Contrasting Effects of Tillage and Landscape Structure on Spiders

Total Page:16

File Type:pdf, Size:1020Kb

Contrasting Effects of Tillage and Landscape Structure on Spiders sustainability Article Contrasting Effects of Tillage and Landscape Structure on Spiders and Springtails in Vineyards Alexandra Pfingstmann 1, Daniel Paredes 1,2 , Jacob Buchholz 1, Pascal Querner 1, Thomas Bauer 3, Peter Strauss 3 , Sophie Kratschmer 4 , Silvia Winter 4,5 and Johann Zaller 1,* 1 Institute of Zoology, University of Natural Resources and Life Sciences Vienna (BOKU), A-1180 Vienna, Austria; alexandra.pfi[email protected] (A.P.); [email protected] (D.P.); [email protected] (J.B.); [email protected] (P.Q.) 2 Grupo de Protección Vegetal, Departamento de Protección Ambiental, Estación Experimental de Zaidín, CSIC, 18008 Granada, Spain 3 Institute for Land and Water Management Research, Austrian Federal Agency for Water Management, A-3252 Petzenkirchen, Austria; [email protected] (T.B.); [email protected] (P.S.) 4 Institute of Integrative Nature Conservation Research, University of Natural Resources and Life Sciences Vienna (BOKU), A-1180 Vienna, Austria; [email protected] (S.K.); [email protected] (S.W.) 5 Division of Plant Protection, University of Natural Resources and Life Sciences Vienna (BOKU), A-1180 Vienna, Austria * Correspondence: [email protected]; Tel.: +43-1476-5483-318 Received: 4 February 2019; Accepted: 30 March 2019; Published: 8 April 2019 Abstract: Interactions between predatory species and their potential prey are little studied in vineyards, especially considering the surrounding landscape structure. We examined the effects of soil tillage intensities in vineyard inter-rows on the activity density and diversity of spiders (Araneae) and springtails (Collembola), their potential preys, and assessed whether these effects are altered by non-crop elements in the surrounding landscape. We collected data in 16 vineyards in Austria; eight were periodically mechanically disturbed (PMD), eight had permanent green cover (PGC). The study vineyards were embedded in landscapes ranging from structurally simple to complex. Both, spiders and springtails were collected with pitfall traps. Data analyses using generalized linear mixed models (GLMM) showed different effects of soil tillage intensities on spiders and springtails and an interaction with semi-natural elements (SNEs) in the surrounding landscape. Activities of springtails were higher under PMD than under PGC while spider activity density remained unaffected. Spider family Shannon diversity was lower under PMD than under PGC, while springtail species Shannon diversity was unaffected by tillage. Under PMD, spider activity and family diversity decreased with increasing SNEs in the surroundings indicating spider emigration away from vineyards. Under PGC, spider activity density increased with increasing SNE proportions in the surroundings when springtail activity density was high. Our findings suggest that recommendations on sustainable vineyard management should include both site and landscape factors. Keywords: agroecology; viticulture; soil cultivation; landscape ecology 1. Introduction Viticulture is a very old sector of agriculture, dating back to about 6000 BC [1]. Modern conventional vineyards are usually intensively managed with frequent use of pesticides and tillage during the vegetation period [2]. Inter-row soil management practices are imposed to control weeds Sustainability 2019, 11, 2095; doi:10.3390/su11072095 www.mdpi.com/journal/sustainability Sustainability 2019, 11, 2095 2 of 14 and can include intensive tillage (bare soil), alternate tillage where every second inter-row is tilled, or no tillage with permanent green cover, or by the use of herbicides to control weeds [3]. Inter-row soil management in vineyards has been shown to affect aboveground [4] and belowground [5,6] biodiversity and associated ecosystem services [7]. However very little is known about influences on organisms comprising different trophic levels that might affect predator-prey interactions. Spiders (Araneae) are all predators comprising the largest order of Arachnids with around 46,800 species worldwide [8]. Their habitat requirements are defined by several abiotic (temperature, humidity, wind, light intensity) and biotic (type of vegetation, food supply, intra-and interspecific competition, predators) factors [9,10]. Spiders live in different vegetation layers and are often divided in two functional groups: Sedentary web spiders and non-web builders. Spider abundances can vary considerably in different ecosystems with mean abundances in temperate climate in grassland 2 2 2 with 92 ind. m− , forests with 53 ind. m− , and arable fields of 21 ind. m− [11]. Spiders are important generalist predators in many ecosystems [9,12,13], however their abundance and diversity is commonly decreased in managed agroecosystems [10,14,15]. While spider communities, their feeding behaviors and possible implications for biological control have frequently been investigated in arable agroecosystems [16,17], far less is known from vineyards [13,18–21]. Springtails (Collembola) are among the most widespread terrestrial microarthropods with about 8800 species worldwide representing an important component of soil fauna in many terrestrial ecosystems [22]. Springtail species diversity is usually affected by land use [15,23]. Springtails can be grouped into soil dwelling (eu- and hemiedaphics) and surface dwelling species (epedaphics) [24]. As members of the decomposer community they are feeding on fungi, bacteria and dead organic matter thereby mobilizing nutrients [25]. Abundance of springtails can vary considerably between different 2 ecosystems [11,26], ranging from abundances in grassland of 29,545 ind. m− , forests of 1826 ind. 2 2 m− to arable fields of 6056 ind. m− [11]. Additionally, land management intensity including tillage, residue management or fertilization [27,28], pesticide use [29]. Springtails are also an important source of prey to spiders and comprise up to 72% of their diets [16,30–32]. Furthermore, springtails provide essential nutrients and amino acids in the diet of spiders [33,34]. Few studies have investigated the effect of management practices in vineyards on spiders [18,20,35,36] or springtails [5]. Tillage of vineyard inter-rows commonly has negative effects on the abundance of soil invertebrates, although rapid recovery of specific invertebrate groups (e.g., earthworms) has been shown [6]. Studies conducted in arable and viticultural landscapes that assessed combined effects of management and the surrounding landscape on spiders [37–40] or springtails [5] found that complex landscapes contain a higher biodiversity than simpler structured landscapes [41]. However, spiders appeared to respond differently to landscape structure: Ambush and habitat specific spiders are more abundant in diverse landscapes whereas web builders are more abundant in simple landscapes [38]. Species richness of spiders was significantly enhanced in wheat fields with more non-crop habitats in the surroundings [17,42,43], although opposite responses have also been reported [44]. Also, springtail populations showed a response to land-use intensity and the surrounding landscape structures [5,45,46]. However, to the best of our knowledge no study investigated both spiders and springtails in vineyards in response to the surrounding landscape. The aims of the current study were (i) to assess the response of spider and springtail activity and diversity in vineyards to periodically mechanically-disturbed (PMD) versus permanently green covered (PGC) inter-rows, (ii) to analyze whether the proportion of semi-natural habitats in the surrounding landscape and the presence of springtails alter responses of spiders and (iii) to assess spider family assemblages and their relation with local management and potential springtail prey. We hypothesized that permanent green cover will benefit both spiders and springtails because of less disturbance. A higher proportion of non-crop habitats in the surroundings is expected to increase the diversity and activity of spiders and springtails in vineyards due to migration into vineyards. Sustainability 2019, 11, 2095 3 of 14 2. Materials and Methods 2.1. Site Description and Study Design The study sites were located in the two neighboring wine regions Carnuntum (48◦ 40 N, 16◦ 470 E) and Neusiedlersee-Hügelland (47◦ 540 N, 16◦ 410 E) about 40 km south east of Vienna, Austria. The annual total precipitation for the region Bruckneudorf (which is located in the center of the study regions) is around 619 mm at an altitude of 167 m and an annual average temperature of 10.2 ◦C[47]. The study regions are strongly shaped by a Pannonian, continental-like climate with hot, dry summers and cold winters. The most frequent soil types are Chernozems and Cambisols with medium to high usable field capacity, neutral pH-values and high nutrient contents [48]. Within the regions, 16 vineyards were selected for the current investigations (Figure1). In these regions vineyards are small (0.4–1 ha) and typically surrounded by landscapes with various degrees of heterogeneity. Landscape heterogeneity was calculated as the proportion of semi-natural habitats (hedges, tree rows, grass stripes, natural grassland, pasture, fallow, heathland, wetland and woodlots) within a radius of 750 m centered in the plot. This area is within the activity ranges of both spiders [17,49] and springtails [46] in agricultural landscapes. In eight of the study vineyards, the inter-rows had a permanent green cover (PGC) whereas in eight vineyards every second inter-row
Recommended publications
  • Why Are There So Many Exotic Springtails in Australia? a Review
    90 (3) · December 2018 pp. 141–156 Why are there so many exotic Springtails in Australia? A review. Penelope Greenslade1, 2 1 Environmental Management, School of School of Health and Life Sciences, Federation University, Ballarat, Victoria 3353, Australia 2 Department of Biology, Australian National University, GPO Box, Australian Capital Territory 0200, Australia E-mail: [email protected] Received 17 October 2018 | Accepted 23 November 2018 Published online at www.soil-organisms.de 1 December 2018 | Printed version 15 December 2018 DOI 10.25674/y9tz-1d49 Abstract Native invertebrate assemblages in Australia are adversely impacted by invasive exotic plants because they are replaced by exotic, invasive invertebrates. The reasons have remained obscure. The different physical, chemical and biotic characteristics of the novel habitat seem to present hostile conditions for native species. This results in empty niches. It seems the different ecologies of exotic invertebrate species may be better adapted to colonise these novel empty niches than native invertebrates. Native faunas of other southern continents that possess a highly endemic fauna, such as South America, South Africa and New Zealand, may have suffered the same impacts from exotic species but insufficient survey data and unreliable and old taxonomy makes this uncertain. Here I attempt to discover what particular characteristics of these novel habitats are hostile to native invertebrates. I chose the Collembola as a target taxon. They are a suitable group because the Australian collembolan fauna consists of a high percentage of endemic taxa, but also exotic, non-native, species. Most exotic Collembola species in Australia appear to have originated from Europe, where they occur at low densities (Fjellberg 1997, 2007).
    [Show full text]
  • The Changing of the Guard in White Grub Control Insecticides
    A PRACTICAL RESEARCH DIGEST FOR TURF MANAGERS Volume 10, Issue 6 • June 2001 ¡TURFGRASS PEST CONTROL IN THIS ISSUE • The changing of the The Changing of the guard in white grub Guard in White Grub control insecticides 1 Organophosphate/ Control Insecticides carbamate update New product information By Kevin Mathias Natural control influence of insecticides combination of federal regulatory rulings and economic decisions by insecticide Multiple targeting manufacturers has dramatically changed the landscape of white grub insecticides A and control strategies. At the beginning of the 1990's white grub control insecti- • Site analysis for golf cides consisted mainly of organophosphate and carbamate based chemistries with only a course development 7 few biorational products available (Table 1). As a group, the organophosphate and car- Climate bamate insecticides, have a relatively short residual activity and are highly efficacious when used in curative control programs. Topography Optimum results are attained if the products are applied in mid to late August or into September, as white grub damage is first noticed and Drainage patterns when the grubs are young and relatively small. Optimum results are Water availability As we enter the new millennium many of the cura- attained if the tive control products have been replaced by a group of Soils and geology products are applied new insecticides. These insecticides, Merit and Mach 2, offer greater applicator safety, have less adverse effect Environmental issues in mid to late August on the environment, provide a longer window of appli- Wetlands or into September, as cation due to their extended soil residual activities, have minimal impact on beneficial predators, and pro- Water quality white grub damage vide excellent control (+90%) of white grubs.
    [Show full text]
  • Springtails in Sugarbeet: Identification, Biology, And
    E-1205 SpringtailsSpringtails in Sugarbeet: Figure 1. Adult springtail (40x magnification). Identification, Biology, and Management Mark A. Boetel, Research and Extension Entomologist Robert J. Dregseth, Research Specialist Introduction Mohamed F. R. Khan, Extension Sugarbeet Specialist Springtails are tiny, wingless, primitive animals commonly placed into the insect order Collembola. They are so unusual that some experts classify them as non-insects. Springtails Description are one of the most abundant and diverse animal groups on Springtails can vary in color from white to yellow, earth with over 6,000 described species and an estimated orange, metallic green, lavender, gray, or red. A tiny tube eight times as many remaining to be identified. on the abdomen, the collophore, is common to all spring- The springtails have worldwide distribution and tails. The collophore is mostly needed for maintaining occupy a diverse habitat range that includes soil, algae, old optimal water balance but also functions in some species as snowbanks, beaches, caves, cisterns, vacant bird nests, a sticky appendage for adhering to surfaces. The name tropical rain forest canopies, tidal pools, deserts, the “springtail” refers to an unusual forked organ, the furcula, surfaces of freshwater ponds and streams, and even the that arises near the posterior end of some species. It enables frozen terrain of Antarctica. However, they are most them to jump when disturbed. The furcula is usually folded abundant in warm, moist environments. Economically forward along the underside of the body and held in place important species in North Dakota and Minnesota with a clasp called the tenaculum. To jump, the springtail sugarbeet fields are the soil-inhabiting springtails.
    [Show full text]
  • Folsomia Candida and the Results of a Ringtest
    Toxicity testing with the collembolans Folsomia fimetaria and Folsomia candida and the results of a ringtest P.H. Krogh DMU/AU, Denmark Department of Terrestrial Ecology With contributions from: Mónica João de Barros Amorim, Pilar Andrés, Gabor Bakonyi, Kristin Becker van Slooten, Xavier Domene, Ine Geujin, Nobuhiro Kaneko, Silvio Knäbe, Vladimír Kocí, Jan Lana, Thomas Moser, Juliska Princz, Maike Schaefer, Janeck J. Scott-Fordsmand, Hege Stubberud, Berndt-Michael Wilke August 2008 1 Contents 1 PREFACE 3 2 BIOLOGY AND ECOTOXICOLOGY OF F. FIMETARIA AND F. CANDIDA 4 2.1 INTRODUCTION TO F. FIMETARIA AND F. CANDIDA 4 2.2 COMPARISON OF THE TWO SPECIES 6 2.3 GENETIC VARIABILITY 7 2.4 ALTERNATIVE COLLEMBOLAN TEST SPECIES 8 2.5 DIFFERENCES IN SUSCEPTIBILITY OF THE TWO SPECIES 8 2.6 VARIABILITY IN REPRODUCTION RATES 8 3 TESTING RESULTS OBTAINED AT NERI, 1994 TO 1999 10 3.1 INTRODUCTION 10 3.2 PERFORMANCE 10 3.3 INFLUENCE OF SOIL TYPE 10 3.4 CONCLUSION 11 4 RINGTEST RESULTS 13 4.1 TEST GUIDELINE 13 4.2 PARTICIPANTS 13 4.3 MODEL CHEMICALS 14 4.4 RANGE FINDING 14 4.5 STATISTICAL ANALYSIS 14 4.6 EXPERIMENTAL DESIGN 15 4.7 TEST CONDITIONS 15 4.8 CONTROL MORTALITY 15 4.9 CONTROL REPRODUCTION 16 4.10 VARIABILITY OF TESTING RESULTS 17 4.11 CONCLUSION 18 5 SUMMARY AND CONCLUSIONS 27 6 ACKNOWLEDGEMENTS 29 7 REFERENCES 30 ANNEX 1 PARTICIPANTS 36 ANNEX 2 LABORATORY CODE 38 ANNEX 3 BIBLIOMETRIC STATISTICS 39 ANNEX 4 INTRALABORATORY VARIABILITY 40 ANNEX 5 CONTROL MORTALITY AND REPRODUCTION 42 ANNEX 6 DRAFT TEST GUIDELINE 44 2 1 Preface Collembolans have been used for ecotoxicological testing for about 4 decades now but they have not yet had the privilege to enter into the OECD test guideline programme.
    [Show full text]
  • 13 Index of Common Names
    Index of Common Names BITING/STINGING/VENOMOUS PESTS Bees ………………………………………………………… 6 Honey bee…………………………………………………6 Africanized bees……………………………………….. 7 Bumblebee…………………………………………………….9 Carpenter bee……………………………………………….9 Digger bee………………………………………………………11 Leaf cutter bee………………………………………………….12 Sweat bee………………………………………………………..13 Wasps…………………………………………………………….14 Tarantula hawk…………………………………………………14 Yellowjacket……………………………………………………….15 Aerial yellowjacket ……………………………………………….15,16 Common yellowjacket ……………………………………………….15 German yellowjacket……………………………………………….15 Western yellowjacket……………………………………………….15 Paper wasp………………………………………………. 18 Brown paper wasp……………………………………………….18 Common paper wasp ……………………………………………….18 European paper wasp……………………………………………….18 Navajo paper wasp……………………………………………….18,19 Yellow paper wasp……………………………………………….18,19 Western paper wasp……………………………………………….18 Mud dauber………………………………………………. 20 Black and blue mud dauber……………………………..………………….20 Black and yellow mud dauber……………………………………………….20 Organ pipe mud dauber……………………………………………….20,21 Velvet ant……………………………………………………21 Scorpions………………………………………………………23 Arizona bark scorpion……………………………………………….23 Giant hairy scorpion ……………………………………………….24 Striped-tail scorpion……………………………………………….25 Yellow ground scorpion……………………………………………….25 Spiders…………………………………………………………..26 Cellar spider……………………………………………….2 6 Recluse spider……………………………………………….27 Tarantula…………………………………………………. 28 Widow spider……………………………………………….29 Scorpion/spider look-alikes……………………………………………….30 Pseudoscorpion……………………………………………….30 Solifugid/wind
    [Show full text]
  • Observations on the Springtail Leaping Organ and Jumping Mechanism Worked by a Spring
    Observations on the Springtail Leaping Organ and Jumping Mechanism Worked by a Spring Seiichi Sudo a*, Masahiro Shiono a, Toshiya Kainuma a, Atsushi Shirai b, and Toshiyuki Hayase b a Faculty of Systems Science and Technology, Akita Prefectural University, Japan b Institute of Fluid Science, Tohoku University, Japan Abstract— This paper is concerned with a small In this paper, the springtail leaping organ was jumping mechanism. Microscopic observations of observed with confocal laser scanning microscopy. A springtail leaping organs were conducted using a jumping mechanism using a spring and small confocal leaser scanning microscope. A simple electromagnet was produced based on the observations springtail mechanism using a spring and small of leaping organ and the jumping analysis of the electromagnet was produced based on the observations springtail. of leaping organ and the jumping analysis of the globular springtail. Jumping characteristics of the mechanism were examined with high-speed video II. EXPERIMENTAL METHOD camera system. A. Microscopic Observations Index Terms—Jumping Mechanism, Leaping Organ, Globular springtails are small insects that reach Springtail, Morphology, Jumping Characteristics around 1 mm in size. They have the jumping organ (furcula), which can be folded under the abdomen. Muscular action releasing the furcula can throw the I. INTRODUCTION insect well out of the way of predators. Jumping in insect movement is an effective way to In this paper, microscopic observations of the furcula escape predators, find food, and change locations. were conducted using the confocal laser scanning Grasshoppers, fleas, bush crickets, katydids, and locusts microscope. Confocal laser scanning microscopy is are particularly well known for jumping mechanisms to fluorescence – imaging technique that produces move around.
    [Show full text]
  • Mesofauna at the Soil-Scree Interface in a Deep Karst Environment
    diversity Article Mesofauna at the Soil-Scree Interface in a Deep Karst Environment Nikola Jureková 1,* , Natália Raschmanová 1 , Dana Miklisová 2 and L’ubomír Kováˇc 1 1 Department of Zoology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, SK-04180 Košice, Slovakia; [email protected] (N.R.); [email protected] (L’.K.) 2 Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, SK-04001 Košice, Slovakia; [email protected] * Correspondence: [email protected] Abstract: The community patterns of Collembola (Hexapoda) were studied at two sites along a microclimatically inversed scree slope in a deep karst valley in the Western Carpathians, Slovakia, in warm and cold periods of the year, respectively. Significantly lower average temperatures in the scree profile were noted at the gorge bottom in both periods, meaning that the site in the lower part of the scree, near the bank of creek, was considerably colder and wetter compared to the warmer and drier site at upper part of the scree slope. Relatively high diversity of Collembola was observed at two fieldwork scree sites, where cold-adapted species, considered climatic relicts, showed considerable abundance. The gorge bottom, with a cold and wet microclimate and high carbon content even in the deeper MSS horizons, provided suitable environmental conditions for numerous psychrophilic and subterranean species. Ecological groups such as trogloxenes and subtroglophiles showed decreasing trends of abundance with depth, in contrast to eutroglophiles and a troglobiont showing an opposite distributional pattern at scree sites in both periods. Our study documented that in terms of soil and Citation: Jureková, N.; subterranean mesofauna, colluvial screes of deep karst gorges represent (1) a transition zone between Raschmanová, N.; Miklisová, D.; the surface and the deep subterranean environment, and (2) important climate change refugia.
    [Show full text]
  • Collembola of Canada 187 Doi: 10.3897/Zookeys.819.23653 REVIEW ARTICLE Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 819: 187–195 (2019) Collembola of Canada 187 doi: 10.3897/zookeys.819.23653 REVIEW ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Collembola of Canada Matthew S. Turnbull1, Sophya Stebaeva2 1 Unaffiliated, Kingston, Ontario, Canada2 The Severtsov Institute of Ecology and Evolution, Russian Aca- demy of Sciences, Leninskii pr. 33, Moscow 119071, Russia Corresponding author: Matthew S. Turnbull ([email protected]) Academic editor: D. Langor | Received 16 January 2018 | Accepted 8 May 2018 | Published 24 January 2019 http://zoobank.org/3A331779-19A1-41DA-AFCF-81AAD4CB049F Citation: Turnbull MS, Stebaeva S (2019) Collembola of Canada. In: Langor DW, Sheffield CS (Eds) The Biota of Canada – A Biodiversity Assessment. Part 1: The Terrestrial Arthropods. ZooKeys 819: 187–195.https://doi. org/10.3897/zookeys.819.23653 Abstract The state of knowledge of diversity of Collembola in Canada was assessed by examination of literature and DNA barcode data. There are 474 described extant Collembola species known from Canada, a significant change compared to the 520 species estimated to occur in Canada in 1979 (Richards 1979) and the 341 reported in the most recent national checklist (Skidmore 1993). Given the number of indeterminate or cryptic species records, the dearth of sampling in many regions, and the growing use of genetic biodiversity assessment methods such as Barcode Index Numbers, we estimate the total diversity of Collembola in Canada to be approximately 675 species. Advances in Collembola systematics and Canadian research are discussed. Keywords biodiversity assessment, Biota of Canada, Collembola, springtails Collembola, commonly known as springtails, is a class of small, entognathous, wing- less hexapods that is a sister group to Insecta.
    [Show full text]
  • And Long-Term Effects of Fire on the Collembola Communities of a Sub-Alpine Dwarf Pine Ecosystem in the Austrian Alps
    Research eco.mont - Volume 2, Number 2, December 2010 ISSN 2073-106X print version 29 ISSN 2073-1558 online version: http://epub.oeaw.ac.at/eco.mont Short- and long-term effects of fire on the Collembola communities of a sub-alpine dwarf pine ecosystem in the Austrian Alps Pascal Querner, Alexander Bruckner, Erich Weigand & Markus Prötsch Keywords: fire ecology, springtails, succession, Kalkalpen National Park Abstract Profile We compared the Collembola communities of three sub-alpine sites in the Limestone Protected area Alps to evaluate the short- and long-term effects of natural forest fires. SITE 1 was burned in August 2003, SITE 2 was burned 50 years ago and sampled to assess the Kalkalpen National Park long-term effects of fire and the recovery of soil animals. A reference site (REF) was sampled to represent the undisturbed dwarf pine community. All sites are close to each other on a steep slope between 1 400 and 1 650 m above sea level. We found Mountain range a total of 41 species of Collembola, as well as clear differences in the species com- position and abundance between the sites. Most species (29) were found on the REF Alps site. The highest abundance was found on SITE 1 (48 960 individuals*m-2, 22 spe- cies). We assume that some species survived the fire in deeper soil layers and others Country migrated or were passively dispersed from unburned patches and surrounding sites. The lowest abundance and species number (8 160 individuals*m-2, 18 species) were Austria found on the 50-year-old site.
    [Show full text]
  • An Annotated Checklist of the Springtail Fauna of Hungary (Hexapoda: Collembola)
    Opusc. Zool. Budapest, (2007) 2008, 38: 3–82. An annotated checklist of the springtail fauna of Hungary (Hexapoda: Collembola) 1 2 L. DÁNYI and GY. TRASER Abstract. A checklist of the species of springtails (Hexapoda: Collembola) hitherto recorded from Hungary is presented. Each entry is accompanied by complete references, and remarks where appropriate. The present list contains 414 species. he Collembola fauna of several countries in critical review of the literature data of Collembola T the world was already overwied in the recent referring to Hungary. past (e.g. Babenko & Fjellberg 2006, Culik & Zeppelini Filho 2003, Skidmore 1995, Waltz & HISTORY Hart 1996, Zhao et al. 1997). The importance of such catalogues was stressed by several authors The first records of Collembola referring to (e.g. Csuzdi et al, 2006: 2) and their topicality is Hungary are some notes on the mass occurrence indicated also by the fact that several cheklists of certain species (Frenzel 1673, Mollerus 1673, referring even to European states were published Steltzner 1881), which however, are without any most recently (e.g. Fiera (2007) on Romania, taxonomical or faunistical value, as it has already Juceviča (2003) on Latvia, Kaprus et al. (2004) on been pointed out by Stach (1922, 1929). The next the Ukrain, Skarzynskiet al. (2002) on Poland). In springtail reference to Hungary is to be found in spite of these facts, the last comprehensive article the zoological book of János Földy (1801), which on the Hungarian springtail fauna was published was the first time the group was mentioned in about 80 years ago (Stach 1929), eventhough such Hungarian language in the scientific literature, critical reviews have a special importance in the eventhough this work doesn’t contain relevant case of this country because of the large changes faunistical records of the taxon.
    [Show full text]
  • Minor Changes in Collembolan Communities Under Different Organic Crop Rotations and Tillage Regimes
    Moos et al. (2020) · LANDBAUFORSCH · J Sustainable Organic Agric Syst · 70(2):113–128 DOI:10.3220/LBF1611932809000 113 RESEARCH ARTICLE Minor changes in collembolan communities under different organic crop rotations and tillage regimes Jan Hendrik Moos 1, 2, Stefan Schrader 2, and Hans Marten Paulsen 1 HIGHLIGHTS Received: March 27, 2020 • Species richness and abundance of collembolans are not affected by tillage Revised: June 17, 2020 and crop rotations in organic farming systems. Revised: August 24, 2020 • There is some evidence that the relative share of euedaphic collembolans is Accepted: September 10, 2020 an indicator of management impacts. • Collembolan communities are more influenced by crop type and crop cover than by specific crop rotations or differences in tillage regime. KEYWORDS soil biodiversity, eco-morphological index (EMI), soil tillage, organic matter Abstract collembolan individuals tended to increase in soil environ­ ments that offered more stable habitat conditions from An aim of organic farming is to reduce negative impacts of increased availability of organic matter. agricultural management practices on physical, chemical, and biological soil properties. A growing number of organic 1 Introduction farmers is trying out methods of reduced tillage to save costs, protect humus and to foster natural processes in the soil. Fur­ Agriculture impacts directly and severely on soil biodiver­ ther more, techniques like increasing crop rotation diversity sity (Orgiazzi et al., 2016). Negative effects are especially and reduced tillage are discussed under the topics of agro­ ex pected in intensively managed systems with simple crop­ ecology or ecological intensification also for implementation ping se quences (e.g. Eisenhauer, 2016).
    [Show full text]
  • Diversity and Abundance of Springtails (Insecta: Collembola) in Native and Restored Tallgrass Prairies
    Am. Midl. Nat. 139:235±242 Diversity and Abundance of Springtails (Insecta: Collembola) in Native and Restored Tallgrass Prairies RAYMOND H. BRAND AND CHRISTOPHER P. DUNN The Morton Arboretum, 4100 Illinois Route 53, Lisle, Illinois 60532-1293 ABSTRACT.ÐThis study suggests that heterotrophic components of prairie ecosystems can be used with autotrophic components to assess the degree to which a restored prairie ap- proaches the biotic complexity of a native prairie. Springtails (Collembola) were collected from prairie vegetation and litter samples from 13 prairie sites (seven native and six restored) located in southwestern Michigan and northeastern Illinois. The diversity and abundance of these insects and the plant and litter biomass were compared. There were 27 different taxa of springtails in the 225 samples collected. Native prairies had the greatest species richness with 26 species. The oldest restored prairie had 17 species. Three common species were Hypogastrura boletivora, Isotoma viridis, and Lepidocyrtus pallidus. Neanura muscorum, Xenylla grisea, and Pseuduosinella rolfsi were rare. Tomocerus ¯avescens was found primarily in native prairies with only one occurrence in the oldest restored prairie in this study. Native prairies and restored prairies of 17 and 24 yr did not differ signi®cantly in numbers of springtails. Differences in springtail numbers did occur, however, between restored prairies of ,6yr and native prairies, and between younger (,6 yr) and older (17 and 26 yr) restored prairies. An analysis of plant and litter biomass indicated signi®cant differences among the prairie sites sampled. These results suggest that all components of the prairie ecosystem are useful for making restoration management decisions.
    [Show full text]