The Pfaffian Transformation
The Pfaffian Transformation Tracale Austin, Hans Bantilan, Isao Jonas, and Paul Kory March 9, 2007 Abstract We define a function on sequences, which we call the Pfaffian transformation, based on the concept of the Pfaffian of a skew-symmetric matrix. We discuss prop- erties of the Pfaffian transformation, culminating in a theorem proving that the Pfaffian transformation maps sequences satisfying linear recurrences to sequences satisfying linear recurrences. 1 Introduction to the Pfaffian Transformation Given a sequence (a0, a1, a2, ...), we define a sequence of skew-symmetric matrices (A0, A1, A2, ...) 0 a0 a1 a2 ··· a2n −a 0 a a ··· a 0 0 1 2n−1 −a1 −a0 0 a0 ··· a2n−2 where An is −a −a −a 0 ··· a . 2 1 0 2n−3 . . .. −a2n −a2n−1 −a2n−2 −a2n−3 ··· 0 We then define the Pfaffian transformation of (a0, a1, a2, ...) to be the sequence of Pfaffians (P f(A0), P f(A1), P f(A2), ...), where the Pfaffian of a skew-symmetric matrix is the positive or negative square root of its determinant. (For a precise definition of the Pfaffian, see section 2.) The Pfaffian transformation is thus a function from sequences to sequences. We begin by observing the effects of this transformation on some simple, well-known sequences: (1, 2, 3, 4, 5, ...) → (1, 0, 0, 0, 0, ...) (2, 2, 2, 2, 2, ...) → (2, 4, 8, 16, 32, ...) (1, 2, 4, 8, 16, ...) → (1, 1, 1, 1, 1, ...) (1, 1, 2, 3, 5, ...) → (1, 2, 4, 8, 16, ...) Observe that each of these input sequences satisfies a linear recurrence relation and is mapped to a sequence that also satisfies a linear recurrence.
[Show full text]