Received: 11 January 2018 Revised: 21 November 2018 Accepted: 1 December 2018 DOI: 10.1002/term.2791 RESEARCH ARTICLE Translating the application of transforming growth factor‐β1, chondroitinase‐ABC, and lysyl oxidase‐like 2 for mechanically robust tissue‐engineered human neocartilage Heenam Kwon1 | Siobhan A. O'Leary2 | Jerry C. Hu1 | Kyriacos A. Athanasiou1 1 Department of Biomedical Engineering, University of California, Irvine, Irvine, Abstract California Strategies to overcome the limited availability of human articular chondrocytes and 2 Align Technology, Inc., San Jose, California their tendency to dedifferentiate during expansion are required to advance their Correspondence clinical use and to engineer functional cartilage on par with native articular cartilage. Kyriacos A. Athanasiou, Department of Biomedical Engineering, University of This work sought to determine whether a biochemical factor (transforming California, Irvine, 3120 Natural Sciences II, growth factor‐β1 [T]), a biophysical agent (chondroitinase‐ABC [C]), and a collagen Irvine, CA 92697‐2715. Email:
[email protected] crosslinking enzyme (lysyl oxidase‐like 2 [L]) are efficacious in forming three‐ Funding information dimensional human neocartilage from expanded human articular chondrocytes. National Institutes of Health, Grant/Award Number: R01 AR067821 Among the treatment regimens, the combination of the three stimuli (TCL treatment) led to the most robust glycosaminoglycan content, total collagen content, and type II collagen production. In particular, TCL treatment synergistically increased tensile stiffness and strength of human neocartilage by 3.5‐fold and 3‐fold, respectively, over controls. Applied to two additional donors, the beneficial effects of TCL treatment appear to be donor independent; tensile stiffness and strength were increased by up to 8.5‐fold and 3‐fold, respectively, over controls.