Cretaceous Alisitos Arc, Baja California

Total Page:16

File Type:pdf, Size:1020Kb

Cretaceous Alisitos Arc, Baja California Journal of Volcanology and Geothermal Research 149 (2006) 1–46 www.elsevier.com/locate/jvolgeores View of an intact oceanic arc, from surficial to mesozonal levels: Cretaceous Alisitos arc, Baja California Cathy Busby a,*, Benjamin Fackler Adams b, James Mattinson c, Stephen Deoreo d a Department of Geological Sciences, University of California, Santa Barbara CA 93101, USA b Interdisciplinary Sciences, Skagit Valley College, 2405 E College Way, Mt Vernon, WA 98273, USA c Department of Geological Sciences, University of California, Santa Barbara CA 93101, USA d Department of Geological Sciences, University of California, Santa Barbara, CA 93106, USA Received 29 January 2005; received in revised form 13 June 2005; accepted 19 June 2005 Abstract The Alisitos arc is an approximately 300Â30 km oceanic arc terrane that lies in the western wall of the Peninsular Ranges batholith south of the modern Agua Blanca fault zone in Baja California. We have completed detailed mapping and dating of a 50Â30 km segment of this terrane in the El Rosario to Mission San Fernando areas, as well as reconnaissance mapping and dating in the next 50Â30 km segment to the north, in the San Quintin area. We recognize two evolutionary phases in this part of the arc terrane: (I) extensional oceanic arc, characterized by intermediate to silicic explosive and effusive volcanism, culminating in caldera-forming silicic ignimbrite eruptions at the onset of arc rifting, and (II) rifted oceanic arc, characterized by mafic effusive and hydroclastic rocks and abundant dike swarms. Two types of units are widespread enough to permit tentative stratigraphic correlation across much of this 100-km-long segment of the arc: a welded dacite ignimbrite (tuff of Aguajito), and a deepwater debris-avalanche deposit. New U–Pb zircon data from the volcanic and plutonic rocks of both phases indicate that the entire 4000-m-thick section accumulated in about 1.5 MY, at 111–110 MY. Southwestern North American sources for two zircon grains with Proterozoic 206Pb/ 207Pb ages support the interpretation that the oceanic arc fringed North America rather than representing an exotic terrane. The excellent preservation and exposure of the Alistos arc terrane makes it ideal for three-dimensional study of the structural, stratigraphic and intrusive history of an oceanic arc terrane. The segment mapped and dated in detail has a central major subaerial edifice, flanked by a down-faulted deepwater marine basin to the north, and a volcano-bounded shallow-water marine basin to the south. The rugged down-faulted flank of the edifice produced mass wasting, plumbed large-volume eruptions to the surface, and caused pyroclastic flows to disintegrate into turbulent suspensions that mixed completely with water. In contrast, gentler slopes on the opposite flank allowed pyroclastic flows to enter the sea with integrity, and supported extensive buildups of bioherms. Caldera collapse on the major subaerial edifice ponded the tuff of Aguajito to a thickness of at least 3 km. The outflow ignimbrite forms a marker in nonmarine to shallow marine sections, and in deepwater sections it occurs as blocks up to 150 m long in a debris-avalanche deposit. These welded ignimbrite blocks were deposited hot enough to deform * Corresponding author. Tel.: +1 805 893 3471. E-mail address: [email protected] (C. Busby). 0377-0273/$ - see front matter D 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jvolgeores.2005.06.009 2 C. Busby et al. / Journal of Volcanology and Geothermal Research 149 (2006) 1–46 plastically and form peperite with the debris-avalanche matrix. The debris avalanche was likely triggered by injection of feeder dikes along the basin-bounding fault zone during the caldera-forming eruption. Intra-arc extension controlled very high subsidence rates, followed shortly thereafter by accretion through back-arc basin closure by 105 Ma. Accretion of the oceanic arc may have been accomplished by detachment of the upper crust along a still hot, thick middle crustal tonalitic layer, during subduction of mafic–ultramafic substrate. D 2005 Elsevier B.V. All rights reserved. Keywords: oceanic arc; geology; petrography; lithofacies; tectonostratigraphy; U–Pb zircon dating; Alisitos arc; Baja California 1. Introduction Baja California, south of the modern Agua Blanca fault zone (Fig. 1). A full discussion of the geolo- Recent years have seen major advances in under- gic setting of this oceanic arc terrane is given by standing of the tectonic, volcanic and sedimentary cha- Busby (2004). Geochemical and isotopic data sup- racter of modern oceanic arc systems, through the use port the oceanic arc interpretation, but several dif- of swath-mapping sonar surveys, submersible studies, ferent models have been proposed for the numbers magnetic and seismic surveys, dredging, and DSDP/ and polarities of subduction zones involved in its ODP coring (e.g., Bloomer et al., 1989; Taylor et al., generation and subsequent accretion to the Mexican 1990, 1991; Nishimura et al., 1992; Klaus et al., 1992; continental margin (see references in Busby, 2004). Taylor, 1992; Cambray et al., 1995; Clift and ODP Leg Most models for Mesozoic oceanic arc terranes of 135 Scientific Party, 1995; Fiske et al., 1995; Kokelaar western Mexico fall into two broad categories: (1) and Romagnoli, 1995; Yuasa, 1995; Fryer, 1996; Mur- the exotic arc model, where western Mexico grew akami, 1996; Wright, 1996; Clift and Lee, 1998; Fryer through accretion of exotic island arcs by the con- et al., 1998; Takahashi et al., 1998; Yamazaki and sumption of entire ocean basins at multiple subduc- Murakami, 1998; Izasa et al., 1999; Wright and Gam- tion zones with varying polarities, and (2) the ble, 1999; Worthington et al., 1999; Glasby et al., 2000; fringing arc model, where extensional processes in Bloomer et al., 2001; Wright et al., 2003; Yuasa and the upper plate of an east-dipping subduction zone Kano, 2003). These studies give a largely two-dimen- produced arc-related basins, some rifted off the sional view of oceanic arcs. Drill holes and geophysical continental margin and others formed of new ocea- studies yield some insights into the third dimension, but nic lithosphere that largely lay within reach of these are widely spaced. For this reason, we targeted a North American turbidite fans (Centeno-Garcia, segment of an ancient oceanic arc terrane for detailed 2005 and pers. comm.). In the fringing arc model, three-dimensional outcrop study (Fig. 1). This terrane, later phases of east-dipping subduction juxtaposed the Alisitos arc, provides one of the best exposed and these terranes through transtensional, transpressional best-preserved outcrop examples of an oceanic arc or compressional tectonics (Busby, 2004). Prelimin- reported in the literature to date (Fackler Adams and ary zircon provenance data support the fringing arc Busby, 1998). The segment we have mapped in detail model for at least parts of the Alisitos arc (Schmidt (Figs. 1–5) contains no postdepositional faults, and et al., 2002; preliminary data presented below). To subgreenschist metamorphism allows recognition of summarize, we interpret the Alisitos arc to be a primary microtextures. This makes it ideal for three- oceanic arc that fringed the continental margin dimensional study of the structural, stratigraphic and along an east-dipping subduction zone; it formed intrusive history of an oceanic arc terrane. Our results in an extensional strain regime, with well-preserved can be used to extrapolate into the third dimension, syndepositional normal faults and high rates of with greater detail, than is possible using the limited subsidence in both the arc region and the forearc sample base of modern oceanic arc systems. region (Busby, 2004). The Alisitos arc is a large (approximately In this paper we present the results of detailed 300Â30 km) oceanic arc terrane that lies in the (1:10,000 scale) mapping, petrographic analysis and western wall of the Peninsular Ranges batholith in dating of a 50Â30 km segment of the Alisitos arc ter- C. Busby et al. / Journal of Volcanology and Geothermal Research 149 (2006) 1–46 3 GEOLOGIC MAP OF THE PENINSULAR RANGES IN NORTHWEST BAJA CALIFORNIA, MEXICO (simplified from Gastil et al., 1971) USA MEXICO 0 50 km 32°°00' - CA AZ USA MEXICO North BAJ A Gul CA f LIF o OR Ca N li I A fo r n ia Pa cific Ocean San Quentín Tertiary volcanics segment (Fig. 10) SanSan QuintinQuintin X - Late Cretaceous to ° Tertiary ElE116° l RosarioRosario sedimentary rocks X Rosario segment (Fig. 2) Cretaceous plutons (Early Cretaceous in west, Late Cretaceous in east) 29°°30' - - 29°°30' - ° 115° Western belt: Eastern belt: Early Cretaceous Paleozoic oceanic arc to Mesozoic (Alisitos Group) continental margin metasedimentary rocks Fig. 1. Geologic setting of the Alisitos arc, western Peninsular Ranges, Baja California, Mexico. 4 C. Busby et al. / Journal of Volcanology and Geothermal Research 149 (2006) 1–46 Fig. 2. Geologic map of the Rosario segment of the Alisitos arc (locality shown on Fig. 1). C. Busby et al. / Journal of Volcanology and Geothermal Research 149 (2006) 1–46 5 B Explanation Qal/Qoa - Alluvium & older alluvium Quat. L. Cret.- KTrg - Rosario Group - sedimentary rocks, undifferentiated Tertiary Volcaniclastic and Sedimentary Rocks Kcvad - Dacitic/rhyolitic and andesitic pyroclastic rocks, largely Kvm - Marine tuffaceous volcaniclastic rocks, including subaqueous pyroclastic flow deposits nonmarine and tuff turbidites Recessive-weathering, grey to tan & brown outcrops
Recommended publications
  • NOMINATION FORM for NPS USE ONLY for FEDERAL PROPERTIES ENTRY DATE (Type All Entries - Complete Applicable Sections) Rti^T Fl 1SP6
    STATE: .Form Igd?6 UNITED STATES DEPARTMENT OF THE INTERIOR (Uct. IV/^J NATIONAL PARK SERVICE California COUNTY: NATIONAL REGISTER OF HISTORIC PLACES Shasta and Lassen INVENTORY - NOMINATION FORM FOR NPS USE ONLY FOR FEDERAL PROPERTIES ENTRY DATE (Type all entries - complete applicable sections) rti^T fl 1SP6 COMMON: Nobles' Emigrant Trail HS-1 AND/OR HISTORIC: Nobles' Trail (Fort Kearney, South Pass and Honey Lake Wagon Road) STREET AND NUMBER: M --"'' ^ * -X'"' '' J-- - ;/* ( ,: - "; ^ ;." ; r ^-v, % /'• - O1- - >,- ,•<•-,- , =••'"' CITY OR TOWN: / '-' j- ,. " ,-, ,, , CONG RESSIONAL DISTRICT: Lassen Volcanic National Park S econd STATE: CODE COUN TY: CODE California 06 Shaj3ta and Lassen 089/035 :. : ; STATUS ACCESSIBLE (Check?ATE,G SOne)R \ OWNERSHIP SIAIU3 T0 THE p UBL|c gf] District Q Building [ig Public Public Acquisition: [ | Occupied Yes: : : -Z Q Site | | Structure | | Private Q In Process PT"1 Unoccupied | | Restricted 0 [~~| Object Qj Both f~| Being Consider)sd Q Preservation work [X] Unrestricted in progress [~~] No u PRESENT USE (Check One or More as Appropriate) | | Agricultural jj£] Government [X] Park | | Transportation | | Comments h- I | Commercial Q2 Industrial [~~| Private Residence | | Other (SpeciM »/> Q Educational Q Military [~1 Religious ;; /. z [^Entertainment Q Museum f"| Scientific UJ STATE: »/> National Park Service REGIONAL HEADQUARTERS: (If applicable) SIr REET AND NUMBER: Western Region l^50 Golden Gate Avenue Cl TY OR TOWN: SIPATE: CODE San Francisco California Ub V BliBsi^iiiiBHIiiMMIiBlilBl^isMiM^Ml Illlllillliil^^ COURTHOUSE, REGISTRY OF DEEDS, ETC: COUNTY: STREET AND NUMBER: CITY OR TOWN: SIPATE: CODE Lassen Volcanic National Park California Ob toM^ TITLE OF SURVEY: The National Survey of Historic '&&& s^n^lt^J^aglix "Overland Migrations West of the Mississippi" TI AsX -X^ ENT^Y*"NUMBER o DATE OF SURVEY: 1959 [X] Federal Q State / ^yl County | _ | LocoilP' ^k X3 Z DEPOSITORY FOR SURVEY RECORDS: t) •j? in C OAHP, WASO c/> rj V?\ m STREET AND NUMBER: 'l - i H~*~! ^|T"-, r £;.
    [Show full text]
  • Area Adventure Hat Creek Ranger District Lassen National Forest
    Area Adventure Hat Creek Ranger District Lassen National Forest Welcome The following list of recreation activities are avail- able in the Hat Creek Recreation Area. For more detailed information please stop by the Old Station Visitor Information Center, open April - December, or our District Office located in Fall River Mills. Give Hat Creek Rim Overlook - Nearly 1 million years us a call year-around Mon.- Fri. at (530) 336-5521. ago, active faulting gradually dropped a block of Enjoy your visit to this very interesting country. the Earth’s crust (now Hat Creek Valley) 1,000 feet below the top of the Hat Creek Rim, leaving behind Subway Cave - See an underground cave formed this large fault scarp. This fault system is still “alive by flowing lava. Located just off Highway 89, 1/4 and cracking”. mile north of Old Station junction with Highway 44. The lava tube tour is self guided and the walk is A heritage of the Hat Creek area’s past, it offers mag- 1/3 mile long. Bring a lantern or strong flashlight nificent views of Hat Creek Valley, Lassen Peak, as the cave is not lighted. Sturdy Shoes and a light Burney Mountain, and, further away, Mt. Shasta. jacket are advisable. Subway Cave is closed during the winter months. Fault Hat Creek Rim Fault Scarp Vertical movement Hat Creek V Cross Section of a Lava Tube along this fault system alley dropped this block of earth into its present position Spattercone Trail - Walk a nature trail where volca- nic spattercones and other interesting geologic fea- tures may be seen.
    [Show full text]
  • SPLOS/240 Meeting of States Parties
    United Nations Convention on the Law of the Sea SPLOS/240 Meeting of States Parties Distr.: General 12 March 2012 Original: English Twenty-second Meeting New York, 4-11 June 2012 Curricula vitae of candidates nominated by States Parties for election to the Commission on the Limits of the Continental Shelf Note by the Secretary-General 1. The Secretary-General has the honour to submit the curricula vitae of the candidates nominated by States Parties for the election of 21 members of the Commission on the Limits of the Continental Shelf for a five-year term beginning on 16 June 2012 (see annex). The names and nationalities of the candidates are as follows: Mohammad bin Hamid Al-Harbi (Saudi Arabia) Muhammad Arshad (Pakistan) Mario Juan A. Aurelio (Philippines) Lawrence Folajimi Awosika (Nigeria) Galo Carrera (Mexico) Francis L. Charles (Trinidad and Tobago) Ivan F. Glumov (Russian Federation) Richard Thomas Haworth (Canada and United Kingdom of Great Britain and Northern Ireland) Martin Vang Heinesen (Denmark) Emmanuel Kalngui (Cameroon) Lu Wenzheng (China) Mazlan Bin Madon (Malaysia) Estevao Stefane Mahanjane (Mozambique) Jair Alberto Ribas Marques (Brazil) Simon Njuguna (Kenya) Isaac Owusu Oduro (Ghana) Yong Ahn Park (Republic of Korea) Carlos Marcelo Paterlini (Argentina) Sivaramakrishnan Rajan (India) Walter R. Roest (Netherlands) Luis Somoza Losada (Spain) Nguyen Nhu Trung (Viet Nam) Tetsuro Urabe (Japan) 2. Information concerning the nominations and the election is contained in documents SPLOS/238 and SPLOS/239 and Add.1. 12-26137 (E) 140512 *1226137* SPLOS/240 Annex Curricula vitae of candidates* Mohammad bin Hamid Al-Harbi (Saudi Arabia) Position: Director General of Marine Surveying at Saudi Arabia’s General Directorate for Marine Geodesy Education: 1.
    [Show full text]
  • Apinos, Open-File Report 83-400 This Report Is Preliminary and Has Not
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY The Volcano Hazards Program: Objectives and Long-Range P 1ans R. A. Bailey, P. R, Beauchemln, F, P. ~apinos, and D. W. Klick. Open-File Report 83-400 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. - - Reston 1983 TABLE OF CONTENTS Page I. Introduction 1 General Assessment of the Potential for Future Eruptions A. Mount St. Helens B. Other Cascade Volcanoes C, Other Western Conterminous U.S. Volcanoes D. Hawaii an Volcanoes E. Alaskan Volcanoes 111. Program bals, Objectives, and Components A. Volcanic Hazards Assessment B. Volcano Monitoring C. Fundamental Research 0. Emergency-Response Planning and Public Education IV. A Long-Range Volcano Hazards Program A. Funding his tor.^ B. General Objectives C. Specific Objectives D. Plans for Studies E. Resources F. International Cooperat ion V. The Federal Role 3 1. A. Public Need for Information about Impending 31 Volcanic Hazards B. Interstate Implications of Volcanic Disasters 32 C. Disruption of Regional and National Economies 32 0. Implication for Federal Lands 33 E. Mitigation of Subsequent Federal Disaster Assistance Costs 33 F. Need for an Integrated Research Program 33 Figure 1, Location of Potentially Hazardous Volcanoes in the U.S. 4 e Figure 2, History of Cascades Volcanism, 1800-1980 6 THE VOLCANO HAZARDS PROGRAM: OBJECTIVES AN0 LONG-RANGE PLANS I. INTRODUCTION Volcanoes and the products of volcanoes have a much greater impact on people and society than is generally perceived. Although commonly destructive, volcanic eruptions can be spectacularly beautiful and, more importantly, they have produced the very air we breathe, the water we drink, and our most fertile soils.
    [Show full text]
  • Lassen Domefield Telephoto View from Parhams Point on Hat Creek Rim (Old Station Quadrangle)
    May 19–20, 1915 flow upper Devastated Area Crescent Lassen dacite of Crater Peak Hill 8283 tuff cone of Raker Peak rhyodacite of Chaos Crags Krummholz Chaos Crags Mount Diller Chaos Crags dome E dome B dome F Domes of Sunflower Flat andesite of Raker Peak Hat Creek Hat Creek andesites of Badger Mountain Lassen domefield Telephoto view from Parhams Point on Hat Creek Rim (Old Station quadrangle). Remnants of the northeast lobe of the dacite flow of May 19–20, 1915 (unit d9) are exposed in the notch at the top of Lassen Peak, above the Devastated Area. The original blocky carapace of Lassen Peak (unit dl, 27±1 ka) has been removed by glaciation, whereas a blocky carapace is preserved on the unglaciated domes of Chaos Crags (units rcb, rce and rcf, 1,103±13 yr B.P.). Forested slopes in front of the domes of Chaos Crags are the rhyodacite domes of Sunflower Flat (unit rsf, 41±1 ka). Mount Diller is a remnant of the Brokeoff Volcano (590–390 ka). The slopes in front of Mount Diller, between Chaos Crags and Lassen Peak, are underlain primarily by the rhyodac- ite dome and flow of Krummholz (unit rkr, 43±2 ka, part of the Eagle Peak sequence) and the dacite of hill 8283 (unit d82, 261±5 ka, part of the Bumpass sequence) and are mantled by tephra of the Chaos Crags eruptions (unit pc, 1,103±13 yr B.P.). Crescent Crater (unit dc, 236±1 ka) is also part of the Bumpass sequence. Raker Peak is the vent for the andesite of Raker Peak (unit arp, 270±18 ka), part of the older Twin Lakes sequence.
    [Show full text]
  • Microbiology of Seamounts Is Still in Its Infancy
    or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The approval portionthe ofwith any articlepermitted only photocopy by is of machine, reposting, this means or collective or other redistirbution This article has This been published in MOUNTAINS IN THE SEA Oceanography MICROBIOLOGY journal of The 23, Number 1, a quarterly , Volume OF SEAMOUNTS Common Patterns Observed in Community Structure O ceanography ceanography S BY DAVID EmERSON AND CRAIG L. MOYER ociety. © 2010 by The 2010 by O ceanography ceanography O ceanography ceanography ABSTRACT. Much interest has been generated by the discoveries of biodiversity InTRODUCTION S ociety. ociety. associated with seamounts. The volcanically active portion of these undersea Microbial life is remarkable for its resil- A mountains hosts a remarkably diverse range of unusual microbial habitats, from ience to extremes of temperature, pH, article for use and research. this copy in teaching to granted ll rights reserved. is Permission S ociety. ociety. black smokers rich in sulfur to cooler, diffuse, iron-rich hydrothermal vents. As and pressure, as well its ability to persist S such, seamounts potentially represent hotspots of microbial diversity, yet our and thrive using an amazing number or Th e [email protected] to: correspondence all end understanding of the microbiology of seamounts is still in its infancy. Here, we of organic or inorganic food sources. discuss recent work on the detection of seamount microbial communities and the Nowhere are these traits more evident observation that specific community groups may be indicative of specific geochemical than in the deep ocean.
    [Show full text]
  • Talus Fabric, Clast Morphology, and Botanical Indicators of Slope Processes on the Chaos Crags (California Cascades), U.S.A
    Document generated on 09/27/2021 5:20 a.m. Géographie physique et Quaternaire Talus fabric, clast morphology, and botanical Indicators of Slope Processes on the Chaos Crags (California Cascades), U.S.A. Relevés botaniques, granulométrie, forme et organisation des débris sur les talus d'éboulis en tant qu'indicateurs des processus dans les Chaos Crags (monts Cascades, Californie, U.S.A.). Morfología y orientación de derrubios clásticos, e indicadores botánicos de procesos de pendiente en Chaos Crags (Cascades, California) Francisco L. Pérez Volume 52, Number 1, 1998 Article abstract The Chaos Crags, a group of dacite domes in the Cascades Mtns (California), URI: https://id.erudit.org/iderudit/004861ar were affected by volcanic debris avalanches ca. 1675 A.D.; these left a sizable DOI: https://doi.org/10.7202/004861ar deposit and a scar on the north mountain flank, now covered by talus. This report examines the fabric and morphology of talus debris, their spatial See table of contents variation, and the geomorphic processes presently affecting the slope. The talus presents a bi-segmented profile with a steep upper rectilinear segment and a shorter concave, basal zone. Debris are sorted by size both along (larger Publisher(s) clasts downslope) and across the talus (larger particles below the cliffs). Shape sorting is weaker, but clast sphericity increases, and elongation decreases, Les Presses de l'Université de Montréal toward the footslope. Upper-talus fabrics (long axes parallel to talus plane and slope) show that clasts there move by sliding, while basal blocks are deposited ISSN by rockfall, which causes more iso- tropic fabrics.
    [Show full text]
  • Lassen Volcanic National Park Created California
    LASSEMHVOLCAN«C !B8& UNITED STATES Historic Events DEPARTMENT OF THE Lassen INTERIOR OPENING Harold L. Ickes, Secretary AND CLOSING Volcanic 1820 Arguello exploring party first to record DATES DEPEND and name Lassen Peak (St. Joseph's UPON NATIONAL PARK Mountain). 19 40 WEATHER CALIFORNIA CONDITIONS 1850-51 Last lava flow from Cinder Cone. LASSEN PEAK, WITH LAKE HELEN NATIONAL PARK SERVICE IN FOREGROUND Arno B. Cammerer, Director C OJ^TEU^TS 1864 Helen Brodt, first white woman to climb Lassen Peak, made ascent with Major Reading. Lake Helen named for Eruption of Lassen Peak her. 1 in 1915 Cover ASSEN VOLCANIC NA­ GEOLOGIC HISTORY TIONAL PARK, in northeast­ The Cascade Range, which is vol­ Geologic History .... 3 ern California, was created by canic in origin, is not ancient, measured 1906 May 6. Lassen Peak and Cinder Cone L Lassen Peak and Vicinity . 3 act of Congress approved August 9, in geologic time. Its beginning dates National Monuments established. 1916, to preserve Lassen Peak and the back to the Pliocene period, about a Chaos Crags and Chaos area containing spectacular volcanic ex­ million years before the great ice age Jumbles 6 hibits which surrounds it. This impres­ or glacial epoch. The present range sive peak, from which the park derives rests upon a great platform of lava Ancestral Mount Tehama . 6 1914 May 30. First known eruption of Las­ sen Peak since coming of white man. its name, stands near the southern end flows, which issued from many vents Cinder Cone Area ... 7 of the Cascade Mountains and is the and fissures.
    [Show full text]
  • Mafic-Felsic Magma Interaction at Satsuma-Iwojima Volcano, Japan
    Earth Planets Space, 54, 303–325, 2002 Mafic-felsic magma interaction at Satsuma-Iwojima volcano, Japan: Evidence from mafic inclusions in rhyolites Genji Saito1, James A. Stimac2, Yoshihisa Kawanabe1, and Fraser Goff3 1Geological Survey of Japan, AIST, Central 7, Higashi 1-1-1, Tsukuba, Ibaraki 305-8567, Japan 2Philippine Geothermal, Inc., 12th Fl. Citibank Tower, 8741 Paseo de Roxas, Makati, Philippines 3EES-6, MS-D462, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A. (Received January 9, 2001; Revised January 25, 2002; Accepted February 4, 2002) Geochemical and petrographic studies of the rhyolites and mafic inclusions from Satsuma-Iwojima volcano were carried out in order to investigate evolution of a silicic, bimodal magma system during the post-caldera stage. Abundant mafic inclusions, which are fine-grained with vesicles in their cores, are present in the Showa- Iwojima rhyolitic lava. Inclusions with similar textures are found in Iwodake volcanic bombs but are less common than in the Showa-Iwojima lava. The major and trace element compositions of the inclusions plot along mixing lines connecting the host rhyolites with spatially and temporally associated basaltic to basaltic andesite magmas. Plagioclase phenocrysts in the inclusions have a large variation in core compositions (An42 to An96), and exhibit various zoning profiles and reaction textures, indicating they coexisted with melts ranging from basaltic to rhyolitic composition. Pyroxenes also exhibit a wide range in composition and a variety of zoning patterns consistent with multiple sources. These results suggest that a stratified magma chamber exists beneath the volcano, consisting of a lower basaltic layer, an upper rhyolitic layer and an episodically-present, thin middle layer of andesite.
    [Show full text]
  • PDF Linkchapter
    Index [Italic page numbers indicate major references] Abajo Mountains, 382, 388 Amargosa River, 285, 309, 311, 322, Arkansas River, 443, 456, 461, 515, Abort Lake, 283 337, 341, 342 516, 521, 540, 541, 550, 556, Abies, 21, 25 Amarillo, Texas, 482 559, 560, 561 Abra, 587 Amarillo-Wichita uplift, 504, 507, Arkansas River valley, 512, 531, 540 Absaroka Range, 409 508 Arlington volcanic field, 358 Acer, 21, 23, 24 Amasas Back, 387 Aromas dune field, 181 Acoma-Zuni scction, 374, 379, 391 Ambrose tenace, 522, 523 Aromas Red Sand, 180 stream evolution patterns, 391 Ambrosia, 21, 24 Arroyo Colorado, 395 Aden Crater, 368 American Falls Lava Beds, 275, 276 Arroyo Seco unit, 176 Afton Canyon, 334, 341 American Falls Reservoir, 275, 276 Artemisia, 21, 24 Afton interglacial age, 29 American River, 36, 165, 173 Ascension Parish, Louisana, 567 aggradation, 167, 176, 182, 226, 237, amino acid ash, 81, 118, 134, 244, 430 323, 336, 355, 357, 390, 413, geochronology, 65, 68 basaltic, 85 443, 451, 552, 613 ratios, 65 beds, 127,129 glaciofluvial, 423 aminostratigraphy, 66 clays, 451 Piedmont, 345 Amity area, 162 clouds, 95 aggregate, 181 Anadara, 587 flows, 75, 121 discharge, 277 Anastasia Formation, 602, 642, 647 layer, 10, 117 Agua Fria Peak area, 489 Anastasia Island, 602 rhyolitic, 170 Agua Fria River, 357 Anchor Silt, 188, 198, 199 volcanic, 54, 85, 98, 117, 129, Airport bench, 421, 423 Anderson coal, 448 243, 276, 295, 396, 409, 412, Alabama coastal plain, 594 Anderson Pond, 617, 618 509, 520 Alamosa Basin, 366 andesite, 75, 80, 489 Ash Flat, 364 Alamosa
    [Show full text]
  • Geochemistry of CO2-Rich Gases Venting from Submarine Volcanism
    Geochemistry of CO2-Rich Gases Venting From Submarine Volcanism: The Case of Kolumbo (Hellenic Volcanic Arc, Greece) Andrea Luca Rizzo, Antonio Caracausi, Valérie Chavagnac, Paraskevi Nomikou, Paraskevi Polymenakou, Manolis Mandalakis, Georgios Kotoulas, Antonios Magoulas, Alain Castillo, Danai Lampridou, et al. To cite this version: Andrea Luca Rizzo, Antonio Caracausi, Valérie Chavagnac, Paraskevi Nomikou, Paraskevi Poly- menakou, et al.. Geochemistry of CO2-Rich Gases Venting From Submarine Volcanism: The Case of Kolumbo (Hellenic Volcanic Arc, Greece). Frontiers in Earth Science, Frontiers Media, 2019, 7, 10.3389/feart.2019.00060. hal-02351384 HAL Id: hal-02351384 https://hal.archives-ouvertes.fr/hal-02351384 Submitted on 7 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License feart-07-00060 April 11, 2019 Time: 15:51 # 1 ORIGINAL RESEARCH published: 12 April 2019 doi: 10.3389/feart.2019.00060 Geochemistry of CO2-Rich Gases Venting From Submarine Volcanism: The Case of Kolumbo (Hellenic Volcanic Arc, Greece) Andrea Luca Rizzo1*, Antonio Caracausi1, Valérie Chavagnac2, Paraskevi Nomikou3, Paraskevi N. Polymenakou4, Manolis Mandalakis4, Georgios Kotoulas4, Antonios Magoulas4, Alain Castillo2, Danai Lampridou3, Nicolas Marusczak2 and Jeroen E.
    [Show full text]
  • Geologic Map of Lassen Volcanic National Park and Vicinity, California by Michael A
    Geologic Map of Lassen Volcanic National Park and Vicinity, California By Michael A. Clynne and L.J. Patrick Muffler Pamphlet to accompany Scientific Investigations Map 2899 Lassen Peak and the Devastated Area Aerial view of Lassen Peak and the proximal Devastated Area looking south. Area with sparse trees marks the paths of the avalanche and debris-flow deposits of May 19–20, 1915 (unitsw9 ) and the pyroclastic-flow and fluid debris-flow deposits of May 22, 1915 (unit pw2) (Clynne and others, 1999; Christiansen and others, 2002). Small dark crags just to right of the summit are remnants of the May 19–20, 1915, lava flow (unitd9 ). The composite dacite dome of Lassen Peak (unit dl, 27±1 ka) dominates the upper part of the view. Lithic pyroclastic-flow deposit (unitpfl ) from partial collapse of the dome of Lassen Peak is exposed in the canyon of the headwaters of Lost Creek in center of view. Ridges flanking central area are glacial moraines (unitQta ) thinly covered by deposits of the 1915 eruption of Lassen Peak (Christiansen and others, 2002). Small permanent snowfield is seen on the left lower slope of Lassen Peak. Area east of the snowfield is the rhyodacite lava flow of Kings Creek (unitrk , 35±1 ka, part of the Eagle Peak sequence). Dacite domes of Bumpass Mountain (unit db, 232±8 ka), Crescent Crater (unit dc, 236±1 ka), hill 8283 (unit d82, 261±5 ka), and Loomis Peak (unit rlm, ~300 ka) are part of the Bumpass sequence. Photograph by Michael A. Clynne. 2010 U.S. Department of the Interior U.S.
    [Show full text]