlay of 31 P NMR spectra of 6a-h………………………………………...43 Figure20 Overlay of TGA traces under N 2………………………………...……………45 Figure 21 . Overlay of DSC spectra for samples 6a-h…………………………………...46 vii List of Schemes I. Introduction: Scheme 1 . Divergent and convergent methods for synthesis of dendrimers…………....8 Scheme 2 . Various syntheses of hyperbranched polymers...............................................13 Scheme 3 . Generic synthesis of polysulfones…………...………………………………15 Scheme 4. Generic synthesis of the oligomeric A 2 + B 3 system………………………...16 Scheme 5 . Synthesis of branched PAES via the oligomeric A 2 + B 3 system……………17 II. “One-Pot” Oligomeric A 2 + B 3 Polymerization of Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondensation Scheme 6 . NAS mechanism……………………………………………………………..34 Scheme 7 . Synthesis of 1b ……………………………………………………………….27 Scheme 8 . Synthesis of phosphoryl based compounds 3a-c…………………………….29 Scheme 9 . Model Reaction Scheme……………………………………………………..31 Scheme 10 . Conversion of 3 to 2a as an AB 2 oligomer………………………………...32 Scheme 11 . Branched PAEs polymer synthesis…………………………………………33 Scheme 12 . Synthesis of PAEs via “two-pot” literature method………………………..37 Scheme 13 . Synthesis of 6h ……………………………………………………………...37 viii List of Tables I. “One-Pot” Oligomeric A 2 + B 3 Polymerization of Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondensation Table 1. Reactivity data of 4-Fluorophenyl sulfone, tris(4-Fluorophenyl)phosphine oxide and bis-(4-Fluorophenyl)phenylphosphine oxide……………………………………….26 Table 2 . GC/MS data of model reactions………………………………………………..32 Table 3 . Reaction conditions utilized for the preparation of branched PAEs…………...33 Table 4 . Mn and PDI values of PAEs…………………………………………………...44 Table 5 . Incorporation of B 3 monomer………………………………………………….39 Table 6 . Degree of branching values…………………………………………………….42 Table 7 . TGA and DSC data for 6a-h…………………………………………………...45 ix Acknowledgements I would first like to thank Dr. Eric Fossum for his guidance, support and encouragement throughout my career at Wright State University as well as the faculty and staff of the Chemistry department. Also, many thanks to my husband, Nick, my parents, Jack and Donna, and to my sister, Laura. This could not have been accomplished without their endless love and support. x INTRODUCTION Linear Polymers Linear polymers are the most basic of polymers, consisting of only a simple back bone with two end groups. While linear polymers all have the same global structure, their individual structure will influence the conformation they exhibit. For example, poly (p- phenylene terephthalamide) will exhibit a rigid-rod like structure. 1 This means the polymer is in a defined rod-like shape and very little movement is allowed. On the other hand, polymers with a structure which has flexible bonds, as in poly(ether)s, will allow for random coil behavior, meaning there is no defined pattern within the structure of the polymer. While movement in rigid rod polymers is restricted, random coil polymers can participate in chain entanglements, where the chains become intertwined with one another or themselves ( Figure 1 ). Specifically, these chain entanglements bestow mechanical properties to the polymer. Figure 1 . Chain Entanglements. Intermolecular forces can also play a role in the ability of polymers to participate in chain entanglements. While the structure of the polymer may not be rigid on its own, 1 when enough time is allowed, the polymer chains can align their intermolecular forces to form a crystalline material. For example, poly(ethylene terephthalate) can either be amorphous or crystalline depending on the time allotted for cooling. If cooled slowly, crystallites will form and the polymer’s amorphous material will be “tied down” by the crystalline material until the crystallites melt. In this semi-crystalline material, only the small portions between crystallites can have chain entanglements, significantly reducing the total number of chain entanglements within the polymer and therefore also changing the mechanical properties. While many factors influence the ability of a polymer to participate in chain entanglements, the number-average molecular
Recommended publications
  • And Ph-Dependent Oligomerization of the Thrombin-Derived C-Terminal Peptide TCP-25
    biomolecules Article Concentration- and pH-Dependent Oligomerization of the Thrombin-Derived C-Terminal Peptide TCP-25 Ganna Petruk 1,* , Jitka Petrlova 1, Firdaus Samsudin 2 , Rita Del Giudice 3 , Peter J. Bond 2,4 and Artur Schmidtchen 1,5,6 1 Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22241 Lund, Sweden; [email protected] (J.P.); [email protected] (A.S.) 2 Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore; [email protected] (F.S.); [email protected] (P.J.B.) 3 Research Centre for Biointerfaces, Department of Biomedical Sciences and Biofilms, Malmö University, 20506 Malmö, Sweden; [email protected] 4 Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore 5 Copenhagen Wound Healing Center, Bispebjerg Hospital, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark 6 Dermatology, Skane University Hospital, 22185 Lund, Sweden * Correspondence: [email protected]; Tel.: +46-46-22-23-315 Received: 18 October 2020; Accepted: 9 November 2020; Published: 19 November 2020 Abstract: Peptide oligomerization dynamics affects peptide structure, activity, and pharmacodynamic properties. The thrombin C-terminal peptide, TCP-25 (GKYGFYTHVFRLKKWIQKVIDQFGE), is currently in preclinical development for improved wound healing and infection prevention. It exhibits turbidity when formulated at pH 7.4, particularly at concentrations of 0.3 mM or more. We used biochemical and biophysical approaches to explore whether the peptide self-associates and forms oligomers. The peptide showed a dose-dependent increase in turbidity as well as α-helical structure at pH 7.4, a phenomenon not observed at pH 5.0.
    [Show full text]
  • Cationic/Anionic/Living Polymerizationspolymerizations Objectives
    Chemical Engineering 160/260 Polymer Science and Engineering LectureLecture 1919 -- Cationic/Anionic/LivingCationic/Anionic/Living PolymerizationsPolymerizations Objectives • To compare and contrast cationic and anionic mechanisms for polymerization, with reference to free radical polymerization as the most common route to high polymer. • To emphasize the importance of stabilization of the charged reactive center on the growing chain. • To develop expressions for the average degree of polymerization and molecular weight distribution for anionic polymerization. • To introduce the concept of a “living” polymerization. • To emphasize the utility of anionic and living polymerizations in the synthesis of block copolymers. Effect of Substituents on Chain Mechanism Monomer Radical Anionic Cationic Hetero. Ethylene + - + + Propylene - - - + 1-Butene - - - + Isobutene - - + - 1,3-Butadiene + + - + Isoprene + + - + Styrene + + + + Vinyl chloride + - - + Acrylonitrile + + - + Methacrylate + + - + esters • Almost all substituents allow resonance delocalization. • Electron-withdrawing substituents lead to anionic mechanism. • Electron-donating substituents lead to cationic mechanism. Overview of Ionic Polymerization: Selectivity • Ionic polymerizations are more selective than radical processes due to strict requirements for stabilization of ionic propagating species. Cationic: limited to monomers with electron- donating groups R1 | RO- _ CH =CH- CH =C 2 2 | R2 Anionic: limited to monomers with electron- withdrawing groups O O || || _ -C≡N -C-OR -C- Overview of Ionic Chain Polymerization: Counterions • A counterion is present in both anionic and cationic polymerizations, yielding ion pairs, not free ions. Cationic:~~~C+(X-) Anionic: ~~~C-(M+) • There will be similar effects of counterion and solvent on the rate, stereochemistry, and copolymerization for both cationic and anionic polymerization. • Formation of relatively stable ions is necessary in order to have reasonable lifetimes for propagation.
    [Show full text]
  • Structural Mechanisms of Oligomer and Amyloid Fibril Formation by the Prion Protein Cite This: Chem
    ChemComm View Article Online FEATURE ARTICLE View Journal | View Issue Structural mechanisms of oligomer and amyloid fibril formation by the prion protein Cite this: Chem. Commun., 2018, 54,6230 Ishita Sengupta a and Jayant B. Udgaonkar *b Misfolding and aggregation of the prion protein is responsible for multiple neurodegenerative diseases. Works from several laboratories on folding of both the WT and multiple pathogenic mutant variants of the prion protein have identified several structurally dissimilar intermediates, which might be potential precursors to misfolding and aggregation. The misfolded aggregates themselves are morphologically distinct, critically dependent on the solution conditions under which they are prepared, but always b-sheet rich. Despite the lack of an atomic resolution structure of the infectious pathogenic agent in prion diseases, several low resolution models have identified the b-sheet rich core of the aggregates formed in vitro, to lie in the a2–a3 subdomain of the prion protein, albeit with local stabilities that vary Received 17th April 2018, with the type of aggregate. This feature article describes recent advances in the investigation of in vitro Accepted 14th May 2018 prion protein aggregation using multiple spectroscopic probes, with particular focus on (1) identifying DOI: 10.1039/c8cc03053g aggregation-prone conformations of the monomeric protein, (2) conditions which trigger misfolding and oligomerization, (3) the mechanism of misfolding and aggregation, and (4) the structure of the misfolded rsc.li/chemcomm intermediates and final aggregates. 1. Introduction The prion protein can exist in two distinct structural isoforms: a National Centre for Biological Sciences, Tata Institute of Fundamental Research, PrPC and PrPSc.
    [Show full text]
  • Photopolymerization Reactions Under Visible Lights: Principle, Mechanisms and Examples of Applications J.P
    Progress in Organic Coatings 47 (2003) 16–36 Photopolymerization reactions under visible lights: principle, mechanisms and examples of applications J.P. Fouassier∗, X. Allonas, D. Burget Département de Photochimie Générale, UMR n◦7525, Ecole Nationale Supérieure de Chimie, 3 Rue Alfred Werner, 68093 Mulhouse Cedex, France Received 22 June 2002; received in revised form 19 November 2002; accepted 20 December 2002 Abstract A general overview of visible light photoinduced polymerization reactions is presented. Reaction mechanisms as well as practical efficiency in industrial applications are discussed. Several points are investigated in detail: photochemical reactivity of photoinitiating system (PIS), short overview of available photoinitiators (PIs) and photosensitizers (PSs), mechanisms involved in selected examples of dye sensitized polymerization reactions, examples of applications in pigmented coatings usable as paints, textile printing, glass reinforced fibers, sunlight curing of waterborne latex paints, curing of inks, laser-induced polymerization reactions, high speed photopolymers for laser imaging, PISs for computer-to-plate systems. © 2003 Elsevier Science B.V. All rights reserved. Keywords: Photopolymerization; Visible light; Radiation curing 1. Introduction Radical, cationic and anionic polymerizations can be ini- tiated by the excitation of suitable photoinitiating systems Radiation curing technologies provide a number of eco- (PISs) under lights. Most of these systems were originally nomic advantages over the usual thermal operation among sensitive to UV lights but by now a large number of various them: rapid through cure, low energy requirements, room systems allows to extend the spectral sensitivity to visible temperature treatment, non-polluting and solvent-free for- lights. According to the applications which are developed, mulations, low costs.
    [Show full text]
  • On the Mechanism of Oligomer Formation in Condensations of Alkyl Cyanoacetates with Formaldehyde
    Polymer Journal, Vol. 13, No. 10, pp 975-978 (1981) NOTE On the Mechanism of Oligomer Formation in Condensations of Alkyl Cyanoacetates with Formaldehyde J. M. ROONEY Loctite (Ireland) Limited, Whitestown Industrial Estate, Ta//aght, Co. Dublin. Ireland. (Received December II, 1980) KEY WORDS Alkyl Cyanoacetates I Formaldehyde / Condensation Anionic Polymerization I Cyanoacrylate I Chain Transfer I Industrial synthetic routes to the production of Since the apparent activation energy of the over­ alkyl cyanoacrylate monomers frequently involve all process was found to be similar to that of the base-catalyzed condensations of alkyl cyanoacetates condensation of diethyl dicyanoglutarate with for­ with formaldehyde to form low molecular weight maldehyde, the addition of diethyl dicyanoglutarate polymers. 1 Early studies attributed polymer for­ to formaldehyde is assumed to be the rate­ mation to a stepwise condensation2 of the form,3.4 determining step. CN CN I I CH2 + HCHO _..... CHCH20H I I COOR COOR CN CN CN CN I I I I CHCH2 0H + CH2 -----. CH-CH2-CH + H2 0 I I I I COOR COOR COOR COOR CN CN CN CN I I I I CH-CH2-CH + HCHO -----. CH-CH2-C-CH20H I I I I COOR COOR COOR COOR CN CN CN I I I CH-CH2-C-CH20H + CH2 etc. I I I COOR COOR COOR Subsequently, a kinetic study of the reaction of philic displacement of the hydroxyl group by cya­ formaldehyde with methyl cyanoacetate5 yielded noacetate anion. Instead, it is postulated that evidence that methyl cyanoacrylate monomer is an essential step in water evolution is the formation of intermediate in oligomer formation.
    [Show full text]
  • Polymer Exemption Guidance Manual POLYMER EXEMPTION GUIDANCE MANUAL
    United States Office of Pollution EPA 744-B-97-001 Environmental Protection Prevention and Toxics June 1997 Agency (7406) Polymer Exemption Guidance Manual POLYMER EXEMPTION GUIDANCE MANUAL 5/22/97 A technical manual to accompany, but not supersede the "Premanufacture Notification Exemptions; Revisions of Exemptions for Polymers; Final Rule" found at 40 CFR Part 723, (60) FR 16316-16336, published Wednesday, March 29, 1995 Environmental Protection Agency Office of Pollution Prevention and Toxics 401 M St., SW., Washington, DC 20460-0001 Copies of this document are available through the TSCA Assistance Information Service at (202) 554-1404 or by faxing requests to (202) 554-5603. TABLE OF CONTENTS LIST OF EQUATIONS............................ ii LIST OF FIGURES............................. ii LIST OF TABLES ............................. ii 1. INTRODUCTION ............................ 1 2. HISTORY............................... 2 3. DEFINITIONS............................. 3 4. ELIGIBILITY REQUIREMENTS ...................... 4 4.1. MEETING THE DEFINITION OF A POLYMER AT 40 CFR §723.250(b)... 5 4.2. SUBSTANCES EXCLUDED FROM THE EXEMPTION AT 40 CFR §723.250(d) . 7 4.2.1. EXCLUSIONS FOR CATIONIC AND POTENTIALLY CATIONIC POLYMERS ....................... 8 4.2.1.1. CATIONIC POLYMERS NOT EXCLUDED FROM EXEMPTION 8 4.2.2. EXCLUSIONS FOR ELEMENTAL CRITERIA........... 9 4.2.3. EXCLUSIONS FOR DEGRADABLE OR UNSTABLE POLYMERS .... 9 4.2.4. EXCLUSIONS BY REACTANTS................ 9 4.2.5. EXCLUSIONS FOR WATER-ABSORBING POLYMERS........ 10 4.3. CATEGORIES WHICH ARE NO LONGER EXCLUDED FROM EXEMPTION .... 10 4.4. MEETING EXEMPTION CRITERIA AT 40 CFR §723.250(e) ....... 10 4.4.1. THE (e)(1) EXEMPTION CRITERIA............. 10 4.4.1.1. LOW-CONCERN FUNCTIONAL GROUPS AND THE (e)(1) EXEMPTION.................
    [Show full text]
  • Specifications Guide Americas Petrochemicals Latest Update: July 2020
    Specifications Guide Americas Petrochemicals Latest update: July 2020 Definitions of the trading locations for which Platts publishes daily indexes or assessments 2 Olefins 3 US aromatics 6 Latin American aromatics 8 US polymers 10 Latin American polymers 13 US intermediates 16 US hydrocarbon solvents 17 US chlor alkali 18 US oxygenated solvents 19 Liquid and gas chemical freight 21 Global petrochemical indices 22 Revision history 23 www.spglobal.com/platts Specifications Guide Americas Petrochemicals: July 2020 DEFINITIONS OF THE TRADING LOCATIONS FOR WHICH PLATTS PUBLISHES DAILY INDEXES OR ASSESSMENTS The following specifications guide contains the primary specifications for S&P Global Platts petrochemical assessments in the Americas. All the assessments listed here employ Platts Assessments Methodology, as published at https://www.spglobal.com/platts/plattscontent/_assets/_files/en/our-methodology/methodology-specifications/platts-assessments-methodology-guide.pdf. These guides are designed to give Platts subscribers as much information as possible about a wide range of methodology and specification questions. This guide is current at the time of publication. Platts may issue further updates and enhancements to this methodology and will announce these to subscribers through its usual publications of record. Such updates will be included in the next version of this guide. Platts editorial staff and managers are available to provide guidance when assessment issues require clarification. OLEFINS Assessment CURRENCY CODE Mavg Wavg TYPE
    [Show full text]
  • Guidance for Monomers and Polymers
    GUIDANCE Guidance for monomers and polymers April 2012 Version 2.0 Guidance for the implementation of REACH Annankatu 18, P.O. Box 400, FI-00121 Helsinki, Finland | Tel. +358 9 686180 | Fax +358 9 68618210 | echa.europa.eu Guidance for monomers and polymers 2 Version 2.0 April 2012 Version Changes Date Version 0 First edition June 2007 Version 1 Section 2.2 - More explanations given on the 18/03/2008 definition of polymer (including different types of additives). Most of section 3.3 transferred to here. Section 3.1 - Clarification of cases where the substance is used both as monomer and as intermediate under strictly controlled conditions. Section 3.2.1.1 - Addition of a sentence to clarify that there is no need to register stabilisers Section 3.2.1.2 - The section has been modified in order to reflect a proposal for solution for those substances already notified. Section 3.2.1.3 - Some wording change for clarification that only the substance used for the modification of the natural polymer needs to be registered when ending up chemically bound to the polymer. Section 3.2.1.4 - Need for update acknowledged. Previous Section 3.3 - Deleted and mostly transferred to section 2.2. Version 1.1 Section 3.2.1.2 - Based on the comments 27/05/2008 received from Ireland after the CA meeting in December 2007 some additional guidance on what needs to be done for notified polymers has been added (4 pages). Version 2.0 Section 2.1 and 3.1 – Reference to monomers as April 2012 intermediate reworded in order to be consistent with new clarification of intermediate definition.
    [Show full text]
  • Polymer of Acrylic Acid Oligomer, Its Preparation and Use in Coating And
    Europaisches Patentamt European Patent Office © Publication number: 0 036 294 Office europeen des brevets A2 © EUROPEAN PATENT APPLICATION © Application number: 81301029.5 © int. ci 3: C 08 F 20/28 © Date of filing: 12.03.81 © Priority: 14.03.80 US 130323 © Applicant: Rohm and Haas Company Independence Mall West Philadelphia, Pennsylvania 191051US) @ Date of publication of application: 23.09.81 Bulletin 81/38 © Inventor: Merritt, Richard Foster 1811 Shelly Lane © Designated Contracting States: Fort Washington Pennsylvania 19034IUS) BE CH DE FR GB IT LI NL SE © Inventor: Larsson, Bjorn Eric Swamp Road Rushland Pennsylvania 18956(US) © Representative: Angell, David Whilton et al, Rohm and Haas Company Patent Department Chesterfield House Barter Street London WC1A2TP(GB) © Polymer of acrylic acid oligomer, its preparation and use in coating and/or impregnating compositions and the moderation of copolymer glass transition temperature using the oligomer. © Acrylic acidacid oligomeroligomer of thethe formulaformula: : 0 0 CH =CH-C-0(CH, •0) H @CH2C n where n has anan average value value (n) (n) of from greater thanthan 1 to 10 is polymerised, alone or with other ethylenicallyethylenicaliy unsaturated monomer, by emulsion or solution polymerisation. When When nn is from 2 to 10 any known polymerisation technique may be used, but emulsion or solution polymerization is preferred. The be used moderate the transition CM monomer may to glass of The polymer be used in < temperature copolymers. may coating and/or impregnating compositions such as inks, caulks, sealants, adhesives, fabric print pastes and non- Gi woven fabric binders. CM CD CO o Q. UJ Croydon Printing Company Ltd.
    [Show full text]
  • Bio-Based and Biodegradable Plastics – Facts and Figures Focus on Food Packaging in the Netherlands
    Bio-based and biodegradable plastics – Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Rapport nr. 1722 Bio-based and biodegradable plastics - Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Report 1722 Colophon Title Bio-based and biodegradable plastics - Facts and Figures Author(s) Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Number Wageningen Food & Biobased Research number 1722 ISBN-number 978-94-6343-121-7 DOI http://dx.doi.org/10.18174/408350 Date of publication April 2017 Version Concept Confidentiality No/yes+date of expiration OPD code OPD code Approved by Christiaan Bolck Review Intern Name reviewer Christaan Bolck Sponsor RVO.nl + Dutch Ministry of Economic Affairs Client RVO.nl + Dutch Ministry of Economic Affairs Wageningen Food & Biobased Research P.O. Box 17 NL-6700 AA Wageningen Tel: +31 (0)317 480 084 E-mail: [email protected] Internet: www.wur.nl/foodandbiobased-research © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research All rights reserved. No part of this publication may be reproduced, stored in a retrieval system of any nature, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. The publisher does not accept any liability for inaccuracies in this report. 2 © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research Preface For over 25 years Wageningen Food & Biobased Research (WFBR) is involved in research and development of bio-based materials and products.
    [Show full text]
  • Aim: to Prepare Block Copolymers of Methyl Methacrylate (MMA) and Styrene
    Conducting A Reversible-Deactivation Radical Polymerization (RDRP) Aim: To Prepare Block Copolymers of Methyl Methacrylate (MMA) and Styrene. Polymers are ubiquitous in the modern world. They provide tremendous value because the chemical and physical properties of these materials are determined by the monomers that are used to put them together. One of the most powerful methods to construct polymers is radical-chain polymerization and this method is used in the commercial synthesis of polymers everyday. Methyl methacrylate is polymerized to form poly(methyl methacrylate) (PMMA) which is also known as acrylic glass or Plexiglas (about 2 billion pounds per year in the US). This material is lightweight, strong and durable. The polymer chains are rigid due to the tetrasubstituted carbon atom in the polymer backbone and they have excellent optical clarity. As a consequence, these materials are used in aircraft windows, glasses, skylights, signs and displays. Polystyrene (PS), which can also be synthesized from radical chain polymerization, has found extensive use as a material (also approximately 2 billion pounds per year in the US). One of the forms of PS, Styrofoam, is used extensively to make disposable cups, thermal insulation, and cushion for packaging. Scheme 1. Radical polymerization of methyl methacrylate or styrene. While there are extensive uses for these polymers, when synthesizing any material using a free-radical polymerization, samples are obtained with limited control over molecular weight and molecular weight distribution. New methods have been developed directly at Carnegie Mellon (https://www.cmu.edu/maty/) which lead to improved control in this process. This new method is a reversible-deactivation of the polymerization reaction where highly reactive radicals toggle back and forth between an active state, where the polymer chain is growing, and a dormant state, where the polymer chain is capped (Scheme 2).
    [Show full text]
  • Random-Sequence Genetic Oligomer Pools Display an Innate Potential For
    RESEARCH ARTICLE Random-sequence genetic oligomer pools display an innate potential for ligation and recombination Hannes Mutschler1†‡*, Alexander I Taylor1†, Benjamin T Porebski1, Alice Lightowlers1§, Gillian Houlihan1, Mikhail Abramov2, Piet Herdewijn2, Philipp Holliger1* 1MRC Laboratory of Molecular Biology, Cambridge, United Kingdom; 2REGA Institute, Katholieke Universiteit Leuven, Leuven, Belgium Abstract Recombination, the exchange of information between different genetic polymer strands, is of fundamental importance in biology for genome maintenance and genetic diversification and is mediated by dedicated recombinase enzymes. Here, we describe an innate capacity for non-enzymatic recombination (and ligation) in random-sequence genetic oligomer pools. Specifically, we examine random and semi-random eicosamer (N20) pools of RNA, DNA and *For correspondence: the unnatural genetic polymers ANA (arabino-), HNA (hexitol-) and AtNA (altritol-nucleic acids). Correspondence to: ph1@mrc- While DNA, ANA and HNA pools proved inert, RNA (and to a lesser extent AtNA) pools displayed lmb.cam.ac.uk; [email protected] diverse modes of spontaneous intermolecular recombination, connecting recombination mechanistically to the vicinal ring cis-diol configuration shared by RNA and AtNA. Thus, the † These authors contributed chemical constitution that renders both susceptible to hydrolysis emerges as the fundamental equally to this work determinant of an innate capacity for recombination, which is shown to promote a concomitant Present address:
    [Show full text]