The Tutte Polynomial and Related Polynomials Lecture Notes 2010, 2012, 2014

Total Page:16

File Type:pdf, Size:1020Kb

The Tutte Polynomial and Related Polynomials Lecture Notes 2010, 2012, 2014 The Tutte polynomial and related polynomials Lecture notes 2010, 2012, 2014 Andrew Goodall The following notes derive from three related series of lectures given for the Selected Chapters in Combinatorics course (Vybran´ekapitoly z kombinatoriky I) at the Computer Science Institute (IUUK)´ and the Department of Applied Mathematics (KAM) of the Faculty of Mathematics and Physics (MFF) at Charles University, Prague: \Many facets of the Tutte polynomial" (2010), \Graph invariants, homomorphisms and the Tutte polynomial" (2012), and \Duality in combinatorics: the examples of Tutte, Erd}os,and Ramsey" (2014).1 I have tried to make the notation as uniform as possible throughout and to avoid repetitions arising from overlaps between the three courses. However, I have left some background to cycles and cuts in Section 6 as it stands, rather than asking the reader to find the relevant material in Section 2. Contents 1 The chromatic polynomial 1 1.1 Graph-theoretic preliminaries . 1 1.2 The chromatic polynomial and proper colourings . 2 1.3 Deletion and contraction . 6 1.4 Subgraph expansions . 12 1.5 Some other deletion{contraction invariants. 15 2 Flows and tensions 17 2.1 Orientations . 17 2.2 Circuits and cocircuits . 18 2.3 The incidence matrix of an oriented graph . 21 2.4 A-flows and A-tensions . 23 2.5 Tensions and colourings . 26 2.6 Duality of bases for A-tensions and A-flows . 28 2.7 Examples of nowhere-zero flows . 29 2.8 The flow polynomial . 33 1The courses in 2012 and 2014 were complemented by lectures given by Prof. Jaroslav Neˇsetˇril,but the content of these lectures is not covered by the notes presented here. 1 3 The Tutte polynomial 35 3.1 Deletion-contraction recurrence . 35 3.2 Sugraph expansion of the Tutte polynomial . 42 3.3 Coefficients. Spanning tree expansion. 45 3.4 The Tutte polynomial of a planar graph . 48 3.5 The spanning tree partition of subgraphs. 50 3.6 The beta invariant. 51 3.7 Computational complexity . 54 3.8 The Laplacian and the number of spanning trees . 56 3.9 Hamming weight enumerator for tensions and flows . 57 3.10 Bicycles . 58 3.11 Z3-tension-flows . 61 4 The Tutte polynomial in statistical physics 64 4.1 Colourings and flows in the ice model . 64 4.2 The Potts model . 68 4.3 The Fortuin-Kasteleyn random cluster model . 69 5 Graph homomorphisms 71 5.1 Graph invariants and graph homomorphism profiles . 72 5.2 Homomorphism profiles determining graph invariants . 74 5.3 Spectrum and degree sequence by left profiles . 76 6 From graphs to matroids 77 6.1 Cuts, circuits and cycles . 78 6.2 Orthogonality of cycles and cutsets . 81 6.3 Graph duality . 82 6.4 Matroids . 84 6.5 Dual matroids . 88 6.6 Deletion and contraction . 89 7 Connections to knot theory 91 7.1 The medial of a plane graph . 91 7.2 Eulerian tours of digraphs . 92 7.3 2-in 2-out digraphs . 96 7.4 Interlace polynomial . 99 7.5 The Kauffman bracket of a link . 109 2 1 The chromatic polynomial 1.1 Graph-theoretic preliminaries Let G = (V; E) be a graph. A spanning subgraph is a subgraph (V; A) with A ⊆ E, and is denoted by GA. An induced subgraph is a subgraph (U; A), where A = fuv 2 E : u 2 U; v 2 Ug, and is denoted by G[U]. The number of connected components of G is denoted by c(G). A maximal spanning forest F is a forest which is a spanning subgraph of G with the property that F is contained in no other spanning forest of G, i.e., no edge of G can be added to F without creatng a cycle of G. A maximal spanning forest of a connected graph is a spanning tree. The rank r(G) = jV j − c(G) is the size of maximal spanning forest of G. Conversely, a spanning subgraph GA with c(GA) = c(G) is a maximal spanning forest of G. For A ⊆ E we often identify A with the spanning subgraph (V; A) and write r(A) for r(GA). So r(A) = jAj if and only if GA is a spanning forest; r(A) = r(E) if and only if GA has the same number of connected components as G; and r(A) = jAj = r(E) if and only if GA is a maximal spanning forest of G. The nullity n(G) = jEj − r(G) is the dimension of the cycle space of G (for a plane graph, this is the number of faces of G excepting the outer face). For A ⊆ E we set n(A) = n(GA). Deleting an edge e 2 E forms the spanning subgraph Gne = (V; Enfeg). Contracting an edge e = uv forms the graph G=e obtained by deleting e and then identifying the endpoints of e. An edge e is a bridge (isthmus, cut-edge, coloop) of G if r(Gne) < r(G), i.e., the number of connected components is increased upon removing e. An edge e is a bridge if and only if r(feg) = 1. An edge e = uv is a loop of G if u = v. Contracting a loop is the same as deleting it. An edge e is loop if and only if n(feg) = 1. An edge e is ordinary if it is neither a bridge nor a loop. 1.2 The chromatic polynomial and proper colourings There are various ways to define the chromatic polynomial P (G; z) of a graph G. Perhaps the first that springs to mind is to define it to be the graph invariant P (G; k) with the property that when k is a positive integer P (G; k) is the number of colourings of the vertices of G with k or fewer colours such that adjacent vertices receive different colours. One then has to prove that P (G; k) is indeed a polynomial in k. This can be done for example by an inclusion-exclusion argument, or by establishing that P (G; k) satisfies a deletion-contraction recurrence and using induction. However, we shall take an alternative approach and define a polynomial P (G; z) by specifying its coefficients as graph invariants that count what are called colour-partitions of the vertex set of G. It immediately emerges that P (G; k) does indeed count the proper vertex k-colourings of G. A further aspect of this approach is that we choose a basis different to the usual basis f1; z; z2;:::g for polynomials in z. This basis, f1; z; z(z−1);:::g, has the advantage that we are able to calculate the chromatic polynomial very easily for 3 many graphs, such as complete multipartite graphs. The chromatic polynomial has been the subject of intensive study ever since Birkhoff introduced it in 1912 [8], perhaps with an analytic approach to the Four Colour Conjecture in mind. Although such an approach has not led to such a proof of the Four Colour Conjecture being found, study of the chromatic polynomial has led to many advances in graph theory that might not otherwise have ben made. The chromatic polynomial played a significant role historically in Tutte's elucidation of tension-flow duality. (Later we look at Tutte's eponymous polynomial, introduced as simultaneous generalization of the chromatic and flow polynomials.) More about graph colourings can be found in e.g. [10, ch. V], [17, ch. 5], and more about the chromatic polynomial in e.g. [7, ch. 9] and [20]. We approach the chromatic polynomial via the key property that vertices of the same colour in a proper colouring of G form an independent (stable) set in G. Definition 1.1. A colour-partition of a graph G = (V; E) is a partition of V into disjoint non-empty subsets, V = V1 [ V2 [···[ Vk, such that the colour-class Vi is an independent set of vertices in G, for each 1 ≤ i ≤ k (i.e., each induced subgraph G[Vi] has no edges). The chromatic number χ(G) is the least natural number k for which such a partition is possible. If G has a loop then it has no colour-partitions. Adding or removing edges in parallel to a given edge makes no difference to what counts as a colour-partition, since its definition depends only on whether vertices are adjacent or not. We denote the falling factorial z(z − 1) ··· (z − i + 1) by zi. Definition 1.2. Let G = (V; E) be a graph and let ai(G) denote the number of colour- partitions of G into i colour-classes. The chromatic polynomial of G is defined by XjV j i P (G; z) = ai(G)z : i=1 For example, when G is the complete graph on n vertices, n P (Kn; z) = z = z(z − 1) ··· (z − n + 1); with ai(Kn) = 0 for 1 ≤ i ≤ n − 1 and an(Kn) = 1. If G has n vertices then an(G) = 1 so that P (G; z) has leading coefficient 1. The constant term P (G; 0) is zero since z is a factor of zi for each 1 ≤ i ≤ n. If E is non- empty then P (G; 1) = 0, so that z − 1 is a factor of P (G; z). More generally, the integers 0; 1; : : : ; χ(G) − 1 are all roots of P (G; z), and χ(G) is the first positive integer that is not a root of P (G; z). Proposition 1.3. If G = (V; E) is a simple graph on n vertices and m edges then the coefficient of zn−1 in P (G; z) is equal to −m.
Recommended publications
  • Tutte Polynomials for Trees
    Tutte Polynomials for Trees Sharad Chaudhary DEPARTMENT OF MATHEMATICS DUKE UNIVERSITY DURHAM, NORTH CAROLINA Gary Gordon DEPARTMENT OF MATHEMATICS LAFAYETTE COLLEGE EASTON, PENNSYLVANIA ABSTRACT We define two two-variable polynomials for rooted trees and one two- variable polynomial for unrooted trees, all of which are based on the corank- nullity formulation of the Tutte polynomial of a graph or matroid. For the rooted polynomials, we show that the polynomial completely determines the rooted tree, i.e., rooted trees TI and T, are isomorphic if and only if f(T,) = f(T2).The corresponding question is open in the unrooted case, al- though we can reconstruct the degree sequence, number of subtrees of size k for all k, and the number of paths of length k for all k from the (unrooted) polynomial. The key difference between these three poly- nomials and the standard Tutte polynomial is the rank function used; we use pruning and branching ranks to define the polynomials. We also give a subtree expansion of the polynomials and a deletion-contraction recursion they satisfy. 1. INTRODUCTION In this paper, we are concerned with defining and investigating two-variable polynomials for trees and rooted trees that are motivated by the Tutte poly- nomial. The Tutte polynomial, a two-variable polynomial defined for a graph or a matroid, has been studied extensively over the past few decades. The fundamental ideas are traceable to Veblen [9], Birkhoff [l], Whitney [lo], and Tutte [8], who were concerned with colorings and flows in graphs. The chromatic polynomial of a graph is a special case of the Tutte polynomial.
    [Show full text]
  • CHROMATIC POLYNOMIALS of PLANE TRIANGULATIONS 1. Basic
    1990, 2005 D. R. Woodall, School of Mathematical Sciences, University of Nottingham CHROMATIC POLYNOMIALS OF PLANE TRIANGULATIONS 1. Basic results. Throughout this survey, G will denote a multigraph with n vertices, m edges, c components and b blocks, and m′ will denote the smallest number of edges whose deletion from G leaves a simple graph. The corresponding numbers for Gi will be ′ denoted by ni , mi , ci , bi and mi . Let P(G, t) denote the number of different (proper vertex-) t-colourings of G. Anticipating a later result, we call P(G, t) the chromatic polynomial of G. It was introduced by G. D. Birkhoff (1912), who proved many of the following basic results. Proposition 1. (Examples.) Here Tn denotes an arbitrary tree with n vertices, Fn denotes an arbitrary forest with n vertices and c components, and Rn denotes the graph of an arbitrary triangulated polygon with n vertices: that is, a plane n-gon divided into triangles by n − 3 noncrossing chords. = n (a) P(Kn , t) t , = − n −1 (b) P(Tn , t) t(t 1) , = − − n −2 (c) P(Rn , t) t(t 1)(t 2) , = − − − + (d) P(Kn , t) t(t 1)(t 2)...(t n 1), = c − n −c (e) P(Fn , t) t (t 1) , = − n + − n − (f) P(Cn , t) (t 1) ( 1) (t 1) − = (−1)nt(t − 1)[1 + (1 − t) + (1 − t)2 + ... + (1 − t)n 2]. Proposition 2. (a) If the components of G are G1,..., Gc , then = P(G, t) P(G1, t)...P(Gc , t). = ∪ ∩ = (b) If G G1 G2 where G1 G2 Kr , then P(G1, t) P(G2, t) ¡¢¡¢¡¢¡¢¡¢¡¢¡¢¡¢¡£¡¢¡¢¡¢¡ P(G, t) = ¡ .
    [Show full text]
  • Approximating the Chromatic Polynomial of a Graph
    Approximating the Chromatic Polynomial Yvonne Kemper1 and Isabel Beichl1 Abstract Chromatic polynomials are important objects in graph theory and statistical physics, but as a result of computational difficulties, their study is limited to graphs that are small, highly structured, or very sparse. We have devised and implemented two algorithms that approximate the coefficients of the chromatic polynomial P (G, x), where P (G, k) is the number of proper k-colorings of a graph G for k ∈ N. Our algorithm is based on a method of Knuth that estimates the order of a search tree. We compare our results to the true chro- matic polynomial in several known cases, and compare our error with previous approximation algorithms. 1 Introduction The chromatic polynomial P (G, x) of a graph G has received much atten- tion as a result of the now-resolved four-color problem, but its relevance extends beyond combinatorics, and its domain beyond the natural num- bers. To start, the chromatic polynomial is related to the Tutte polynomial, and evaluating these polynomials at different points provides information about graph invariants and structure. In addition, P (G, x) is central in applications such as scheduling problems [26] and the q-state Potts model in statistical physics [10, 25]. The former occur in a variety of contexts, from algorithm design to factory procedures. For the latter, the relation- ship between P (G, x) and the Potts model connects statistical mechanics and graph theory, allowing researchers to study phenomena such as the behavior of ferromagnets. Unfortunately, computing P (G, x) for a general graph G is known to be #P -hard [16, 22] and deciding whether or not a graph is k-colorable is NP -hard [11].
    [Show full text]
  • Computing Tutte Polynomials
    Computing Tutte Polynomials Gary Haggard1, David J. Pearce2, and Gordon Royle3 1 Bucknell University [email protected] 2 Computer Science Group, Victoria University of Wellington, [email protected] 3 School of Mathematics and Statistics, University of Western Australia [email protected] Abstract. The Tutte polynomial of a graph, also known as the partition function of the q-state Potts model, is a 2-variable polynomial graph in- variant of considerable importance in both combinatorics and statistical physics. It contains several other polynomial invariants, such as the chro- matic polynomial and flow polynomial as partial evaluations, and various numerical invariants such as the number of spanning trees as complete evaluations. However despite its ubiquity, there are no widely-available effective computational tools able to compute the Tutte polynomial of a general graph of reasonable size. In this paper we describe the implemen- tation of a program that exploits isomorphisms in the computation tree to extend the range of graphs for which it is feasible to compute their Tutte polynomials. We also consider edge-selection heuristics which give good performance in practice. We empirically demonstrate the utility of our program on random graphs. More evidence of its usefulness arises from our success in finding counterexamples to a conjecture of Welsh on the location of the real flow roots of a graph. 1 Introduction The Tutte polynomial of a graph is a 2-variable polynomial of significant im- portance in mathematics, statistical physics and biology [25]. In a strong sense it “contains” every graphical invariant that can be computed by deletion and contraction.
    [Show full text]
  • The Tutte Polynomial of Some Matroids Arxiv:1203.0090V1 [Math
    The Tutte polynomial of some matroids Criel Merino∗, Marcelino Ram´ırez-Iba~nezy Guadalupe Rodr´ıguez-S´anchezz March 2, 2012 Abstract The Tutte polynomial of a graph or a matroid, named after W. T. Tutte, has the important universal property that essentially any mul- tiplicative graph or network invariant with a deletion and contraction reduction must be an evaluation of it. The deletion and contraction operations are natural reductions for many network models arising from a wide range of problems at the heart of computer science, engi- neering, optimization, physics, and biology. Even though the invariant is #P-hard to compute in general, there are many occasions when we face the task of computing the Tutte polynomial for some families of graphs or matroids. In this work we compile known formulas for the Tutte polynomial of some families of graphs and matroids. Also, we give brief explanations of the techniques that were use to find the for- mulas. Hopefully, this will be useful for researchers in Combinatorics arXiv:1203.0090v1 [math.CO] 1 Mar 2012 and elsewhere. ∗Instituto de Matem´aticas,Universidad Nacional Aut´onomade M´exico,Area de la Investigaci´onCient´ıfica, Circuito Exterior, C.U. Coyoac´an04510, M´exico,D.F.M´exico. e-mail:[email protected]. Supported by Conacyt of M´exicoProyect 83977 yEscuela de Ciencias, Universidad Aut´onoma Benito Ju´arez de Oaxaca, Oaxaca, M´exico.e-mail:[email protected] zDepartamento de Ciencias B´asicas Universidad Aut´onoma Metropolitana, Az- capozalco, Av. San Pablo No. 180, Col. Reynosa Tamaulipas, Azcapozalco 02200, M´exico D.F.
    [Show full text]
  • Matchgates Revisited
    THEORY OF COMPUTING, Volume 10 (7), 2014, pp. 167–197 www.theoryofcomputing.org RESEARCH SURVEY Matchgates Revisited Jin-Yi Cai∗ Aaron Gorenstein Received May 17, 2013; Revised December 17, 2013; Published August 12, 2014 Abstract: We study a collection of concepts and theorems that laid the foundation of matchgate computation. This includes the signature theory of planar matchgates, and the parallel theory of characters of not necessarily planar matchgates. Our aim is to present a unified and, whenever possible, simplified account of this challenging theory. Our results include: (1) A direct proof that the Matchgate Identities (MGI) are necessary and sufficient conditions for matchgate signatures. This proof is self-contained and does not go through the character theory. (2) A proof that the MGI already imply the Parity Condition. (3) A simplified construction of a crossover gadget. This is used in the proof of sufficiency of the MGI for matchgate signatures. This is also used to give a proof of equivalence between the signature theory and the character theory which permits omittable nodes. (4) A direct construction of matchgates realizing all matchgate-realizable symmetric signatures. ACM Classification: F.1.3, F.2.2, G.2.1, G.2.2 AMS Classification: 03D15, 05C70, 68R10 Key words and phrases: complexity theory, matchgates, Pfaffian orientation 1 Introduction Leslie Valiant introduced matchgates in a seminal paper [24]. In that paper he presented a way to encode computation via the Pfaffian and Pfaffian Sum, and showed that a non-trivial, though restricted, fragment of quantum computation can be simulated in classical polynomial time. Underlying this magic is a way to encode certain quantum states by a classical computation of perfect matchings, and to simulate certain ∗Supported by NSF CCF-0914969 and NSF CCF-1217549.
    [Show full text]
  • The Chromatic Polynomial
    Eotv¨ os¨ Lorand´ University Faculty of Science Master's Thesis The chromatic polynomial Author: Supervisor: Tam´asHubai L´aszl´oLov´aszPhD. MSc student in mathematics professor, Comp. Sci. Department [email protected] [email protected] 2009 Abstract After introducing the concept of the chromatic polynomial of a graph, we describe its basic properties and present a few examples. We continue with observing how the co- efficients and roots relate to the structure of the underlying graph, with emphasis on a theorem by Sokal bounding the complex roots based on the maximal degree. We also prove an improved version of this theorem. Finally we look at the Tutte polynomial, a generalization of the chromatic polynomial, and some of its applications. Acknowledgements I am very grateful to my supervisor, L´aszl´oLov´asz,for this interesting subject and his assistance whenever I needed. I would also like to say thanks to M´artonHorv´ath, who pointed out a number of mistakes in the first version of this thesis. Contents 0 Introduction 4 1 Preliminaries 5 1.1 Graph coloring . .5 1.2 The chromatic polynomial . .7 1.3 Deletion-contraction property . .7 1.4 Examples . .9 1.5 Constructions . 10 2 Algebraic properties 13 2.1 Coefficients . 13 2.2 Roots . 15 2.3 Substitutions . 18 3 Bounding complex roots 19 3.1 Motivation . 19 3.2 Preliminaries . 19 3.3 Proving the theorem . 20 4 Tutte's polynomial 23 4.1 Flow polynomial . 23 4.2 Reliability polynomial . 24 4.3 Statistical mechanics and the Potts model . 24 4.4 Jones polynomial of alternating knots .
    [Show full text]
  • Computations in Algebraic Geometry with Macaulay 2
    Computations in algebraic geometry with Macaulay 2 Editors: D. Eisenbud, D. Grayson, M. Stillman, and B. Sturmfels Preface Systems of polynomial equations arise throughout mathematics, science, and engineering. Algebraic geometry provides powerful theoretical techniques for studying the qualitative and quantitative features of their solution sets. Re- cently developed algorithms have made theoretical aspects of the subject accessible to a broad range of mathematicians and scientists. The algorith- mic approach to the subject has two principal aims: developing new tools for research within mathematics, and providing new tools for modeling and solv- ing problems that arise in the sciences and engineering. A healthy synergy emerges, as new theorems yield new algorithms and emerging applications lead to new theoretical questions. This book presents algorithmic tools for algebraic geometry and experi- mental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out. Macaulay 2 is a computer algebra system devoted to supporting research in algebraic geometry, commutative algebra, and their applications. The reader of this book will encounter Macaulay 2 in the context of concrete applications and practical computations in algebraic geometry. The expositions of the algorithmic tools presented here are designed to serve as a useful guide for those wishing to bring such tools to bear on their own problems. A wide range of mathematical scientists should find these expositions valuable. This includes both the users of other programs similar to Macaulay 2 (for example, Singular and CoCoA) and those who are not interested in explicit machine computations at all.
    [Show full text]
  • Arxiv:1504.02898V2 [Cond-Mat.Stat-Mech] 7 Jun 2015 Keywords: Percolation, Explosive Percolation, SLE, Ising Model, Earth Topography
    Recent advances in percolation theory and its applications Abbas Ali Saberi aDepartment of Physics, University of Tehran, P.O. Box 14395-547,Tehran, Iran bSchool of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM) P.O. Box 19395-5531, Tehran, Iran Abstract Percolation is the simplest fundamental model in statistical mechanics that exhibits phase transitions signaled by the emergence of a giant connected component. Despite its very simple rules, percolation theory has successfully been applied to describe a large variety of natural, technological and social systems. Percolation models serve as important universality classes in critical phenomena characterized by a set of critical exponents which correspond to a rich fractal and scaling structure of their geometric features. We will first outline the basic features of the ordinary model. Over the years a variety of percolation models has been introduced some of which with completely different scaling and universal properties from the original model with either continuous or discontinuous transitions depending on the control parameter, di- mensionality and the type of the underlying rules and networks. We will try to take a glimpse at a number of selective variations including Achlioptas process, half-restricted process and spanning cluster-avoiding process as examples of the so-called explosive per- colation. We will also introduce non-self-averaging percolation and discuss correlated percolation and bootstrap percolation with special emphasis on their recent progress. Directed percolation process will be also discussed as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state. In the past decade, after the invention of stochastic L¨ownerevolution (SLE) by Oded Schramm, two-dimensional (2D) percolation has become a central problem in probability theory leading to the two recent Fields medals.
    [Show full text]
  • An Introduction of Tutte Polynomial
    An Introduction of Tutte Polynomial Bo Lin December 12, 2013 Abstract Tutte polynomial, defined for matroids and graphs, has the important property that any multiplicative graph invariant with a deletion and con- traction property is an evaluation of it. In the article we introduce the three definitions of Tutte polynomial, show their equivalence, and present some examples of matroids and graphs to show how to compute their Tutte polynomials. This article is based on [3]. 1 Contents 1 Definitions3 1.1 Rank-Nullity.............................3 1.2 Deletion-Contraction.........................3 1.3 Internal and External activity....................5 2 Equivalence of Definitions5 2.1 First and Second Definition.....................5 2.2 First and Third Definition......................7 3 Examples 10 3.1 Dual Matroids............................ 10 3.2 Uniform Matroids.......................... 11 3.3 An example of graphic matroids.................. 12 2 1 Definitions Tutte polynomial is named after W. T. Tutte. It is defined on both matroids and graphs. In this paper, we focus on the Tutte polynomial of a matroid. We introduce three equivalent definitions in Section1, and then show their equivalence in Section2. Throughout this section, Let M = (E; r) be a matroid, where r is the rank function of M. 1.1 Rank-Nullity Definition 1.1. For all A ⊆ E, we denote z(A) = r(E) − r(A) and n(A) = jAj − r(A): n(A) is called the nullity of A. For example, if A is a basis of M, then z(A) = n(A) = 0: Then Tutte polynomial is defined by Definition 1.2. X z(A) n(A) TM (x; y) = (x − 1) (y − 1) : A⊆E 1.2 Deletion-Contraction We can also define Tutte polynomial in a recursive way.
    [Show full text]
  • Computing Graph Polynomials on Graphs of Bounded Clique-Width
    Computing Graph Polynomials on Graphs of Bounded Clique-Width J.A. Makowsky1, Udi Rotics2, Ilya Averbouch1, and Benny Godlin13 1 Department of Computer Science Technion{Israel Institute of Technology, Haifa, Israel [email protected] 2 School of Computer Science and Mathematics, Netanya Academic College, Netanya, Israel, [email protected] 3 IBM Research and Development Laboratory, Haifa, Israel Abstract. We discuss the complexity of computing various graph poly- nomials of graphs of fixed clique-width. We show that the chromatic polynomial, the matching polynomial and the two-variable interlace poly- nomial of a graph G of clique-width at most k with n vertices can be computed in time O(nf(k)), where f(k) ≤ 3 for the inerlace polynomial, f(k) ≤ 2k + 1 for the matching polynomial and f(k) ≤ 3 · 2k+2 for the chromatic polynomial. 1 Introduction In this paper1 we deal with the complexity of computing various graph poly- nomials of a simple graph of clique-width at most k. Our discussion focuses on the univariate characteristic polynomial P (G; λ), the matching polynomial m(G; λ), the chromatic polynomial χ(G; λ), the multivariate Tutte polyno- mial T (G; X; Y ) and the interlace polynomial q(G; XY ), cf. [Bol99], [GR01] and [ABS04b]. All these polynomials are not only of graph theoretic interest, but all of them have been motivated by or found applications to problems in chemistry, physics and biology. We give the necessary technical definitions in Section 3. Without restrictions on the graph, computing the characteristic polynomial is in P, whereas all the other polynomials are ]P hard to compute.
    [Show full text]
  • Stochastic Analysis: Geometry of Random Processes
    Mathematisches Forschungsinstitut Oberwolfach Report No. 26/2017 DOI: 10.4171/OWR/2017/26 Stochastic Analysis: Geometry of Random Processes Organised by Alice Guionnet, Lyon Martin Hairer, Warwick Gr´egory Miermont, Lyon 28 May – 3 June 2017 Abstract. A common feature shared by many natural objects arising in probability theory is that they tend to be very “rough”, as opposed to the “smooth” objects usually studied in other branches of mathematics. It is however still desirable to understand their geometric properties, be it from a metric, a topological, or a measure-theoretic perspective. In recent years, our understanding of such “random geometries” has seen spectacular advances on a number of fronts. Mathematics Subject Classification (2010): 60xx, 82xx. Introduction by the Organisers The workshop focused on the latest progresses in the study of random geome- tries, with a special emphasis on statistical physics models on regular lattices and random maps, and their connexions with the Gaussian free field and Schramm- Loewner evolutions. The week opened with a spectacular talk by H. Duminil-Copin (based on his work with Raoufi and Tassion), presenting a new, groundbreaking use of decision trees in the context of statistical physics models in order to prove the sharpness of the phase transition, and vastly extending earlier results. Most notably, this new approach allows to circumvent the use of either the BK inequality or of planarity properties. In particular, it applies to the random cluster model FK(d, q) on Zd for every parameter q 1 and dimension d 2. A significant proportion≥ of the talks focused≥ on various and ever growing aspects of discrete random geometries, notably random planar maps, and their links with the planar Gaussian free field (GFF).
    [Show full text]