Short Course 10 Metaplasia in The

Total Page:16

File Type:pdf, Size:1020Kb

Short Course 10 Metaplasia in The 0 3: 436-446 Rev Esp Patot 1999; Vol. 32, N © Prous Science, SA. © Sociedad Espajiola de Anatomia Patot6gica Short Course 10 © Sociedad Espafiola de Citologia Metaplasia in the gut Chairperson: NA. Wright, UK. Co-chairpersons: G. Coggi, Italy and C. Cuvelier, Belgium. Overview of gastrointestinal metaplasias only in esophagus but also in the duodenum, intestine, gallbladder and even in the pancreas. Well established is columnar metaplasia J. Stachura of esophageal squamous epithelium. Its association with increased risk of esophageal cancer is widely recognized. Recent develop- Dept. of Pathomorphology, Jagiellonian University ments have suggested, however, that only the intestinal type of Faculty of Medicine, Krakdw, Poland. metaplastic epithelium (classic Barrett’s esophagus) predisposes to cancer. Another field of studies is metaplasia in the short seg- ment at the esophago-cardiac junction, its association with Metaplasia is a reversible change in which one aduit cell type is Helicobacter pylon infection and/or reflux disease and intestinal replaced by another. It is always associated with some abnormal metaplasia in the cardiac and fundic areas. stimulation of tissue growth, tissue regeneration or excessive hor- Studies on gastric mucosa metaplasia could be divided into monal stimulation. Heterotopia, on the other hand, takes place dur- those concerned with pathogenesis and detailed structural/func- ing embryogenesis and is usually supposed not to be associated tional features and those concerned with clinical significance. with tissue damage. Pancreatic acinar cell clusters in pediatric gas- We know now that gastric mucosa may show not only complete tric mucosa form another example of aberrant cell differentiation. and incomplete intestinal metaplasia but also others such as ciliary Metaplasia is usually divided into epithelial and connective tis- and pancreatic metaplasia. We also know that pylorization of oxyn- sue (e.g., osseous metaplasia of fibroblastic stroma or scar tissue). tic mucosa in atrophic gastritis is common. We know that in addi- Metaplasia within a cancer is still another issue. tion to fully differentiated intestinal cells some cells show dual gas- Epithelial metaplasia is thought to arise from reprogramming tric and intestinal or amphocrine features. Subtyping of intestinal stem and reserve epithelial cells. These precursor cells differenti- metaplasia has led to the conclusion that the “gastric and intestinal ate along a new pathway. Metaplasia may represent an adaptive substitution of sensitive cells by other cell types better able to with- mixed” subtype predominates in the antral mucosa while the “sole- stand the adverse environment. This is less clear in connective tis- ly intestinal” subtype predominates in the oxyntic mucosa. sue metaplasia. Metaplasias are patches of ectopic tissue and only Studies on the clinical significance of metaplasia within gastric rarely and in the later stages involve the entire affected structure, mucosa have been heavily affected by the decade of helicobac- e.g., the entire gastric mucosa. terology (2-5). This includes not only the association of metaplasia Metaplasia is caused by malfunction of tissue-specific and dif- with H. pylon infection but also reversibility after H. pylon eradica- ferentiation genes stimulated by cytokines, growth factors and tion as well as the influence of acid suppression therapy on the extracellular matrix components. These external factors trigger the proximal extension of inflammation and renewed recognition of cascade of transcription factors that lead toward the fully differenti- gastric mucosa transitional zones. All this was additionally found in ated cell. experimental conditions by the development of metaplasia and The most common epithelial metaplasia is columnar to squa- cancer in H. pylon infected gerbils. mous. Well known is the example of squamous metaplasia in vita- Now, in the post-Helicobacter era, there can be a return to min A deficiency or metaplasia of bronchial epithelium irritated by Correa’s classic paradigm of gastritis-atrophic gastritis-atrophy- cigarette smoke. metaplasia-dysplasia-carcinoma sequence (at least for gastric ade- Metaplasia from squamous to columnar or may also occur. nocarcinoma). Other environmental and host factors in gastric car- This is the case in Barrett’s esophagus. cinogenesis can also again be appreciated. Epithelial metaplasia is a two-edged sword. Metaplastic cells survive better but some of the functions of the normal epithelium References are lost. In addition, a persistent metaplastic process may predis- 1. Noda M, Poulsom R, Hanby AM et al. Prolongedduodenogastric reflux inthe ret pose to cancer transformation. This is the main area of interest followed by development of newglands resembling the ulcer-associated-cell-lin- even though it is still unclear whether cancer is associated with eage (UACL). Gut 1998; 42: 87A. metaplasia in a causative manner or whether it is simply a 2. Miehlke S, Meining A, Hackeisberger A et al. Prevalence of Helicobaster pylon bystander providing a warning about the riskof cancer, which how- infection, intestinal metaplasia and atrophy in gastric cancer of different clinical ever, develops independently. stages. Gut 1998; 43: 67A. The substantial contribution to our understanding of aberrant 3. Kasem H, Going J, Mackay C at al. Prolonged acid suppression therapy is differentiation of gastrointestinal cells was given by Nick Wright and associated with gastric intestinal metaplasia. Br J Surg 1998; 85: 1573. his hypothesis of ulcer-associated cell lineages (1). 4. Anti M, Armuzzi A, Gasbarrini A et al. Importance of changes in epithelial cell In the gastrointestinal system metaplasia is relatively common. turover during Helicobacterpylon infection in gastric carcinogenesis. Gut 1998; 43: 275. Best recognized is intestinal metaplasia of the gastric mucosa. 5. made K, Nakanishi H, Fuiimitsu Y at al. Gastric and intestinal mixed and solelu Gastric metaplasia is also common, however. The latter occurs not intestinal metaplasia in the human stomach. Pathol mt 1997; 47: 831. 436.
Recommended publications
  • Efficacy of Texture and Color Enhancement Imaging In
    www.nature.com/scientificreports OPEN Efcacy of Texture and Color Enhancement Imaging in visualizing gastric mucosal atrophy and gastric neoplasms Tsubasa Ishikawa1, Tomoaki Matsumura1*, Kenichiro Okimoto1, Ariki Nagashima1, Wataru Shiratori1, Tatsuya Kaneko1, Hirotaka Oura1, Mamoru Tokunaga1, Naoki Akizue1, Yuki Ohta1, Keiko Saito1, Makoto Arai1,2, Jun Kato1 & Naoya Kato1 In 2020, Olympus Medical Systems Corporation introduced the Texture and Color Enhancement Imaging (TXI) as a new image-enhanced endoscopy. This study aimed to evaluate the visibility of neoplasms and mucosal atrophy in the upper gastrointestinal tract through TXI. We evaluated 72 and 60 images of 12 gastric neoplasms and 20 gastric atrophic/nonatrophic mucosa, respectively. The visibility of gastric mucosal atrophy and gastric neoplasm was assessed by six endoscopists using a previously reported visibility scale (1 = poor to 4 = excellent). Color diferences between gastric mucosal atrophy and nonatrophic mucosa and between gastric neoplasm and adjacent areas were assessed using the International Commission on Illumination L*a*b* color space system. The visibility of mucosal atrophy and gastric neoplasm was signifcantly improved in TXI mode 1 compared with that in white-light imaging (WLI) (visibility score: 3.8 ± 0.5 vs. 2.8 ± 0.9, p < 0.01 for mucosal atrophy; visibility score: 2.8 ± 1.0 vs. 2.0 ± 0.9, p < 0.01 for gastric neoplasm). Regarding gastric atrophic and nonatrophic mucosae, TXI mode 1 had a signifcantly greater color diference than WLI (color diferences: 14.2 ± 8.0 vs. 8.7 ± 4.2, respectively, p < 0.01). TXI may be a useful observation modality in the endoscopic screening of the upper gastrointestinal tract.
    [Show full text]
  • Gas Gangrene Infection of the Eyes and Orbits
    Br J Ophthalmol: first published as 10.1136/bjo.69.2.143 on 1 February 1985. Downloaded from British Journal of Ophthalmology, 1985, 69, 143-148 Gas gangrene infection of the eyes and orbits GERARD W CROCK,' WILSON J HERIOT,' PATTABIRAMAN JANAKIRAMAN,' AND JOHN M WEINER2 From the 'Department of Ophthalmology, University ofMelbourne, and the2C H Greer Pathology Laboratory, the Royal Victorian Eye and Ear Hospital, East Melbourne, Australia SUMMARY The literature on Clostridium perfringens infections is reviewed up to 1983. An additional case is reported with bilateral clostridial infections of the eye and orbit. One eye followed the classical course of relentless panophthalmitis, amaurosis, and orbital cellulitis ending in enucleation. The second eye contained intracameral mud and gas bubbles that were removed by vitrectomy instrumentation. Subsequent removal of the toxic cataract resulted in a final aided visual acuity of 6/18, N8. This is the third report of a retained globe, and we believe the only known case where the patient was left with useful vision. Clostridium perfringens is a ubiquitous Gram- arms, chest, and abdomen. He was admitted to a positive bacillus found in soil and bowel flora. It is the general hospital, where he was examined under most common of four clostridia species identified in anaesthesia, and his injuries were attended to. copyright. cases of gas gangrene in man.' All species are obligate Ocular findings. The right cornea and anterior anaerobes and are usually saprophytic rather than chamber were intact. There was a scleral laceration pathogenic. Clostridium perfringens is a feared con- over the superonasal area of the pars plana with taminant of limb injuries and may result in death due vitreous prolapse.
    [Show full text]
  • Spinal Muscular Atrophy Testing
    Lab Management Guidelines v2.0.2019 Spinal Muscular Atrophy Testing MOL.TS.225.B v2.0.2019 Procedures addressed The inclusion of any procedure code in this table does not imply that the code is under management or requires prior authorization. Refer to the specific Health Plan's procedure code list for management requirements. Procedures addressed by this Procedure codes guideline SMN1 Gene Analysis; Dosage/Deletion 81329 Analysis (eg, carrier testing), includes SMN2 Analysis, if performed SMN1 Full Gene Sequencing 81336 SMN1 Known Familial Mutation Analysis 81337 What is spinal muscular atrophy Definition Spinal muscular atrophy (SMA) is a severe, autosomal recessive neuromuscular disease that affects 1 in 8000 to 1 in 10,000 people.1,2 SMA is caused by loss of lower motor neurons (anterior horn cells) in the spinal cord, resulting in progressive symmetrical muscle weakness and atrophy.1-3 SMA has historically been divided into three to five clinical subtypes based on age of onset and clinical course. While genetic testing has shown these clinical subtypes are not completely distinct, they are still widely used, and include:1-3 o Prenatal onset form (“Type 0” proposed) is characterized by polyhydramnios, decreased fetal movements, breech presentation, arthrogryposis multiplex congenita, respiratory failure at birth, and life span less than 6 months. o Type I (infantile or Werdnig-Hoffmann type) is the most common form (60-70% of cases). It presents before 6 months of age with death often before age 2 due to respiratory failure. Affected children have severe, generalized weakness and do not ever sit without support.
    [Show full text]
  • Microsatellite Instability in Colorectal Cancer Liquid Biopsy—Current Updates on Its Potential in Non-Invasive Detection, Prognosis and As a Predictive Marker
    diagnostics Review Microsatellite Instability in Colorectal Cancer Liquid Biopsy—Current Updates on Its Potential in Non-Invasive Detection, Prognosis and as a Predictive Marker Francis Yew Fu Tieng 1 , Nadiah Abu 1, Learn-Han Lee 2,* and Nurul-Syakima Ab Mutalib 1,2,3,* 1 UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; [email protected] (F.Y.F.T.); [email protected] (N.A.) 2 Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor 47500, Malaysia 3 Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia * Correspondence: [email protected] (L.-H.L.); [email protected] (N.-S.A.M.); Tel.: +60-391459073 (N.-S.A.M.) Abstract: Colorectal cancer (CRC) is the third most commonly-diagnosed cancer in the world and ranked second for cancer-related mortality in humans. Microsatellite instability (MSI) is an indicator for Lynch syndrome (LS), an inherited cancer predisposition, and a prognostic marker which predicts the response to immunotherapy. A recent trend in immunotherapy has transformed cancer treatment to provide medical alternatives that have not existed before. It is believed that MSI-high (MSI-H) CRC patients would benefit from immunotherapy due to their increased immune infiltration and higher neo-antigenic loads. MSI testing such as immunohistochemistry (IHC) and PCR MSI assay Citation: Tieng, F.Y.F.; Abu, N.; Lee, has historically been a tissue-based procedure that involves the testing of adequate tissue with a high L.-H.; Ab Mutalib, N.-S.
    [Show full text]
  • Hyperplasia (Growth Factors
    Adaptations Robbins Basic Pathology Robbins Basic Pathology Robbins Basic Pathology Coagulation Robbins Basic Pathology Robbins Basic Pathology Homeostasis • Maintenance of a steady state Adaptations • Reversible functional and structural responses to physiologic stress and some pathogenic stimuli • New altered “steady state” is achieved Adaptive responses • Hypertrophy • Altered demand (muscle . hyper = above, more activity) . trophe = nourishment, food • Altered stimulation • Hyperplasia (growth factors, . plastein = (v.) to form, to shape; hormones) (n.) growth, development • Altered nutrition • Dysplasia (including gas exchange) . dys = bad or disordered • Metaplasia . meta = change or beyond • Hypoplasia . hypo = below, less • Atrophy, Aplasia, Agenesis . a = without . nourishment, form, begining Robbins Basic Pathology Cell death, the end result of progressive cell injury, is one of the most crucial events in the evolution of disease in any tissue or organ. It results from diverse causes, including ischemia (reduced blood flow), infection, and toxins. Cell death is also a normal and essential process in embryogenesis, the development of organs, and the maintenance of homeostasis. Two principal pathways of cell death, necrosis and apoptosis. Nutrient deprivation triggers an adaptive cellular response called autophagy that may also culminate in cell death. Adaptations • Hypertrophy • Hyperplasia • Atrophy • Metaplasia HYPERTROPHY Hypertrophy refers to an increase in the size of cells, resulting in an increase in the size of the organ No new cells, just larger cells. The increased size of the cells is due to the synthesis of more structural components of the cells usually proteins. Cells capable of division may respond to stress by undergoing both hyperrtophy and hyperplasia Non-dividing cell increased tissue mass is due to hypertrophy.
    [Show full text]
  • Ghasemi Gh. Comparison of Laparoscopic Ovarian Drilling
    Archive of SID Original Article Comparison of Laparoscopic Ovarian Drilling Success between Two Standard and Dose-Adjusted Methods in Polycystic Ovary Syndrome: A Randomized Clinical Trial Leili Hafizi, M.D.1, Maliheh Amirian, M.D.2, Yasmin Davoudi, M.D.3, Mona Jaafari, M.D.1, Ghazal Ghasemi, M.D.1* 1. Department of Obstetrics and Gynaecology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran 2. Department of IVF and Infertility, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran 3. Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran Abstract Background: One of the treatment methods for increasing the ovarian response to ovulation induction in polycystic ovary syndrome (PCOS) is laparoscopic ovarian drilling (LOD). The optimal amount of the electrosurgical energy discharged in the ovaries to achieve maximum treatment response with minimal follicle injury is unknown. This study was performed to compare the success level of LOD by means of standard and dose-adjusted treatment methods among infertile clomiphene-resistant PCOS women. Materials and Methods: This randomized clinical trial was conducted on infertile clomiphene citrate-resistant PCOS women in the Gynaecology Department of Imam Reza Hospital between 2016 and 2017. The patients were randomly di- vided into two groups based on the ovarian cautery method. The two groups were examined and compared regarding the antral follicles, the serum levels of anti-Müllerian hormone (AMH), androgens, and mid-luteal progesterone one month after surgery. The regularity of cycles, ovulation, and pregnancy were examined monthly up to six months after surgery. Results: In total, 60 women received bilateral LOD (n=30 per group).
    [Show full text]
  • Cellular Adaptation
    Cellular Adaptation Dr. Adeboye OO (MBBS, Cert. LMIH, FMCPath) Dept of Anatomic Pathology Bowen University Cellular adaptation • Cell death is not the only consequence of cellular injury or stress • Cells can respond to excessive physiologic or pathologic stimuli by undergoing both functional and morphologic change in which a new steady state is achieved that preserves the viability of the cell(Adaptation) . • The adaptive response include- • Adaptation of growth and differentiation • Intracellular accumulation • Pathologic calcification • Hyaline change • Cellular aging Adaptation of growth and differentiation • Adaptations are reversible changes in the size, number,phenotype, metabolic activity, or functions of cells in response to changes in their environment. Such adaptations may take several distinct forms : • 1. hyperplasia • 2. hypertrophy • 3. atrophy • 4. metaplasia hypertrophy • Increase in the size of cells that result in the increase in size of the affected organ. • No new cells just larger cells • May coexist with hyperplasia in cells capable of division( eg epithelial, hematopoesis etc), in non dividing cells (eg the nerve ,cardiac and skeletal muscle) increase tissue mass is due to hypertrophy • Can be physiologic or pathologic Physiologic hypertrophy • Caused by- (a) increased functional demand eg hypertrophy of striated muscle in muscle builder.(b) stimulation by hormones or growth factors eg physiologic hypertrophy of the uterus during pregnancy Hypertrophy of uterus during pregnancy Micrograph showing smooth muscle
    [Show full text]
  • Brain-Derived Circulating Cell-Free DNA Defines the Brain Region and Cell Specific Origins Associated with Neuronal Atrophy
    bioRxiv preprint doi: https://doi.org/10.1101/538827; this version posted February 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Brain-derived circulating cell-free DNA defines the brain region and cell specific origins associated with neuronal atrophy Chatterton. Zac1,2,4,6,9*, Mendelev. Natalia1,2,4,6, Chen. Sean1,2,4,6, Raj. Towfique1,2, Walker. Ruth1,2,6,7, Carr. Walter10,11, Kamimori. Gary10, Beeri. Michal8, Ge. Yongchao4, Dwork. Andrew5, Haghighi. Fatemeh1,2,4,6* *Corresponding author. Email: [email protected] & [email protected] 1Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 2Department of Neuroscience, 3Department of Psychiatry, 4Department of Neurology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029. 5Department of Pathology and Cell Biology, Columbia University, New York, USA. 6Medical Epigenetics, James J. Peters VA Medical Center, Bronx, USA. 7Department of Neurology, James J. Peters VA Medical Center, Bronx, USA 8The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel 9Brain and Mind Centre, The University of Sydney, Camperdown, Australia 10Walter Reed Army Institute of Research, Silver Spring, MD, USA 11Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA Liquid biopsies are revolutionizing the fields non-invasive prenatal testing (NIPT). The of prenatal non-invasive testing and cancer technological advancements in NGS have diagnosis by leveraging the genetic differences increased the limits of detection of these between mother and fetus, and, host and techniques [4] to ~0.02%, which hold the cancer.
    [Show full text]
  • Subtypes of Intestinal Metaplasia and Helicobacter Pylorn Gut: First Published As 10.1136/Gut.33.5.597 on 1 May 1992
    Gut, 1992, 33, 597-600 597 Subtypes of intestinal metaplasia and Helicobacter pylorn Gut: first published as 10.1136/gut.33.5.597 on 1 May 1992. Downloaded from M E Craanen, P Blok, W Dekker, J Ferwerda, G N J Tytgat Abstract ing lesion, intestinal metaplasia are widely To determine whether there is a relationship recognised as being the most prevalent pre- between the presence of H pylon and the cursors of intestinal type gastric carcinoma.7 various subtypes ofintestinal metaplasia in the Subtypes of intestinal metaplasia have been gastric antrum, 2274 antral gastroscopic biop- identified based upon histological, ultra- sies from 533 patients were examined. Hpylon structural, enzyme, and mucin histochemical was found in 289 patients. Intestinal meta- characteristics. Some of the latter studies have plasia in general was found in 135 patients. suggested that a sulphomucin secreting, incom- Type I intestinal metaplasia was found in 133 plete intestinal metaplasia subtype is particularly patients (98.5%), type II in 106 patients (78.5%) closely linked to intestinal type gastric carcinoma and type III in 21 patients (15.6%). Ninety eight and may therefore be a marker of increased of these 135 patients (72.6%) were H pylori gastric cancer risk.8'~3 In another study evidence positive and 37 patients (27.4%) were H pylon was found for a strong association between the negative. No statistically significant difference presence of intestinal metaplasia in general and was found in the prevalence of type I and II H pylorn in the gastric antral mucosa.'4 We intestinal metaplasia between the intestinal undertook this study in order to investigate metaplasia positive and H pylon positive and further the relationship between the presence of intestinal metaplasia negative and H pylon H pylorn and the various subtypes of intestinal negative patients.
    [Show full text]
  • Squamous Metaplasia of Normal and Carcinoma in Situ of HPV 16-Immortalized Human Endocervical Cells1
    [CANCER RESEARCH 52. 4254-4260, August I, 1992] Squamous Metaplasia of Normal and Carcinoma in Situ of HPV 16-Immortalized Human Endocervical Cells1 Qi Sun, Kouichiro Tsutsumi, M. Brian Kelleher, Alan Pater, and Mary M. Pater2 Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B ÌV6 ABSTRACT genomic DNA, most frequently of HPV 16, has been detected in 90% of the cervical carcinomas and are found to be actively The importance of cervical squamous metaplasia and human papil- expressed (6, 7). HPV 16 DNA has been used to transform lomavirus 16 (HPV 16) infection for cervical carcinoma has been well human foreskin and ectocervical keratinocytes (8, 9). It immor established. Nearly 87% of the intraepithelial neoplasia of the cervix occur in the transformation zone, which is composed of squamous meta- talizes human keratinocytes efficiently, producing cell clones plastic cells with unclear origin. HPV DNA, mostly HPV 16, has been with indefinite life span in culture. Different approaches have found in 90% of cervical carcinomas, but only limited experimental data been taken to examine the behavior of these immortalized cell are available to discern the role of HPV 16 in this tissue specific onco- lines in conditions allowing squamous differentiation (10, 11). genesis. We have initiated in vivo studies of cultured endocervical cells After transplantation in vivo, the HPV 16-immortalized kerat as an experimental model system for development of cervical neoplasia. inocytes retain thépotential for squamous differentiation, Using a modified in vivo implantation system, cultured normal endocer forming abnormal epithelium without dysplastic changes at vical epithelial cells formed epithelium resembling squamous metapla early passages and with various dysplastic changes only after sia, whereas those immortalized by HPV 16 developed into lesions long periods of time in culture (10).
    [Show full text]
  • Surgical and Molecular Pathology of Barrett Esophagus Sherma Zibadi, MD, Phd, and Domenico Coppola, MD
    Grading is essential for treatment plans, follow-up visits, and therapeutic interventions. Three Layers of Paint. Photograph courtesy of Craig Damlo. www.soapboxrocket.com. Surgical and Molecular Pathology of Barrett Esophagus Sherma Zibadi, MD, PhD, and Domenico Coppola, MD Background: Patients with Barrett esophagus (BE) are predisposed to developing dysplasia and cancer. Adenocarcinoma, which is associated with BE, is the most common type of esophageal tumor and, typically, it has an aggressive clinical course and a high rate of mortality. Methods: The English-language literature relating to tumor epidemiology, etiology, and the pathogenesis of BE was reviewed and summarized. Results: The role of pathologists in the diagnosis and pitfalls associated with grading Barrett dysplasia is addressed. Current molecular testing for Barrett neoplasia, as well as testing methods currently in develop- ment, is discussed, focusing on relevant tests for diagnosing tumor types, determining prognosis, and assessing therapeutic response. Conclusions: Grading is essential for developing appropriate treatment plans, follow-up visits, and therapeutic interventions for each patient. Familiarity with current molecular testing methods will help physicians correctly diagnose the disease and select the most appropriate therapy for each of their patients. Introduction tinal metaplasia are also defined as Barrett mucosa.1 Barrett mucosa refers to a metaplastic process in- Barrett esophagus (BE) is more common in men duced by the acid-peptic content of the stomach
    [Show full text]
  • Cellular Adaptation
    ALTERATIONS IN CELLULAR AND TISSUE FUNCTION Lois E. Brenneman, MSN, APN, CELLULAR ADAPTATION Atrophy - decrease or shrinkage in cell size - Can (if sufficient numbers) result in shrinkage of entire organ Example: muscular atrophy after cast is removed Example: sports steroid abuse causes atrophy of penis - Physiologic atrophy - normal process Example: atrophy of thymus during childhood - Pathologic atrophy - disease process Example: Addison’s disease -> atrophy adrenal glands - Disuse Atrophy Example: Prolonged bed rest causes muscle atrophy Example: Casting limb causes atrophy Atrophic cells have fewer mitochondria and myofilaments Autophagic vacuoles occurs with malnutrition Lipofuscin - yellow-brown age pigment (may resist destruction) - Persists as membrane-bound residue bodies - Accumulates w age: liver, myocardial and atrophic cells - Results in “age spots” to skin “Age spots” Lipofuscin accumulation to skin © 2004 Lois E. Brenneman, MSN, CS, ANP, FNP all rights reserved - www.npceu.com 1 Hypertrophy - increase in cell size (vs cell number with hyperplasia) Results in increased size of organ Cardiac and kidney esp prone to hypertrophy Increased size -> increased cellular protein and not increased fluid Physiologic hypertrophy - normal process Example: muscle increase with exercise Example: genital size increase with hormones of puberty Pathologic hypertrophy - disease process Example - Left ventricular hypertrophy from hypertension -> congestive heart failure Triggers for hypertrophy Mechanical: stretch, exercise Trophic: growth factors, hormones, vasoactive agents CELLULAR HYPERTROPY Left: dependent edema in CHF Right: dilated cardiomyopathy Left ventricular hypertrophy (bottom) vs normal (top) © 2004 Lois E. Brenneman, MSN, CS, ANP, FNP all rights reserved - www.npceu.com 2 Hyperplasia - increase in number of cells (increased rate of cell division) - Can occur in response to injury esp with cell death - Can occur together with hypertrophy note: if organ with non-dividing cells (e.g.
    [Show full text]