
<p><strong>“One-Pot” Oligomeric A</strong><sub style="top: 0.17em;"><strong>2 </strong></sub><strong>+ B</strong><sub style="top: 0.17em;"><strong>3 </strong></sub><strong>Approach to Branched Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondensation </strong></p><p>A thesis submitted in partial fulfillment of the requirements for the degree of <br>Master of Science </p><p>By <br>ANDREA M. ELSEN <br>B.S., Wright State University, 2007 </p><p>2009 <br>Wright State University <br>WRIGHT STATE UNIVERSITY <br>SCHOOL OF GRADUATE STUDIES </p><p>June 19, 2009 <br>I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY <br>SUPERVISION BY Andrea M. Elsen ENTITLED “One-Pot” Oligomeric A2 + B3 Approach to Branched Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondenstation BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. </p><p>_________________________ <br>Eric Fossum, Ph.D. <br>Thesis Director </p><p>_________________________ <br>Kenneth Turnbull, Ph.D. <br>Department Chair </p><p>Committee on Final Examination </p><p>____________________________ Eric Fossum, Ph.D. </p><p>____________________________ Kenneth Turnbull, Ph.D. </p><p>____________________________ William A. Feld, Ph.D. </p><p>____________________________ Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies </p><p><strong>Abstract </strong></p><p>Elsen, Andrea M. M.S., Department of Chemistry, Wright State University, 2009. “One-Pot” Oligomeric A<sub style="top: 0.13em;">2 </sub>+ B<sub style="top: 0.13em;">3 </sub>Approach to Branched Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondensation </p><p>The synthesis of fully soluble branched poly(arylene ether)s via an oligomeric A<sub style="top: 0.13em;">2 </sub>+ B<sub style="top: 0.13em;">3 </sub>system, in which the A<sub style="top: 0.13em;">2 </sub>oligomers are generated in situ, is presented. This approach takes advantage of the significantly higher reactivity toward nucleophilic aromatic substitution reactions, NAS, of B<sub style="top: 0.13em;">2</sub>, 4-Fluorophenyl sulfone, relative to B<sub style="top: 0.13em;">3</sub>, <em>tris</em>(4-Fluorophenyl) phosphine oxide. The A<sub style="top: 0.13em;">2 </sub>oligomers were synthesized by reaction of Bisphenol-A and B<sub style="top: 0.13em;">2</sub>, in the presence of the B<sub style="top: 0.13em;">3 </sub>unit, at temperatures between 100 and 160 °C, followed by an increase in the reaction temperature to 180 °C at which point the branching unit was </p><p>31 </p><p>incorporated. The presence of branching was confirmed via P NMR spectroscopy and the thermal properties of the polymers were evaluated utitilizing TGA and DSC analyses. </p><p>iii </p><p><strong>Table of Contents </strong></p><p>1. Introduction…………………………………………………………………………….1 <br>Linear polymers………………………………………………………...…2 Dendrimers………………………………………………………………...5 Branched poymers………………………………………………………...9 Poly(arylene ether sulfone)s……………………………………………..14 Current project…………………………………………………………...17 <br>2. Experimental…………………………………………………………………………..19 <br>Synthesis of 4,4-<em>bis</em>-(4-methylphenoxy)diphenyl sulfone,<strong>1b</strong>……………20 Synthesis of mono-substituted <em>tris</em>-(4-Fluorophenyl)phosphine oxide, <strong>3a</strong>………...………………………………………..20 <br>Representative procedure for model reactions…………………………...20 Representative polymerization procedure………………………………..21 General procedure for reverse precipitations……………………….…....21 Preparation of GC/MS calibration curve………………………………...22 Polymerization of A<sub style="top: 0.13em;">2 </sub>+ B<sub style="top: 0.13em;">2 </sub>+B<sub style="top: 0.13em;">2</sub>’ monomers, linear analog………………22 Synthesis of A<sub style="top: 0.13em;">2 </sub>capped oligomers, <strong>2a</strong>…………………………………...22 Synthesis of branched poly(arylene ether sulfone)s, <strong>6g</strong>…………………23 <br>3. Results and Discussion………………………………………………………………..24 <br>Nucleophilic aromatic substitution………………………………………24 Reactivity determination…………………………………………………24 GC/MS calibration curve………………………………………………...26 Simulation of <em>in situ </em>oligomeric A<sub style="top: 0.13em;">2 </sub>formation…………………………..30 </p><p>iv <br>Synthesis of branched poly(arylene ether sulfone)s……………………..33 Incorporation of B<sub style="top: 0.13em;">3 </sub>monomer……………………………………………38 Estimation of degree of branching, <em>DB</em>…………………………………..39 Thermal Analysis………………………………………………………...44 Conclusions………………………………………………………………47 <br>4. References……………………………………………………………………………..48 </p><p>v</p><p><strong>List of Figures </strong><br><strong>I. Introduction: </strong></p><p><strong>Figure 1</strong>. Chain Entanglements……………………………………………………...…....1 <strong>Figure 2</strong>. Intrinsic or inherent viscosity versus M<sub style="top: 0.13em;">n </sub>for a generic linear polymer……...…2 <strong>Figure 3</strong>. Young’s Modulus versus temperature plot for a generic linear polymer…........3 <strong>Figure 4</strong>. Poly(amido amine)……………………………..………………………….…...6 <strong>Figure 5</strong>. Generic scheme of a branched polymer…………...…………………………...9 <strong>Figure 6</strong>. Comparison of mechanical properties versus degree of branching for linear, dendritic and branched polymers………………………………………………………...10 <strong>Figure 7a</strong>. Comparison of linear, dendritic and branched polymer viscosity versus degree of branching……………………………………………………………………………...11 <strong>Figure 7b</strong>. Comparison of linear, dendritic and branched polymer viscosity versus M<sub style="top: 0.13em;">w</sub>………………………………………………………………………………………..11 </p><p><strong>II. “One-Pot” Oligomeric A</strong><sub style="top: 0.13em;"><strong>2 </strong></sub><strong>+ B</strong><sub style="top: 0.13em;"><strong>3 </strong></sub><strong>Polymerization of Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondensation </strong></p><p><strong>Figure 8</strong>. 4-Fluorophenyl sulfone, tris-(4-Fluorophenyl)phosphine oxide and bis-(4- Fluorophenyl)phenyl phosphine oxide…………………………………………………..25 <strong>Figure 9</strong>. The 300 MHz <sup style="top: -0.46em;">1</sup>H NMR spectrum (CDCl<sub style="top: 0.13em;">3</sub>) of <strong>1b</strong>……………………………..27 <strong>Figure 10</strong>. The 75 MHz <sup style="top: -0.46em;">13</sup>C NMR (CDCl<sub style="top: 0.13em;">3</sub>) spectrum of <strong>1b</strong>…………………………….28 <strong>Figure 11</strong>. The 121 MHz <sup style="top: -0.46em;">31</sup>P NMR (CDCl<sub style="top: 0.13em;">3</sub>) spectrum of <strong>3a </strong>mixture…………………..30 </p><p><strong>Figure 12</strong>. GPC overlay of <strong>6b </strong>and <strong>6b</strong><sub style="top: 0.13em;"><strong>1</strong></sub>…………………………………………………..34 </p><p><strong>Figure 13</strong>. Overlay of “one-pot” polymers, <strong>6a-f</strong>………………………………………..35 <strong>Figure 14</strong>. Overlay of MeOH soluble, insoluble and crude polymer……………………36 </p><p>vi </p><p><strong>Figure 15</strong>. Overlay of <strong>6d</strong>, <strong>6f </strong>and <strong>6g</strong>……………………………………………………..38 </p><p><strong>Figure 16</strong>. The 300 MHz <sup style="top: -0.46em;">1</sup>H NMR spectrum (CDCl<sub style="top: 0.13em;">3</sub>) of <strong>6c</strong>……………………………39 <strong>Figure 17</strong>. Potential B<sub style="top: 0.13em;">3 </sub>structural units…………………………………………………40 <strong>Figure 18</strong>. The 121 MHz <sup style="top: -0.46em;">31</sup>P NMR (CDCl<sub style="top: 0.13em;">3</sub>) spectrum of <strong>6d </strong>mixture…………………..41 <strong>Figure 19</strong>. Overlay of <sup style="top: -0.46em;">31</sup>P NMR spectra of <strong>6a-h</strong>………………………………………...43 <strong>Figure20 </strong>Overlay of TGA traces under N<sub style="top: 0.13em;">2</sub>………………………………...……………45 <strong>Figure 21</strong>. Overlay of DSC spectra for samples <strong>6a-h</strong>…………………………………...46 </p><p>vii </p><p><strong>List of Schemes </strong><br><strong>I. Introduction: </strong></p><p><strong>Scheme 1</strong>. Divergent and convergent methods for synthesis of dendrimers…………....8 <strong>Scheme 2</strong>. Various syntheses of hyperbranched polymers...............................................13 <strong>Scheme 3</strong>. Generic synthesis of polysulfones…………...………………………………15 <strong>Scheme 4</strong>. Generic synthesis of the oligomeric A<sub style="top: 0.13em;">2 </sub>+ B<sub style="top: 0.13em;">3 </sub>system………………………...16 <strong>Scheme 5</strong>. Synthesis of branched PAES via the oligomeric A<sub style="top: 0.13em;">2 </sub>+ B<sub style="top: 0.13em;">3 </sub>system……………17 </p><p><strong>II. “One-Pot” Oligomeric A</strong><sub style="top: 0.13em;"><strong>2 </strong></sub><strong>+ B</strong><sub style="top: 0.13em;"><strong>3 </strong></sub><strong>Polymerization of Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondensation </strong></p><p><strong>Scheme 6</strong>. NAS mechanism……………………………………………………………..34 </p><p><strong>Scheme 7</strong>. Synthesis of <strong>1b</strong>……………………………………………………………….27 </p><p><strong>Scheme 8</strong>. Synthesis of phosphoryl based compounds 3a-c…………………………….29 <strong>Scheme 9</strong>. Model Reaction Scheme……………………………………………………..31 </p><p><strong>Scheme 10</strong>. Conversion of <strong>3 </strong>to <strong>2a </strong>as an AB<sub style="top: 0.13em;">2 </sub>oligomer………………………………...32 </p><p><strong>Scheme 11</strong>. Branched PAEs polymer synthesis…………………………………………33 <strong>Scheme 12</strong>. Synthesis of PAEs via “two-pot” literature method………………………..37 </p><p><strong>Scheme 13</strong>. Synthesis of <strong>6h</strong>……………………………………………………………...37 </p><p>viii </p><p><strong>List of Tables </strong><br><strong>I. “One-Pot” Oligomeric A</strong><sub style="top: 0.13em;"><strong>2 </strong></sub><strong>+ B</strong><sub style="top: 0.13em;"><strong>3 </strong></sub><strong>Polymerization of Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondensation </strong></p><p><strong>Table 1</strong>. Reactivity data of 4-Fluorophenyl sulfone, tris(4-Fluorophenyl)phosphine oxide and bis-(4-Fluorophenyl)phenylphosphine oxide……………………………………….26 <strong>Table 2</strong>. GC/MS data of model reactions………………………………………………..32 <strong>Table 3</strong>. Reaction conditions utilized for the preparation of branched PAEs…………...33 <strong>Table 4</strong>. Mn and PDI values of PAEs…………………………………………………...44 <strong>Table 5</strong>. Incorporation of B<sub style="top: 0.13em;">3 </sub>monomer………………………………………………….39 <strong>Table 6</strong>. Degree of branching values…………………………………………………….42 <strong>Table 7</strong>. TGA and DSC data for <strong>6a-h</strong>…………………………………………………...45 </p><p>ix </p><p><strong>Acknowledgements </strong></p><p>I would first like to thank Dr. Eric Fossum for his guidance, support and encouragement throughout my career at Wright State University as well as the faculty and staff of the Chemistry department. Also, many thanks to my husband, Nick, my parents, Jack and Donna, and to my sister, Laura. This could not have been accomplished without their endless love and support. </p><p>x</p><p><strong>INTRODUCTION </strong><br><strong>Linear Polymers </strong></p><p>Linear polymers are the most basic of polymers, consisting of only a simple back bone with two end groups. While linear polymers all have the same global structure, their individual structure will influence the conformation they exhibit. For example, poly (pphenylene terephthalamide) will exhibit a rigid-rod like structure.<sup style="top: -0.46em;">1 </sup>This means the polymer is in a defined rod-like shape and very little movement is allowed. On the other hand, polymers with a structure which has flexible bonds, as in poly(ether)s, will allow for random coil behavior, meaning there is no defined pattern within the structure of the polymer. While movement in rigid rod polymers is restricted, random coil polymers can participate in chain entanglements, where the chains become intertwined with one another or themselves (<strong>Figure 1</strong>). Specifically, these chain entanglements bestow mechanical properties to the polymer. </p><p><strong>Figure 1</strong>. Chain Entanglements. <br>Intermolecular forces can also play a role in the ability of polymers to participate in chain entanglements. While the structure of the polymer may not be rigid on its own, </p><p>1when enough time is allowed, the polymer chains can align their intermolecular forces to form a crystalline material. For example, poly(ethylene terephthalate) can either be amorphous or crystalline depending on the time allotted for cooling. If cooled slowly, crystallites will form and the polymer’s amorphous material will be “tied down” by the crystalline material until the crystallites melt. In this semi-crystalline material, only the small portions between crystallites can have chain entanglements, significantly reducing the total number of chain entanglements within the polymer and therefore also changing the mechanical properties. <br>While many factors influence the ability of a polymer to participate in chain entanglements, the number-average molecular weight (M<sub style="top: 0.13em;">n</sub>) of the polymer is the most important. The lowest M<sub style="top: 0.13em;">n </sub>value a polymer can have and still participate in chain entanglements is known as the Critical Point of Entanglement (M<sub style="top: 0.13em;">c</sub>). The M<sub style="top: 0.13em;">c </sub>for a specific polymer can be found by plotting viscosity versus M<sub style="top: 0.13em;">n </sub>(<strong>Figure 2</strong>). </p><p>M<sub style="top: 0.13em;">c </sub></p><p>M<sub style="top: 0.17em;">n </sub></p><p><strong>Figure 2</strong>. Intrinsic or Inherent viscosity versus M<sub style="top: 0.13em;">n </sub>for a generic linear polymer. <br>2<br>Below M<sub style="top: 0.13em;">c</sub>, the viscosity is determined through Equation 1 where K<sub style="top: 0.13em;">L </sub>is a constant for low degree of polymerization and Z is the number of monomer units in the polymer backbone. Within this range the viscosity scales with M<sub style="top: 0.13em;">n </sub>to the 1.0 power. </p><p>η = K<sub style="top: 0.13em;">L</sub>Z<sup style="top: -0.46em;">1.0 </sup></p><p>(1) <br>Above M<sub style="top: 0.13em;">c </sub>the viscosity is determined through Equation 2. Again, Z is the number of monomer units in the polymer backbone, while K<sub style="top: 0.13em;">H </sub>represents a constant for high degree of polymerization. Also note the difference in power with which viscosity scales with M<sub style="top: 0.13em;">n</sub>, changing from 1.0 to 3.4. This was derived using scaling concepts by de Gennes.<sup style="top: -0.46em;">1 </sup></p><p>η = K<sub style="top: 0.13em;">H</sub>Z<sup style="top: -0.46em;">3.4 </sup></p><p>(2) <br>An example of a mechanical property is viscoelasticity behavior, which is the ability to relieve various stresses through the capacity of these chain entanglements to adopt different conformations. The viscoelastic behavior of a polymer can be described by Young’s Modulus. </p><p><strong>Figure 3</strong>. Young’s Modulus versus temperature plot for a generic linear polymer. <br>3<br>Young’s Modulus measures a polymer’s response to an applied stress. This is described in Equation 3 as the stress on the polymer over the strain by the polymer and is simply a way to measure the stiffness of the polymer. <br>E = ε/σ </p><p>(3) </p><p>For a typical amorphous or semi-crystalline polymer there are five regions within <br>Young’s Modulus (<strong>Figure 3</strong>). Region 1 is the Glassy Region, which is found at low temperatures where polymers exhibit high modulus. High modulus means the material is very hard and brittle. Throughout this region, movement within the polymer is restricted to vibrations and very small rotations. As the temperature is increased, the polymer goes through the Glass Transition (T<sub style="top: 0.13em;">g</sub>), which is shown as region 2. At this point the polymer gains enough energy to show signs of cooperative motion in the backbone resulting in a considerable drop in the modulus of the polymer. Next, the modulus flattens as the polymer continues to warm and enters region 3, the Rubbery Plateau. Within this region the polymer exhibits elastic behavior. The material has enough energy that it may be stretched out, causing the chains to straighten. When the stress is removed, the chains relax back into entropically favorable positions. Region 4, called the Rubbery Flow Region acts similarly to region 3 when the stress is applied on a short time scale, however, if the stress is applied over long periods of time, the polymer will not be able to snap back to its original shape like it would in region three. The final region is the Liquid Flow Region. Here, at very high temperatures, the polymer has enough energy that the chains can move relatively quickly past one another allowing for a liquid-like behavior.<sup style="top: -0.46em;">1 </sup><br>While the physical properties of linear polymers are very attractive for many applications, most do have one quality that is undesirable: high viscosity. Typically, the </p><p>4viscosity of linear polymers is very high and this becomes a major problem when trying to process the polymer after synthesis. Often, the polymer must be diluted with solvent to obtain a processable material; therefore, it is sought-after to find a similar material that maintains the physical properties, but with a lower viscosity than traditional linear polymers. </p><p><strong>Dendrimers </strong></p><p>A second class of polymers, dendrimers, differs significantly from linear polymers. Dendrimers are unique because at every monomer unit they are perfectly branched. The structure of dendrimers consists only of dendritic units and chain ends which affords their globular, spherical shape.<sup style="top: -0.46em;">2 </sup>The first dendrimer, Polyamidoamine (PAMAM), was synthesized by Dow in 1986 (<strong>Figure 4</strong>).<sup style="top: -0.46em;">3 </sup>Dendrimers are typically prepared by either a divergent or convergent approach. As used in the synthesis to produce PAMAM, the divergent method grows the dendrimer outward by starting with a core molecule and adding a “layer” of monomer with each reaction to every functional group at the current chain ends. While this method has proven to be very successful in the production of many dendrimers including poly(amidoamines)<sup style="top: -0.46em;">4</sup>, polyethers<sup style="top: -0.46em;">5</sup>, and poly(arylamines)<sup style="top: -0.46em;">6 </sup>there are several downfalls with the method. For example, late in the synthesis, the number of functional groups on the dendrimer required to react with the monomer for proper generation growth is quite high.<sup style="top: -0.46em;">7 </sup>It becomes quite difficult to ensure that all reactions have occurred, creating an imperfect dendrimer. </p><p>5</p><p>NH<sub style="top: 0.12em;">2 </sub>O<br>H<sub style="top: 0.12em;">2</sub>N <br>NH<sub style="top: 0.13em;">2 </sub></p><ul style="display: flex;"><li style="flex:1">NH<sub style="top: 0.12em;">2 </sub></li><li style="flex:1">H<sub style="top: 0.11em;">2</sub>N </li></ul><p>NH<sub style="top: 0.12em;">2 </sub><br>O</p><p>N<br>HN <br>NH </p><p>O<br>NH <br>HN </p><p>O<br>NH <br>O</p><p>O</p><ul style="display: flex;"><li style="flex:1">O</li><li style="flex:1">NH </li></ul><p>N<br>O<br>N<br>H</p><p>N<br>NH<br>N</p><ul style="display: flex;"><li style="flex:1">O</li><li style="flex:1">N</li></ul><p>O<br>O<br>HN <br>NH </p><ul style="display: flex;"><li style="flex:1">NH<sub style="top: 0.11em;">2 </sub></li><li style="flex:1">N</li></ul><p>H<br>H<sub style="top: 0.12em;">2</sub>N <br>O</p><p>HN <br>N<br>O</p><p>HN </p><p>N<br>H<sub style="top: 0.11em;">2</sub>N <br>O</p><p>HN <br>NH <br>N</p><p>O<br>N<br>NH<sub style="top: 0.12em;">2 </sub><br>O<br>O</p><p>NH </p><p>O<br>O<br>O<br>HN </p><p>NH </p><p>N<br>N<br>N<br>H<br>N</p><p>NH <br>O<br>O<br>NH<sub style="top: 0.11em;">2 </sub></p><p>O<br>O<br>O<br>HN <br>HN <br>N</p><p>H<br>H<sub style="top: 0.12em;">2</sub>N <br>HN </p><p>N<br>O</p><ul style="display: flex;"><li style="flex:1">N</li><li style="flex:1">H<sub style="top: 0.12em;">2</sub>N </li></ul><p></p><p>Chain End </p><p>HN <br>H<sub style="top: 0.13em;">2</sub>N </p><p>O<br>HN <br>O</p><p>Dendritic Unit </p><p>NH<sub style="top: 0.11em;">2 </sub><br>NH<sub style="top: 0.11em;">2 </sub></p><p><strong>Figure 4</strong>. Poly(amidoamine). </p><p>An alternative approach, the convergent method, was first introduced by Fréchet and Hawker in 1990.<sup style="top: -0.46em;">8-10 </sup>It begins with the chain ends and works inward toward the center </p><p>6of the molecule to finally attach all “dendritic wedges” to a core molecule forming the completed dendrimer. This method often requires only two reactions for each generation growth<sup style="top: -0.46em;">7 </sup>thus allowing for a cleaner synthesis and, potentially, a more perfect structure.<sup style="top: -0.46em;">8, </sup></p><p>11, 12 </p><p>Unfortunately, this method limits the number of generations for the dendrimer as the focal point of the reaction becomes sterically crowded. However, regardless of which method is used to synthesize dendrimers, it is a very tedious process as both require several steps as well as extensive purification after each generation is formed (<strong>Scheme </strong></p><p><strong>1</strong>).<sup style="top: -0.46em;">13 </sup></p><p>7</p><ul style="display: flex;"><li style="flex:1">Divergent </li><li style="flex:1">Convergent </li></ul><p></p><p>2x <br>6x </p><p><strong>Scheme 1</strong>. Divergent and convergent methods for synthesis of dendrimers <br>8<br>Due to the dense surfaces of dendrimers, they cannot have chain entanglements with other dendritic molecules. Therefore, dendritic materials generally exhibit poor mechanical properties and engineering applications are often limited to blending agents while biological applications range from molecular delivery agents to unimolecular micelles.<sup style="top: -0.46em;">14 </sup>An interesting characteristic of dendrimers is their intrinsic viscosity. Unlike linear polymers, whose viscosity continues to rise with increasing molecular weight, a dendrimer’s viscosity typically goes through a maximum as the density of the surface increases and is always lower than its linear counterpart.<sup style="top: -0.46em;">15 </sup></p><p><strong>Branched Polymers </strong></p><p>Branched polymers, are a hybrid of linear and dendritic polymers, both structurally and physically. In Figure 5 a generic structure of a branched polymer is shown and it is evident that these polymers consist of linear, dendritic and teminal units. </p><p>Terminal Unit <br>Linear Unit </p><p>Dendritic Unit <br><strong>Figure 5</strong>. Generic representation of a branched polymer </p><p>9</p><p>Branched polymers are unique because their properties are directly related to the degree of branching (<em>DB</em>). The degree of branching, <em>DB </em>is defined by the number of linear ( </p><p><em>L</em></p><p>), terminal ( </p><p><em>T</em></p><p></p><ul style="display: flex;"><li style="flex:1">), and dendritic ( </li><li style="flex:1"><em>D</em>) units present in each polymer (Equation 5). </li></ul><p></p><p><em>D </em>+ <em>T </em><br><em>DB </em>= </p><p>(5) </p><p><em>D </em>+ <em>T </em>+ <em>L </em></p><p>So by changing the number of branching units within the polymer the physical properties should also change. Figure 6 depicts the relationship between mechanical properties and <em>DB</em>. Linear polymers have no branching (DB = 0) and their mechanical properties are very good. On the other hand, dendrimers have perfect branching (<em>DB </em>= 1) while their mechanical properties are very poor. Branched polymers are unique in that they can be prepared with varying <em>DB </em>values, thus, it should be possible to tailor their mechanical properties. For example, if a highly branched polymer is made, it should exhibit more dendritic-like qualities, while a very lightly branched polymer should exhibit qualities closer to those of linear polymers. </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages62 Page
-
File Size-