Diseases of the Collagen Molecule C

Total Page:16

File Type:pdf, Size:1020Kb

Diseases of the Collagen Molecule C J Clin Pathol: first published as 10.1136/jcp.s3-12.1.82 on 1 January 1978. Downloaded from J. clin. Path., 31, Suppl. (Roy. Coll. Path.), 12, 82-94 Disease mechanisms Diseases of the collagen molecule C. I. LEVENE' From the Department ofPathology, University of Cambridge The title of this paper has been chosen to contrast Table 1 Effect of ,-aminopropionitrile (BAPN) with the term 'collagen diseases' by which Klemperer treatment on the lung collagen content ofsilicotic rats and his colleagues (Klemperer et al., 1942) designated Total (± SD) collagen content the group of diseases that included rheumatoid (mg/lung) arthritis among others. In 1959 the basic lesion in Right Left osteolathyrism-an experimental condition pro- duced in rats or chick embryos by treatment with Normal controls 21-28 ± 1-4 11-95 ± 1-13 Silicotic controls 76-10 ± 18-1 21-86 ± 3-15 the sweet pea seed 'lathyrus factor' (/3-aminopro- Silicotic treatment with BAPN 34-73 ± 1-8 16-75 ± 1-60 pionitrile (BAPN)) and signs that included slipped epiphyses, tendon avulsion, kyphoscoliosis, hernias, and rupture of the aorta-was shown to be a defect in the cross-linking of collagen (Levene and Gross, as the classic example of resolution and epidermis 1959). The mechanism was believed to be the and liver as two examples of regenerating tissues) blocking of aldehyde groups in the collagen molecule examples of the third phase, repair, are numberless. (Levene, 1962) and essential for normal cross-linking The process-organisation-results in scar forma- (Tanzer, 1973; Baileyet al., 1974). Shortly afterwards, tion in such varied conditions as the healing of a Pinnell and Martin (1968) isolated the enzyme re- surgical wound or fractured bone; mitral stenosis, copyright. sponsible for the normal formationof these aldehydic where the 'healing' fibrosis causes the major precursors of the cross links. This enzyme, called pathology; cirrhosis of the liver; corneal scarring lysyl oxidase, required copper as an essential cofactor resulting in blindness; rheumatoid arthritis, which and acted byoxidativelydeaminating specific peptidyl may produce joint fusion; Crohn's disease of the lysine or hydroxylysine residues in the collagen small bowel; stenosis of the urethra after gonococcal molecule to produce aldehydes which subsequently infection; peritoneal adhesions; pulmonary silicosis; with amino groups in and coronary atherosclerosis, resulting in angina formed either Schiff bases http://jcp.bmj.com/ adjoining chains or condensed by the aldol reaction pectoris. with adjoining aldehydic groups (Siegel et al., 1970; Clearly, while healing of a surgical wound, Siegel, 1974). fracture or a myocardial infarction by fibrosis is a The effects of lathyrism were so striking that it beneficial reaction, fibrosis elsewhere is often harm- seemed worthwhile using BAPN therapeutically in ful. It may result in malfunction of an organ, as in an experimental fibrotic condition to attempt to liver cirrhosis; or in the narrowing of the lumen of a inhibit or to slow down the degree of fibrosis, a bile duct, urethra, or coronary artery; or in the con- process which has generally been considered to be traction of scars such as result from skin burns. The on September 24, 2021 by guest. Protected inexorable and irreversible. Pulmonary silicosis in word 'repair', with its beneficial connotations, seems the rat was selected as a model for a severe, pro- less apt in these circumstances. It therefore seemed gressive, and irreversible fibrosis. Treatment of that an attempt to slow or inhibit fibrosis selectively silicotic rats with BAPN resulted in an approxi- might prove useful therapeutically. To achieve this mately 50% inhibition of the degree of pulmonary the pathway by which collagen is synthesised had to fibrosis, despite the fact that the body weight was be studied to seek further potential sites for thera- unaffected (Levene et al., 1968) (Table 1). peutic attack on the fibrotic process. During the past A consideration of the fibrotic process and the 15 years or so several groups have between them three major elements that lead to it after inflam- elucidated the biosynthetic pathway of collagen and mation-that is, resolution, regeneration, and repair also the nature of the lesions in a number of experi- -indicates that while examples of the first two mental and naturally occurring diseases which elements are sparse (for instance, lobar pneumonia illustrate errors in collagen biosynthesis (for reviews 'Member of the external staff of the Medical Research see: Grant and Prockop, 1972; Bornstein, 1974; Council. Gross, 1974; Prockop et al., 1976; Uitto and 82 J Clin Pathol: first published as 10.1136/jcp.s3-12.1.82 on 1 January 1978. Downloaded from Diseases of the collagen molecule 83 STAGES ENZYMES Precursor registration peptides Helical body 1 Polysomal synthesis of unhydroxylated collagen N- wC- \ Non -helical telopeptides OH Prolyl and Z Hydroxylation of certain Ilysyl proline and lysine residues hydroxylase OH OH OH-lysine + sugars 3 Glycosylation of certain Glycosylation hydroxylysine residues enzymes OH OH OH OH 4 Assembly of 3% Inside cell chains -: triple helix copyright. .--------------------------.Membrane- OH OH 5 Secretion of triple helica Av_~~~~ precursor to outside of cell Outside cell http://jcp.bmj.com/ OH 4 2800 A I OH 6. Excision of registration ~~m\-K%~OH / peptide -*tropocol agen |Procollagen| molecule .- > Ipeptidase OH on September 24, 2021 by guest. Protected f, 2800 A- + 7 Assembly of fibril by 1/4 stagger alignment I a 8 Cross-linking of ;1 Cross-link molecules in fibril Lysyl Ioxidasei Figure Diagram of collagen biosynthesis. J Clin Pathol: first published as 10.1136/jcp.s3-12.1.82 on 1 January 1978. Downloaded from 84 C. L Levene Lichtenstein, 1976; Grant and Jackson, 1976; aldehydes. Little is known of the mechanisms of Kivirikko and Risteli, 1976). collagen fibril weave. In tendon the fibrils run parallel to each other. In cornea sheets of fibrils are Collagen biosynthesis superimposed at right angles to each other in con- trast to neighbouring sclera where the collagen Collagen is unique because of the various post- bundles form a three-dimensional network similar to translational modifications involved in its biosyn- that found in dermis. thesis (Figure). The precursor which is synthesised It is relevant here to mention collagen polymor- on the ribosomes is larger than the product, as in the phism. At least four types of collagen are known. case of fibrin, and has large N- and C-terminal ex- There is probably a fifth-membrane, or M, collagen. tension peptides. It is important to note that Polymorphism means that a particular tissue con- although collagen contains about 12 % hydroxy- tains more than one type of collagen in health or, proline and 0 5% hydroxylysine, both of which are as we now suspect, in certain diseases (Nimni and unique to collagen, neither are incorporated as such Deshmukh, 1973). Meigel et al. (1977) illustrated this during synthesis. They are incorporated as proline or in human dermis using highly specific antisera to lysine and are therefore absent in the precursor. They various collagen types labelled by an immuno- appear only during the next stage, when selective fluorescent technique. They showed that the thick hydroxylation of specific peptidyl proline and lysine collagen bundles that constitute most of the dermis precursor residues occurs via their respective and which stain red with the van Gieson stain consist enzymes proly and lysyl hydroxylase. These two of type I collagen, while the subepidermal fibres, enzymes both require a-ketoglutarate, molecular which are much thinner and surround the pilo- oxygen, ferrous iron, and ascorbic acid as essential sebaceous units, the eccrine and apocrine glands, and cofactors. After that, galactose or galactose plus probably the blood vessels and which stain argyro- glucose are added to particular hydroxylysine philically-that is, reticulin fibres-consist of type residues by the two glycosylating enzymes, galac- III collagen. tosyl or glucosyl transferase, both of which require Mn++ as an essential cofactor. Although some Diseases of collagen molecule of known aetiology collagens-particularly kidney basement membrane copyright. -are highly glycosylated the actual role of glyco- I think the time is now ripe to use the information sylation remains unknown. After glycosylation on the collagen biosynthetic pathway as a basis for a assembly ofthethree precursora chainstakes place to logical classification of 'diseases of the collagen form the precursor procollagen molecule. Clearly, molecule'. In going through the various stages of from the work of Prockop's group (Berg and biosynthesis (Table 2) it may firstly be said that no Prockop, 1973), hydroxyproline plays a vital role in disease involving an error of translation has so far the stabilisation of the collagen molecule. In the been found. http://jcp.bmj.com/ absence of hydroxyproline the collagen molecule is rapidly degraded. FAULTS IN HYDROXYLATION The triple helix, still carrying the precursor Two diseases associated with faulty hydroxylation of peptides, is then secreted and the two extension proline and of lysine have been elucidated. Firstly, peptides cleaved extracellularly by an enzyme called scurvy-a disease where proline fails to become procollagen peptidase, so that the resultant polar hydroxylated (Gould, 1968; Barnes and Kodicek, tropocollagen molecules may align end to end and 1972; Barnes, 1975; Levene and Bates, 1975). side to side but staggered at one-quarter of their Ascorbic acid is essential for the maintenance of life. on September 24, 2021 by guest. Protected length to form a fibril exhibiting a 640 A axial Man cannot synthesise his own ascorbate since he is periodicity. These fibrils, however, possess no tensile deficient in one of the essential enzymes in his liver- strength so cannot fulfil their major tensile function gulonolactone oxidase. Like the guinea-pig, monkey, until they are cross-linked to each other. This takes and a number of other species he is obliged to take place via the enzyme lysyl oxidase (Pinnell and ascorbic acid in his diet.
Recommended publications
  • Boards' Fodder
    boards’ fodder Cosmeceuticals Contributed by Elisabeth Hurliman, MD, PhD; Jennifer Hayes, MD; Hilary Reich MD; and Sarah Schram, MD. INGREDIENT FUNCTION MECHANISM ASSOCIATIONS/SIDE EFFECTS Vitamin A/ Antioxidant (reduces free Affects gene transcription Comedolysis epidermal thickening, dermal Derivatives (retinal, radicals, lowers concentration differentiation and growth of regeneration, pigment lightening retinol, retinoic of matrix metalloproteinases cells in the skin acid, provitamin reduces collagen degradation) Side effects: Irritation, erythema, desquamation A, asthaxanthin, Normalizes follicular Elisabeth Hurliman, lutein) epithelial differentiation and keratinization MD, PhD, is a PGY-4 dermatology resident Vitamin C (L Secondary endogenous Ascorbic acid: necessary L-ascorbic acid + alpha-tocopherol (vitamin E)= ascorbic acid, antioxidant in skin cofactor for prolylhydroxylase UVA and UVB protection at University of tetrahexyldecyl and lysyl hydroxylase Minnesota department ascorbate) Lightens pigment Zinc, resveratrol, L-ergothioneine and tyrosine add of dermatology. (affects melanogenesis) L-ascorbic acid: scavenges to vitamin C bioavailability free oxygen radicals, Protects Vitamin E from oxidation stimulates collagen synthesis Improves skin texture and hydration May interrupt melanogenesis by interacting with copper ions Vitamin E/ Primary endogenous antioxidant Prevents lipid peroxidation; Alpha tocopherol is the most physiologically Tocopherols, in skin scavenges free oxygen active isomer Jennifer Hayes, MD, Tocotrienols
    [Show full text]
  • Report on the 8Th International Workshop on the CCN Family of Genes – Nice November 3–8, 2015
    J. Cell Commun. Signal. (2016) 10:77–86 DOI 10.1007/s12079-016-0317-y EDITORIAL Report on the 8th international workshop on the CCN family of genes – Nice November 3–8, 2015 Bernard Perbal1 & Lester Lau 2 & Karen Lyons3 & Satoshi Kubota4 & Herman Yeger5 & Gary Fisher6 Received: 29 January 2016 /Accepted: 29 January 2016 /Published online: 26 February 2016 # The International CCN Society 2016 The 8th international workshop on the CCN family of genes was able and enthusiastic about participating with us in the full was held for a second time in Nice, from November 3rd to 8th, sessions of the meeting. It is always a unique and fruitful 2015. Under particularly sunny and warm weather everyone opportunity for all participants, either young or established enjoyed the charms of the Mediterranean coastline. scientists, to share time with the awardees. Thanks to Annick Perbal, the social events during the meet- This year we also had the pleasure to welcome Robert ing were a real success and were truly well appreciated by all. Baxter, a former ICCNS-Springer awardee, who flew in from The choice of the Westminster hotel was an excellent one. Australia to join us and present a special conference on the role of This year the ICCNS honored and warmly welcomed IGFBP3 in the breast cancer response to DNA damaging Judith Campisi, the recipient of the 2015 ICCNS-Springer therapy. award, who accepted to present a conference on senescence Those who did not have the opportunity to make it at the time and cancer. We are grateful to Judith Campisi who came a Robert Baxter received the award in Sydney, could then enjoy long way from San Francisco, despite being under the weather sharing experiences and discuss possible levels of interactions with a bad cold and sore throat.
    [Show full text]
  • Undenatured Type II Collagen Mechanism of Action
    Undenatured Type II Collagen Mechanism of Action Page Executive Summary .................... 2 Animal Research ......................... 3 In Vitro Research ........................ 4 For Professional Use Only UC-II® Undenatured Type II Collagen (Mechanism of Action) Executive Summary UC-II® undenatured type II collagen is a patented form of collagen with undenatured (native) type II collagen for joint health support. A small amount (40 mg/day) is believed to work by inducing a process known as oral tolerance that ultimately engages the immune system in the repair of its own joint cartilage. Oral tolerance is an immune process that allows the body to distinguish between innocuous compounds such as dietary proteins and intestinal bacteria and potentially harmful foreign invaders. In the digestive tract, oral tolerance occurs in the gut-associated lymphoid tissue (GALT), considered to be the body’s most abundant lymphoid tissue. The GALT is primarily composed of mesenteric lymph nodes and patches of lymphoid tissue surrounding the small intestine called Peyer’s patches. It is in the Peyer’s patches, which contain an organized collection of immune cells, where most of the immune responses in the digestive tract are generated. Through a cascade of immunological events, Peyer’s patches take in and screen compounds from the gut lumen and, depending on the compound, turn the body’s immune response on or off (Weiner et al1). Researchers believe UC-II® undenatured type II collagen induces a form of oral tolerance that results from exposure to a compound in small amounts. More specifically, UC-II® undenatured type II collagen is believed to be transported across the gut epithelial cells to the underlying immune cells in the Peyer’s patches where it activates naive T cells to become T regulatory (Treg) cells that specifically target type II collagen.
    [Show full text]
  • Regulation of Procollagen Amino-Propeptide Processing During Mouse Embryogenesis by Specialization of Homologous ADAMTS Protease
    DEVELOPMENT AND DISEASE RESEARCH ARTICLE 1587 Development 133, 1587-1596 (2006) doi:10.1242/dev.02308 Regulation of procollagen amino-propeptide processing during mouse embryogenesis by specialization of homologous ADAMTS proteases: insights on collagen biosynthesis and dermatosparaxis Carine Le Goff1, Robert P. T. Somerville1, Frederic Kesteloot2, Kimerly Powell1, David E. Birk3, Alain C. Colige2 and Suneel S. Apte1,* Mutations in ADAMTS2, a procollagen amino-propeptidase, cause severe skin fragility, designated as dermatosparaxis in animals, and a subtype of the Ehlers-Danlos syndrome (dermatosparactic type or VIIC) in humans. Not all collagen-rich tissues are affected to the same degree, which suggests compensation by the ADAMTS2 homologs ADAMTS3 and ADAMTS14. In situ hybridization of Adamts2, Adamts3 and Adamts14, and of the genes encoding the major fibrillar collagens, Col1a1, Col2a1 and Col3a1, during mouse embryogenesis, demonstrated distinct tissue-specific, overlapping expression patterns of the protease and substrate genes. Adamts3, but not Adamts2 or Adamts14, was co-expressed with Col2a1 in cartilage throughout development, and with Col1a1 in bone and musculotendinous tissues. ADAMTS3 induced procollagen I processing in dermatosparactic fibroblasts, suggesting a role in procollagen I processing during musculoskeletal development. Adamts2, but not Adamts3 or Adamts14, was co-expressed with Col3a1 in many tissues including the lungs and aorta, and Adamts2–/– mice showed widespread defects in procollagen III processing. Adamts2–/– mice had abnormal lungs, characterized by a decreased parenchymal density. However, the aorta and collagen fibrils in the aortic wall appeared normal. Although Adamts14 lacked developmental tissue-specific expression, it was co-expressed with Adamts2 in mature dermis, which possibly explains the presence of some processed skin procollagen in dermatosparaxis.
    [Show full text]
  • Enzymatic Encoding Methods for Efficient Synthesis Of
    (19) TZZ__T (11) EP 1 957 644 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/10 (2006.01) C12Q 1/68 (2006.01) 01.12.2010 Bulletin 2010/48 C40B 40/06 (2006.01) C40B 50/06 (2006.01) (21) Application number: 06818144.5 (86) International application number: PCT/DK2006/000685 (22) Date of filing: 01.12.2006 (87) International publication number: WO 2007/062664 (07.06.2007 Gazette 2007/23) (54) ENZYMATIC ENCODING METHODS FOR EFFICIENT SYNTHESIS OF LARGE LIBRARIES ENZYMVERMITTELNDE KODIERUNGSMETHODEN FÜR EINE EFFIZIENTE SYNTHESE VON GROSSEN BIBLIOTHEKEN PROCEDES DE CODAGE ENZYMATIQUE DESTINES A LA SYNTHESE EFFICACE DE BIBLIOTHEQUES IMPORTANTES (84) Designated Contracting States: • GOLDBECH, Anne AT BE BG CH CY CZ DE DK EE ES FI FR GB GR DK-2200 Copenhagen N (DK) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • DE LEON, Daen SK TR DK-2300 Copenhagen S (DK) Designated Extension States: • KALDOR, Ditte Kievsmose AL BA HR MK RS DK-2880 Bagsvaerd (DK) • SLØK, Frank Abilgaard (30) Priority: 01.12.2005 DK 200501704 DK-3450 Allerød (DK) 02.12.2005 US 741490 P • HUSEMOEN, Birgitte Nystrup DK-2500 Valby (DK) (43) Date of publication of application: • DOLBERG, Johannes 20.08.2008 Bulletin 2008/34 DK-1674 Copenhagen V (DK) • JENSEN, Kim Birkebæk (73) Proprietor: Nuevolution A/S DK-2610 Rødovre (DK) 2100 Copenhagen 0 (DK) • PETERSEN, Lene DK-2100 Copenhagen Ø (DK) (72) Inventors: • NØRREGAARD-MADSEN, Mads • FRANCH, Thomas DK-3460 Birkerød (DK) DK-3070 Snekkersten (DK) • GODSKESEN,
    [Show full text]
  • Rational Design of Resveratrol O-Methyltransferase for the Production of Pinostilbene
    International Journal of Molecular Sciences Article Rational Design of Resveratrol O-methyltransferase for the Production of Pinostilbene Daniela P. Herrera 1 , Andrea M. Chánique 1,2 , Ascensión Martínez-Márquez 3, Roque Bru-Martínez 3 , Robert Kourist 2 , Loreto P. Parra 4,* and Andreas Schüller 4,5,* 1 Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820244, Chile; [email protected] (D.P.H.); [email protected] (A.M.C.) 2 Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; [email protected] 3 Department of Agrochemistry and Biochemistry, Faculty of Science and Multidisciplinary Institute for Environmental Studies “Ramon Margalef”, University of Alicante, 03690 Alicante, Spain; [email protected] (A.M.-M.); [email protected] (R.B.-M.) 4 Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820244, Chile 5 Department of Molecular Genetics and Microbiology, School of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8320000, Chile * Correspondence: [email protected] (L.P.P.); [email protected] (A.S.) Abstract: Pinostilbene is a monomethyl ether analog of the well-known nutraceutical resveratrol. Both compounds have health-promoting properties, but the latter undergoes rapid metabolization and has low bioavailability. O-methylation improves the stability and bioavailability of resveratrol. In plants, these reactions are performed by O-methyltransferases (OMTs). Few efficient OMTs that Citation: Herrera, D.P.; Chánique, monomethylate resveratrol to yield pinostilbene have been described so far.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Mutant IDH, (R)-2-Hydroxyglutarate, and Cancer
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer Julie-Aurore Losman1 and William G. Kaelin Jr.1,2,3 1Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA; 2Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA Mutations in metabolic enzymes, including isocitrate whether altered cellular metabolism is a cause of cancer dehydrogenase 1 (IDH1) and IDH2, in cancer strongly or merely an adaptive response of cancer cells in the face implicate altered metabolism in tumorigenesis. IDH1 of accelerated cell proliferation is still a topic of some and IDH2 catalyze the interconversion of isocitrate and debate. 2-oxoglutarate (2OG). 2OG is a TCA cycle intermediate The recent identification of cancer-associated muta- and an essential cofactor for many enzymes, including tions in three metabolic enzymes suggests that altered JmjC domain-containing histone demethylases, TET cellular metabolism can indeed be a cause of some 5-methylcytosine hydroxylases, and EglN prolyl-4-hydrox- cancers (Pollard et al. 2003; King et al. 2006; Raimundo ylases. Cancer-associated IDH mutations alter the enzymes et al. 2011). Two of these enzymes, fumarate hydratase such that they reduce 2OG to the structurally similar (FH) and succinate dehydrogenase (SDH), are bone fide metabolite (R)-2-hydroxyglutarate [(R)-2HG]. Here we tumor suppressors, and loss-of-function mutations in FH review what is known about the molecular mechanisms and SDH have been identified in various cancers, in- of transformation by mutant IDH and discuss their im- cluding renal cell carcinomas and paragangliomas.
    [Show full text]
  • Native Type II Collagen for Joint Health: Small Dose, Big Benefits
    Print this Document! Native Type II Collagen for Joint Health: Small Dose, Big Benefits By Cai Berg Collagens are the most abundant family of proteins in the extracellular matrix of connective tissues. They perform a variety of biological functions, the best known of which is providing the structural framework for tissues throughout the body. Based on their supramolecular organization, 26 different types of collagen have been identified, each with its own role and position in the body. Type II collagen is the main structural protein in the cartilage. It provides tensile strength and toughness to the tissue. Joint disorders involving inflammation and cartilage erosion, such as arthritis, are often characterized by an autoimmune component in which the immune system acts against the body's own type II collagen. Studies have shown that supplementing native (undenatured) type II collagen can help modulate the destructive immune response against endogenous type II collagen to support joint health and comfort.1 Not All Collagens Are Equal Collagen and collagen derivatives have been investigated and employed for joint nourishment for decades. Collagen products are defined by their degree of hydrolyzation and their molecular weight as either undenatured (native) collagen, collagen hydrolysate (hydrolyzed collagen) or gelatin. Undenatured (native) collagen has the highest molecular weight (300 kDA), while hydrozyled collagen ranges from 2 to 9 kDa. Unlike gelatin and hydrolyzed collagen supplements, which are intended to be absorbed to augment the collagen needs of various cells and tissues, native type II collagen supplements work through a mechanism known as oral tolerization. This immune-mediated process involves ingestion of an autoantigen (in this case, type II collagen) in order to suppress the immune response against endogenous tissue.
    [Show full text]
  • Cloning of ADAMTS2 Gene and Colony Formation Effect of ADAMTS2 in Saos-2 Cell Line Under Normal and Hypoxic Conditions, ADYU J SCI, 10(2), 413-426
    Aydogan Türkoğlu & Gültekin Tosun (2020) Cloning of ADAMTS2 Gene and Colony Formation Effect of ADAMTS2 in Saos-2 Cell Line Under Normal and Hypoxic Conditions, ADYU J SCI, 10(2), 413-426 Cloning of ADAMTS2 Gene and Colony Formation Effect of ADAMTS2 in Saos-2 Cell Line Under Normal and Hypoxic Conditions Sümeyye AYDOGAN TÜRKOĞLU1,*, Sinem GÜLTEKİN TOSUN2 1Balıkesir University, Faculty of Science and Literature, Department of Molecular Biology and Genetics, Balıkesir, Turkey [email protected], ORCID: 0000-0003-1754-0700 2Erciyes University, Institute of Health Sciences, Faculty of Veterinary Medicine, Department of Genetics, Kayseri, Turkey [email protected], ORCID: 0000-0002-3927-0089 Received: 03.05.2020 Accepted: 25.09.2020 Published: 30.12.2020 Abstract ADAMTS2 (a disintegrin and metalloproteinase with thrombospondin motifs 2), an N- propeptidase isoenzyme, is an enzyme involved in collagen biosynthesis by providing the amino ends of procollagen to be cut away. ADAMTS2 has anti-angiogenic activity as well as provides the processing of collagen. With this activity, it has become a target in cancer studies. Hypoxic regulation is a process that affects the expression of a large number of genes at the cellular level. Within the scope of our study, the cloning of the ADAMTS2 gene and its expression in Saos-2 (human bone carcinoma) cell line were performed ectopically. For this purpose, the transient transfection of the expression vector containing ADAMTS2 coding sequence was transfected by the calcium-phosphate precipitation method. Recombinant ADAMTS2 mRNA expression was checked by Real-Time PCR in Saos-2 cells. It was observed that there was a 50-fold increase in ADAMTS2 mRNA expression in the transfected Saos-2 cells compared to the control group.
    [Show full text]
  • Page Numbers in Bold Indicate Main Discus- Sion of Topic. Page Numbers
    168397_P489-520.qxd7.0:34 Index 6-2-04 26p 2010.4.5 10:03 AM Page 489 source of, 109, 109f pairing with thymine, 396f, 397, 398f in tricarboxylic acid cycle, 109–111, 109f Adenine arabinoside (vidarabine, araA), 409 Acetyl CoA-ACP acetyltransferase, 184 Adenine phosphoribosyltransferase (APRT), Index Acetyl CoA carboxylase, 183, 185f, 190 296, 296f in absorptive/fed state, 324 Adenosine deaminase (ADA), 299 allosteric activation of, 183–184, 184f deficiency of, 298, 300f, 301–302 allosteric inactivation of, 183, 184f gene therapy for, 485, 486f dephosphorylation of, 184 Adenosine diphosphate (ADP) in fasting, 330 in ATP synthesis, 73, 77–78, 78f Page numbers in bold indicate main discus- hormonal regulation of, 184, 184f isocitrate dehydrogenase activation by, sion of topic. Page numbers followed by f long-term regulation of, 184 112 denote figures. “See” cross-references direct phosphorylation of, 183–184 transport of, to inner mitochondrial short-term regulation of, 183–184, 184f membrane, 79 the reader to the synonymous term. “See Acetyl CoA carboxylase-2 (ACC2), 191 in tricarboxylic acid cycle regulation, 114, also” cross-references direct the reader to N4-Acetylcytosine, 292f 114f related topics. [Note: Positional and configura- N-Acetyl-D-glucosamine, 142 in urea cycle, 255–256 N-Acetylgalactosamine (GalNAc), 160, 168 ribosylation, 95 tional designations in chemical names (for N-Acetylglucosamindase deficiency, 164f Adenosine monophosphate (AMP; also called example, “3-“, “α”, “N-“, “D-“) are ignored in N-Acetylglucosamine (GlcNAc),
    [Show full text]
  • Review Article
    REVIEW ARTICLE COLLAGEN METABOLISM COLLAGEN METABOLISM Types of Collagen 228 Structure of Collagen Molecules 230 Synthesis and Processing of Procollagen Polypeptides 232 Transcription and Translation 233 Posttranslational Modifications 233 Extracellular Processing of Procollagen and Collagen Fibrillogenesis 240 Functions of Collagen in Connective rissue 243 Collagen Degradation 245 Regulation of the Metabolism of Collagen 246 Heritable Diseases of Collagen 247 Recessive Dermatosparaxis 248 Recessive Forms of EDS 251 EDS VI 251 EDS VII 252 EDS V 252 Lysyl Oxidase Deficiency in the Mouse 253 X-Linked Cutis Laxa 253 Menke's Kinky Hair Syndrome 253 Homocystinuria 254 EDS IV 254 Dominant Forms of EDS 254 Dominant Collagen Packing Defect I 255 Dominant and Recessive Forms of Osteogenesis Imperfecta 258 Dominant and Recessive Forms of Cutis Laxa 258 The Marfan Syndrome 259 Acquired Diseases and Repair Processes Affecting Collagen 259 Acquired Changes in the Types of Collagen Synthesis 260 Acquired Changes in Amounts of Collagen Synthesized 263 Acquired Changes in Hydroxylation of Proline and Lysine 264 Acquired Changes in Collagen Cross-Links 265 Acquired Defects in Collagen Degradation 267 Conclusion 267 Bibliography 267 Collagen Metabolism A Comparison of Diseases of Collagen and Diseases Affecting Collagen Ronald R. Minor, VMD, PhD COLLAGEN CONSTITUTES approximately one third of the body's total protein, and changes in synthesis and/or degradation of colla- gen occur in nearly every disease process. There are also a number of newly described specific diseases of collagen in both man and domestic animals. Thus, an understanding of the synthesis, deposition, and turnover of collagen is important for the pathologist, the clinician, and the basic scientist alike.
    [Show full text]