Adaptive Reactions Hyperplasia, Hypertrophy, Metaplasia Obesity

Total Page:16

File Type:pdf, Size:1020Kb

Adaptive Reactions Hyperplasia, Hypertrophy, Metaplasia Obesity Adaptive reactions Hyperplasia, hypertrophy, metaplasia Obesity Dr. Attila Zalatnai Hyperplasia Increase of size of organs due to numerical excess of the cells Response to prolonged stimulus Organs /tissues that are capable of division Prerequisite: good blood supply Causative factors: - hormonal effects (adrenal cortex, prostate, male breast, acromegaly…) - prolonged antigenic stimulus (follicular hyperplasia) - drugs (cyclosporin A – gingival hyperplasia) - metabolic causes (obesity) - compensatory - unknown Benign prostatic hyperplasia Hormonal background Starts around 50 ys, peak incidence: 70-80 years Accumulation of the perirurethral glands and stroma Testosterone-production is imperative (not in eunuchs!) Accumulation of locally produced dihidrotestosterone (DHT) Major complication: urethral and bladder neck compression, the urine outflow is blocked) Beningn prostatic hyperplasia Hypertrophic urinary bladder Dilatation of the bladder Hydroureter Hydronephrosis Renal insufficiency Ascensing infections (pyelonephritis) Hypertrophy Increase in size of the organ, but the number of cells is unchanged Tissue that are non capable of division (muscle) Characteristically: against increased forces Increased diameter of te cells, increased DNA content Striated muscle (physical activity, sports) Heart muscle left chamber: hypertension, aortic stenosis right chamber: increased pulmonary resistance (cor pulmonale chr.) Congenital pylorus-stenosis Hypertrophy of the urinary bladder Hirschsprung-disease Metaplasia A mature tissue is replaced by an other mature tissue Indirect metaplasia (abnormal differentiation of reserve cells) Epithelial metaplasia: glandular epithelium squamous epithelium (squamous metaplasia) – bronchus, salivary glands /sialometaplasia/, cervix, pancreas glandular epithelium another type of glandular epithelium (intestinal metaplasia) (stomach; esophagus: Barrett-metaplasia; breast: apocrine metaplasia) Mesenchymal metaplasia: abnormal differentiation of pluripotent cells (cartilage, bone, etc.) Obesity Increased risk for Hyperlipidemia Atherosclerosis Diabetes mellitus Arthrosis Chronic cor pulmonale Cholelithiasis (6x) Varicosity Endometrial cancer, renal cancer .
Recommended publications
  • Microsatellite Instability in Colorectal Cancer Liquid Biopsy—Current Updates on Its Potential in Non-Invasive Detection, Prognosis and As a Predictive Marker
    diagnostics Review Microsatellite Instability in Colorectal Cancer Liquid Biopsy—Current Updates on Its Potential in Non-Invasive Detection, Prognosis and as a Predictive Marker Francis Yew Fu Tieng 1 , Nadiah Abu 1, Learn-Han Lee 2,* and Nurul-Syakima Ab Mutalib 1,2,3,* 1 UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; [email protected] (F.Y.F.T.); [email protected] (N.A.) 2 Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor 47500, Malaysia 3 Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia * Correspondence: [email protected] (L.-H.L.); [email protected] (N.-S.A.M.); Tel.: +60-391459073 (N.-S.A.M.) Abstract: Colorectal cancer (CRC) is the third most commonly-diagnosed cancer in the world and ranked second for cancer-related mortality in humans. Microsatellite instability (MSI) is an indicator for Lynch syndrome (LS), an inherited cancer predisposition, and a prognostic marker which predicts the response to immunotherapy. A recent trend in immunotherapy has transformed cancer treatment to provide medical alternatives that have not existed before. It is believed that MSI-high (MSI-H) CRC patients would benefit from immunotherapy due to their increased immune infiltration and higher neo-antigenic loads. MSI testing such as immunohistochemistry (IHC) and PCR MSI assay Citation: Tieng, F.Y.F.; Abu, N.; Lee, has historically been a tissue-based procedure that involves the testing of adequate tissue with a high L.-H.; Ab Mutalib, N.-S.
    [Show full text]
  • Short Course 10 Metaplasia in The
    0 3: 436-446 Rev Esp Patot 1999; Vol. 32, N © Prous Science, SA. © Sociedad Espajiola de Anatomia Patot6gica Short Course 10 © Sociedad Espafiola de Citologia Metaplasia in the gut Chairperson: NA. Wright, UK. Co-chairpersons: G. Coggi, Italy and C. Cuvelier, Belgium. Overview of gastrointestinal metaplasias only in esophagus but also in the duodenum, intestine, gallbladder and even in the pancreas. Well established is columnar metaplasia J. Stachura of esophageal squamous epithelium. Its association with increased risk of esophageal cancer is widely recognized. Recent develop- Dept. of Pathomorphology, Jagiellonian University ments have suggested, however, that only the intestinal type of Faculty of Medicine, Krakdw, Poland. metaplastic epithelium (classic Barrett’s esophagus) predisposes to cancer. Another field of studies is metaplasia in the short seg- ment at the esophago-cardiac junction, its association with Metaplasia is a reversible change in which one aduit cell type is Helicobacter pylon infection and/or reflux disease and intestinal replaced by another. It is always associated with some abnormal metaplasia in the cardiac and fundic areas. stimulation of tissue growth, tissue regeneration or excessive hor- Studies on gastric mucosa metaplasia could be divided into monal stimulation. Heterotopia, on the other hand, takes place dur- those concerned with pathogenesis and detailed structural/func- ing embryogenesis and is usually supposed not to be associated tional features and those concerned with clinical significance. with tissue damage. Pancreatic acinar cell clusters in pediatric gas- We know now that gastric mucosa may show not only complete tric mucosa form another example of aberrant cell differentiation. and incomplete intestinal metaplasia but also others such as ciliary Metaplasia is usually divided into epithelial and connective tis- and pancreatic metaplasia.
    [Show full text]
  • Hyperplasia (Growth Factors
    Adaptations Robbins Basic Pathology Robbins Basic Pathology Robbins Basic Pathology Coagulation Robbins Basic Pathology Robbins Basic Pathology Homeostasis • Maintenance of a steady state Adaptations • Reversible functional and structural responses to physiologic stress and some pathogenic stimuli • New altered “steady state” is achieved Adaptive responses • Hypertrophy • Altered demand (muscle . hyper = above, more activity) . trophe = nourishment, food • Altered stimulation • Hyperplasia (growth factors, . plastein = (v.) to form, to shape; hormones) (n.) growth, development • Altered nutrition • Dysplasia (including gas exchange) . dys = bad or disordered • Metaplasia . meta = change or beyond • Hypoplasia . hypo = below, less • Atrophy, Aplasia, Agenesis . a = without . nourishment, form, begining Robbins Basic Pathology Cell death, the end result of progressive cell injury, is one of the most crucial events in the evolution of disease in any tissue or organ. It results from diverse causes, including ischemia (reduced blood flow), infection, and toxins. Cell death is also a normal and essential process in embryogenesis, the development of organs, and the maintenance of homeostasis. Two principal pathways of cell death, necrosis and apoptosis. Nutrient deprivation triggers an adaptive cellular response called autophagy that may also culminate in cell death. Adaptations • Hypertrophy • Hyperplasia • Atrophy • Metaplasia HYPERTROPHY Hypertrophy refers to an increase in the size of cells, resulting in an increase in the size of the organ No new cells, just larger cells. The increased size of the cells is due to the synthesis of more structural components of the cells usually proteins. Cells capable of division may respond to stress by undergoing both hyperrtophy and hyperplasia Non-dividing cell increased tissue mass is due to hypertrophy.
    [Show full text]
  • Acquired Tumors Arising from Congenital Hypertrophy of the Retinal Pigment Epithelium
    CLINICAL SCIENCES Acquired Tumors Arising From Congenital Hypertrophy of the Retinal Pigment Epithelium Jerry A. Shields, MD; Carol L. Shields, MD; Arun D. Singh, MD Background: Congenital hypertrophy of the retinal lacunae in all 5 patients. The CHRPE ranged in basal di- pigment epithelium (CHRPE) is widely recognized to ameter from 333mmto13311 mm. The size of the el- be a flat, stationary condition. Although it can show evated lesion ranged from 23232mmto83834 mm. minimal increase in diameter, it has not been known to The nodular component in all cases was supplied and spawn nodular tumor that is evident ophthalmoscopi- drained by slightly prominent, nontortuous retinal blood cally. vessels. Yellow retinal exudation occurred adjacent to the nodule in all 5 patients and 1 patient developed a second- Objectives: To report 5 cases of CHRPE that gave rise ary retinal detachment. Two tumors that showed progres- to an elevated lesion and to describe the clinical features sive enlargement, increasing exudation, and progressive of these unusual nodules. visual loss were treated with iodine 125–labeled plaque brachytherapy, resulting in deceased tumor size but no im- Methods: Retrospective medical record review. provement in the visual acuity. Results: Of 5 patients with a nodular lesion arising from Conclusions: Congenital hypertrophy of the retinal pig- CHRPE, there were 4 women and 1 man, 4 whites and 1 ment epithelium can spawn a nodular growth that slowly black. Three patients were followed up for typical CHRPE enlarges, attains a retinal blood supply, and causes exuda- for longer than 10 years before the tumor developed; 2 pa- tiveretinopathyandchroniccystoidmacularedema.Although tients were recognized to have CHRPE and the elevated no histopathologic evidence is yet available, we believe that tumor concurrently.
    [Show full text]
  • Squamous Metaplasia of Normal and Carcinoma in Situ of HPV 16-Immortalized Human Endocervical Cells1
    [CANCER RESEARCH 52. 4254-4260, August I, 1992] Squamous Metaplasia of Normal and Carcinoma in Situ of HPV 16-Immortalized Human Endocervical Cells1 Qi Sun, Kouichiro Tsutsumi, M. Brian Kelleher, Alan Pater, and Mary M. Pater2 Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B ÌV6 ABSTRACT genomic DNA, most frequently of HPV 16, has been detected in 90% of the cervical carcinomas and are found to be actively The importance of cervical squamous metaplasia and human papil- expressed (6, 7). HPV 16 DNA has been used to transform lomavirus 16 (HPV 16) infection for cervical carcinoma has been well human foreskin and ectocervical keratinocytes (8, 9). It immor established. Nearly 87% of the intraepithelial neoplasia of the cervix occur in the transformation zone, which is composed of squamous meta- talizes human keratinocytes efficiently, producing cell clones plastic cells with unclear origin. HPV DNA, mostly HPV 16, has been with indefinite life span in culture. Different approaches have found in 90% of cervical carcinomas, but only limited experimental data been taken to examine the behavior of these immortalized cell are available to discern the role of HPV 16 in this tissue specific onco- lines in conditions allowing squamous differentiation (10, 11). genesis. We have initiated in vivo studies of cultured endocervical cells After transplantation in vivo, the HPV 16-immortalized kerat as an experimental model system for development of cervical neoplasia. inocytes retain thépotential for squamous differentiation, Using a modified in vivo implantation system, cultured normal endocer forming abnormal epithelium without dysplastic changes at vical epithelial cells formed epithelium resembling squamous metapla early passages and with various dysplastic changes only after sia, whereas those immortalized by HPV 16 developed into lesions long periods of time in culture (10).
    [Show full text]
  • Surgical and Molecular Pathology of Barrett Esophagus Sherma Zibadi, MD, Phd, and Domenico Coppola, MD
    Grading is essential for treatment plans, follow-up visits, and therapeutic interventions. Three Layers of Paint. Photograph courtesy of Craig Damlo. www.soapboxrocket.com. Surgical and Molecular Pathology of Barrett Esophagus Sherma Zibadi, MD, PhD, and Domenico Coppola, MD Background: Patients with Barrett esophagus (BE) are predisposed to developing dysplasia and cancer. Adenocarcinoma, which is associated with BE, is the most common type of esophageal tumor and, typically, it has an aggressive clinical course and a high rate of mortality. Methods: The English-language literature relating to tumor epidemiology, etiology, and the pathogenesis of BE was reviewed and summarized. Results: The role of pathologists in the diagnosis and pitfalls associated with grading Barrett dysplasia is addressed. Current molecular testing for Barrett neoplasia, as well as testing methods currently in develop- ment, is discussed, focusing on relevant tests for diagnosing tumor types, determining prognosis, and assessing therapeutic response. Conclusions: Grading is essential for developing appropriate treatment plans, follow-up visits, and therapeutic interventions for each patient. Familiarity with current molecular testing methods will help physicians correctly diagnose the disease and select the most appropriate therapy for each of their patients. Introduction tinal metaplasia are also defined as Barrett mucosa.1 Barrett mucosa refers to a metaplastic process in- Barrett esophagus (BE) is more common in men duced by the acid-peptic content of the stomach
    [Show full text]
  • Is Intestinal Metaplasia a Risk for Gastric Carcinoma? Carcinoma.3'4
    604 LETTERS TO THE EDITOR Postgrad Med J: first published as 10.1136/pgmj.65.766.604 on 1 August 1989. Downloaded from monocytosis together with the presence of neutrophilic ing to Jass and Filipe in type I (complete), type IIA and type leucocytosis in peripheral blood analyses can be of some IIB (incomplete) in relation to the absence or presence in value to differentiate both tuberculous and listeric meningitis these last two types ofsulphomucins in the columnar mucous from partially-treated bacterial meningitis. cells.8 In 1985 the types IIA and IIB were redefined as II and III respectively, confirming the importance of type III in the P. Domingo screening of gastric carcinoma.9 In 19 cases, that is 8.5% of J. Colomina the patients we considered, we observed metaplasia of type Department of Internal Medicine, IIB or III. Hospital de la Santa Creu i Sant Pau, In this study we noticed the appearance of gastric car- Autonomous University of Barcelona, cinoma and more precisely of early gastric cancer in only 2 Barcelona, Spain. (0.9%) of the whole series of cases. Taking into account that the evolution ofgastric ulcer into carcinoma is not more than 1% ofthe patients'0 and referring to our data, we can say that References intestinal metaplasia type IIB or III in the stomach does not appear to be a clear element of neoplastic risk. 1. Hearmon, C.J. & Ghosh, S.K. Listeria monocytogenes meningitis in previously healthy adults. Postgrad Med J 1989, 65: 74-78. Paolo Sossai 2. Bach, M.C. & Davis, K.M.
    [Show full text]
  • Chapter 1 Cellular Reaction to Injury 3
    Schneider_CH01-001-016.qxd 5/1/08 10:52 AM Page 1 chapter Cellular Reaction 1 to Injury I. ADAPTATION TO ENVIRONMENTAL STRESS A. Hypertrophy 1. Hypertrophy is an increase in the size of an organ or tissue due to an increase in the size of cells. 2. Other characteristics include an increase in protein synthesis and an increase in the size or number of intracellular organelles. 3. A cellular adaptation to increased workload results in hypertrophy, as exemplified by the increase in skeletal muscle mass associated with exercise and the enlargement of the left ventricle in hypertensive heart disease. B. Hyperplasia 1. Hyperplasia is an increase in the size of an organ or tissue caused by an increase in the number of cells. 2. It is exemplified by glandular proliferation in the breast during pregnancy. 3. In some cases, hyperplasia occurs together with hypertrophy. During pregnancy, uterine enlargement is caused by both hypertrophy and hyperplasia of the smooth muscle cells in the uterus. C. Aplasia 1. Aplasia is a failure of cell production. 2. During fetal development, aplasia results in agenesis, or absence of an organ due to failure of production. 3. Later in life, it can be caused by permanent loss of precursor cells in proliferative tissues, such as the bone marrow. D. Hypoplasia 1. Hypoplasia is a decrease in cell production that is less extreme than in aplasia. 2. It is seen in the partial lack of growth and maturation of gonadal structures in Turner syndrome and Klinefelter syndrome. E. Atrophy 1. Atrophy is a decrease in the size of an organ or tissue and results from a decrease in the mass of preexisting cells (Figure 1-1).
    [Show full text]
  • Precision Medicine Approaches to Prevent Gastric Cancer
    Gut and Liver https://doi.org/10.5009/gnl19257 pISSN 1976-2283 eISSN 2005-1212 Review Article Precision Medicine Approaches to Prevent Gastric Cancer Juntaro Matsuzaki1, Hitoshi Tsugawa2, and Hidekazu Suzuki3 1Division of Gastroenterology and Hepatology, Department of Internal Medicine, 2Department of Biochemistry, Keio University School of Medicine, Tokyo, and 3Department of Gastroenterology and Hepatology, Tokai University School of Medicine, Isehara, Japan Article Info Gastric cancer remains one of the most common causes of cancer-related death worldwide, Received July 22, 2019 although the incidence is declining gradually. The primary risk factor for gastric cancer is Helico- Revised October 18, 2019 bacter pylori infection. The Kyoto global consensus report recommends eradication of H. pylori Accepted November 15, 2019 in all infected patients. However, because it is difficult to stratify the risk of carcinogenesis among Published online January 6, 2020 patients with a history of H. pylori infection, annual endoscopic surveillance is performed for everyone after eradication. This review summarizes the current approaches used to screen for Corresponding Author novel molecules that could assist in the diagnosis of gastric cancer and reduce mortality. Most Hidekazu Suzuki well-studied molecules are tissue protein biomarkers expressed by the gastric epithelium and as- ORCID https://orcid.org/0000-0002-8994-6163 sociated with metaplasia-dysplasia-carcinoma sequences. Other strategies focus on the origin of E-mail [email protected] cancer stem cell-related markers, such as CD44, and immune reaction-related markers, such as matrix metallopeptidases. Noninvasive methods such as blood-based approaches are more at- tractive. Serum pepsinogen levels predict the severity of gastric mucosal atrophy before H.
    [Show full text]
  • PATHOPHYSIOLOGY UNIT-1 .Basic Principles of Cell Injury And
    B.PHARMACY2nd SEMESTER SUBJECT: PATHOPHYSIOLOGY UNIT-1 .Basic Principles of Cell Injury and Adaptation Cell Injury: Introduction • Cell injury is defined as a variety of stresses a cell encounters as a result of changes in its internal and external environment. • The cellular response to stress may vary and depends upon the following: – The type of cell and tissue involved. – Extent and type of cell injury. ETIOLOGY OF CELL INJURY: 1. Genetic causes • Developmental defects: Errors in morphogenesis • Cytogenetic (Karyotypic) defects: chromosomal abnormalities • Single-gene defects: Mendelian disorders • Multifactorial inheritance disorders. 2. Acquired causes • Hypoxia and ischaemia • Physical agents • Chemical agents and drugs • Microbial agents • Immunologic agents • Nutritional derangements • Aging • Psychogenic diseases • Iatrogenic factors • Idiopathic diseases. 2.1. Oxygen deprivation: HYPOXIA Ischemia (loss of blood supply). Inadequate oxygenation (cardio respiratory failure). Loss of oxygen carrying capacity of the blood (anemia or CO poisoning). 2.2. PHYSICAL AGENTS: Trauma Heat Cold Radiation Electric shock 2.3. CHEMICAL AGENTS AND DRUGS: Endogenous products: urea, glucose Exogenous agents Therapeutic drugs: hormones Nontherapeutic agents: lead or alcohol. 2.4. INFECTIOUS AGENTS: Viruses Rickettsiae Bacteria Fungi Parasites 2.5. Abnormal immunological reactions: The immune process is normally protective but in certain circumstances the reaction may become deranged. Hypersensitivity to various substances can lead to anaphylaxis or to more localized lesions such as asthma. In other circumstances the immune process may act against the body cells – autoimmunity. 2.6. Nutritional imbalances: Protein-calorie deficiencies are the most examples of nutrition deficiencies. Vitamins deficiency. Excess in nutrition are important causes of morbidity and mortality. Excess calories and diet rich in animal fat are now strongly implicated in the development of atherosclerosis.
    [Show full text]
  • Sacrococcygeal Teratoma in the Perinatal Period
    754 Postgrad Med J 2000;76:754–759 Postgrad Med J: first published as 10.1136/pgmj.76.902.754 on 1 December 2000. Downloaded from Sacrococcygeal teratoma in the perinatal period R Tuladhar, S K Patole, J S Whitehall Teratomas are formed when germ cell tumours tissues are less commonly identified.12 An ocu- arise from the embryonal compartment. The lar lens present as lentinoids (lens-like cells), as name is derived from the Greek word “teratos” well as a completely formed eye, have been which literally means “monster”. The ending found within sacrococcygeal teratomas.10 11 “-oma” denotes a neoplasm.1 Parizek et al reported a mature teratoma containing the lower half of a human body in Incidence one of fraternal twins.13 Sacrococcygeal teratoma is the most common congenital tumour in the neonate, reported in Size approximately 1/35 000 to 1/40 000 live Size of a sacrococcygeal teratoma (average 8 births.2 Approximately 80% of aVected infants cm, range 1 to 30 cm) does not predict its bio- are female—a 4:1 female to male preponder- logical behaviour.8 Altman et al have defined ance.2 the size of sacrococcygeal teratomas as follows: The first reported case was inscribed on a small, 2 to 5 cm diameter; moderate, 5 to 10 Chaldean cuneiform tablet dated approxi- cm diameter; large, > 10 cm diameter.14 mately 2000 BC.3 In the modern era, the first large series of infants and children with sacro- Site coccygeal teratomas was reported by Gross et The sacrococcygeal region is the most com- al in 1951.4 mon location.
    [Show full text]
  • Somatic Events Modify Hypertrophic Cardiomyopathy Pathology and Link Hypertrophy to Arrhythmia
    Somatic events modify hypertrophic cardiomyopathy pathology and link hypertrophy to arrhythmia Cordula M. Wolf*†, Ivan P. G. Moskowitz†‡§¶, Scott Arno‡, Dorothy M. Branco*, Christopher Semsarian‡§ʈ, Scott A. Bernstein**, Michael Peterson‡¶, Michael Maida‡, Gregory E. Morley**, Glenn Fishman**, Charles I. Berul*, Christine E. Seidman‡§††‡‡, and J. G. Seidman‡§†† Departments of *Cardiology and ¶Pathology, Children’s Hospital, Boston, MA 02115; ‡Department of Genetics, Harvard Medical School, Boston, MA 02115; §Howard Hughes Medical Institute, Boston, MA 02115; and **Department of Cardiology, New York University School of Medicine, New York, NY 10010 Contributed by Christine E. Seidman, October 19, 2005 Sarcomere protein gene mutations cause hypertrophic cardiomy- many HCM patients who succumb to ventricular arrhythmias all opathy (HCM), a disease with distinctive histopathology and in- of these risk factors are absent (11–13). creased susceptibility to cardiac arrhythmias and risk for sudden Increased myocardial fibrosis and abnormal myocyte archi- death. Myocyte disarray (disorganized cell–cell contact) and car- tecture are associated with arrhythmia vulnerability in many diac fibrosis, the prototypic but protean features of HCM histopa- cardiovascular diseases (14–16), and these parameters are hy- thology, are presumed triggers for ventricular arrhythmias that pothesized to also increase sudden death risk in HCM (12, 17). precipitate sudden death events. To assess relationships between In support of this suggestion, histopathological studies
    [Show full text]