Report Classical Ehlers-Danlos Syndrome Caused by a Mutation In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Undenatured Type II Collagen Mechanism of Action
Undenatured Type II Collagen Mechanism of Action Page Executive Summary .................... 2 Animal Research ......................... 3 In Vitro Research ........................ 4 For Professional Use Only UC-II® Undenatured Type II Collagen (Mechanism of Action) Executive Summary UC-II® undenatured type II collagen is a patented form of collagen with undenatured (native) type II collagen for joint health support. A small amount (40 mg/day) is believed to work by inducing a process known as oral tolerance that ultimately engages the immune system in the repair of its own joint cartilage. Oral tolerance is an immune process that allows the body to distinguish between innocuous compounds such as dietary proteins and intestinal bacteria and potentially harmful foreign invaders. In the digestive tract, oral tolerance occurs in the gut-associated lymphoid tissue (GALT), considered to be the body’s most abundant lymphoid tissue. The GALT is primarily composed of mesenteric lymph nodes and patches of lymphoid tissue surrounding the small intestine called Peyer’s patches. It is in the Peyer’s patches, which contain an organized collection of immune cells, where most of the immune responses in the digestive tract are generated. Through a cascade of immunological events, Peyer’s patches take in and screen compounds from the gut lumen and, depending on the compound, turn the body’s immune response on or off (Weiner et al1). Researchers believe UC-II® undenatured type II collagen induces a form of oral tolerance that results from exposure to a compound in small amounts. More specifically, UC-II® undenatured type II collagen is believed to be transported across the gut epithelial cells to the underlying immune cells in the Peyer’s patches where it activates naive T cells to become T regulatory (Treg) cells that specifically target type II collagen. -
Bruch's Membrane Abnormalities in PRDM5-Related Brittle Cornea
Porter et al. Orphanet Journal of Rare Diseases (2015) 10:145 DOI 10.1186/s13023-015-0360-4 RESEARCH Open Access Bruch’s membrane abnormalities in PRDM5-related brittle cornea syndrome Louise F. Porter1,2,3, Roberto Gallego-Pinazo4, Catherine L. Keeling5, Martyna Kamieniorz5, Nicoletta Zoppi6, Marina Colombi6, Cecilia Giunta7, Richard Bonshek2,8, Forbes D. Manson1 and Graeme C. Black1,9* Abstract Background: Brittle cornea syndrome (BCS) is a rare, generalized connective tissue disorder associated with extreme corneal thinning and a high risk of corneal rupture. Recessive mutations in transcription factors ZNF469 and PRDM5 cause BCS. Both transcription factors are suggested to act on a common pathway regulating extracellular matrix genes, particularly fibrillar collagens. We identified bilateral myopic choroidal neovascularization as the presenting feature of BCS in a 26-year-old-woman carrying a novel PRDM5 mutation (p.Glu134*). We performed immunohistochemistry of anterior and posterior segment ocular tissues, as expression of PRDM5 in the eye has not been described, or the effects of PRDM5-associated disease on the retina, particularly the extracellular matrix composition of Bruch’smembrane. Methods: Immunohistochemistry using antibodies against PRDM5, collagens type I, III, and IV was performed on the eyes of two unaffected controls and two patients (both with Δ9-14 PRDM5). Expression of collagens, integrins, tenascin and fibronectin in skin fibroblasts of a BCS patient with a novel p.Glu134* PRDM5 mutation was assessed using immunofluorescence. Results: PRDM5 is expressed in the corneal epithelium and retina. We observe reduced expression of major components of Bruch’s membrane in the eyes of two BCS patients with a PRDM5 Δ9-14 mutation. -
Native Type II Collagen for Joint Health: Small Dose, Big Benefits
Print this Document! Native Type II Collagen for Joint Health: Small Dose, Big Benefits By Cai Berg Collagens are the most abundant family of proteins in the extracellular matrix of connective tissues. They perform a variety of biological functions, the best known of which is providing the structural framework for tissues throughout the body. Based on their supramolecular organization, 26 different types of collagen have been identified, each with its own role and position in the body. Type II collagen is the main structural protein in the cartilage. It provides tensile strength and toughness to the tissue. Joint disorders involving inflammation and cartilage erosion, such as arthritis, are often characterized by an autoimmune component in which the immune system acts against the body's own type II collagen. Studies have shown that supplementing native (undenatured) type II collagen can help modulate the destructive immune response against endogenous type II collagen to support joint health and comfort.1 Not All Collagens Are Equal Collagen and collagen derivatives have been investigated and employed for joint nourishment for decades. Collagen products are defined by their degree of hydrolyzation and their molecular weight as either undenatured (native) collagen, collagen hydrolysate (hydrolyzed collagen) or gelatin. Undenatured (native) collagen has the highest molecular weight (300 kDA), while hydrozyled collagen ranges from 2 to 9 kDa. Unlike gelatin and hydrolyzed collagen supplements, which are intended to be absorbed to augment the collagen needs of various cells and tissues, native type II collagen supplements work through a mechanism known as oral tolerization. This immune-mediated process involves ingestion of an autoantigen (in this case, type II collagen) in order to suppress the immune response against endogenous tissue. -
Vascular Phenotypes in Nonvascular Subtypes of the Ehlers-Danlos Syndrome: a Systematic Review
SYSTEMATIC REVIEW Official journal of the American College of Medical Genetics and Genomics Vascular phenotypes in nonvascular subtypes of the Ehlers-Danlos syndrome: a systematic review Sanne D’hondt, MSc1, Tim Van Damme, MD1 and Fransiska Malfait, MD, PhD1 Purpose: Within the spectrum of the Ehlers-Danlos syndromes (53%), frequently reported in musculocontractural and classical- (EDS), vascular complications are usually associated with the like EDS; intracranial hemorrhages (18%), with a high risk in vascular subtype of EDS. Vascular complications are also observed dermatosparaxis EDS; and arterial dissections (16%), frequently in other EDS subtypes, but the reports are anecdotal and the reported in kyphoscoliotic and classical EDS. Other, more minor, information is dispersed. To better document the nature of vascular vascular complications were reported in cardiac-valvular, arthro- complications among “nonvascular” EDS subtypes, we performed chalasia, spondylodysplastic, and periodontal EDS. a systematic review. Conclusion: Potentially life-threatening vascular complications are Methods: We queried three databases for English-language a rare but important finding in several nonvascular EDS sub- studies from inception until May 2017, documenting both types, highlighting a need for more systematic documentation. This phenotypes and genotypes of patients with nonvascular EDS review will help familiarize clinicians with the spectrum of vascular subtypes. The outcome included the number and nature of vascular complications in EDS and guide follow-up and management. complications. Genet Med advance online publication 5 October 2017 Results: A total of 112 papers were included and data were collected from 467 patients, of whom 77 presented with a vascular Key Words: connective tissue disorder; Ehlers-Danlos syndrome; phenotype. -
Reduction of Type V Collagen Using a Dominant-Negative
CORE Metadata, citation and similar papers at core.ac.uk Provided by PubMed Central Reduction of Type V Collagen Using a Dominant-negative Strategy Alters the Regulation of Fibrillogenesis and Results in the Loss of Corneal-Specific Fibril Morphology Jeffrey K. Marchant, Rita A. Hahn, Thomas F. Linsenmayer, and David E. Birk Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111 Abstract. A number of factors have been implicated in synthesized the truncated or(V) protein, and this was the regulation of tissue-specific collagen fibril diameter. detectable only intracellularly, in a distribution that Previous data suggest that assembly of heterotypic colocalized with lysosomes. To assess endogenous fibrils composed of two different fibrillar collagens rep- etl(V) protein levels, infected cell cultures were as- resents a general mechanism regulating fibril diameter. sayed, and these consistently demonstrated reductions Specifically, we hypothesize that type V collagen is re- relative to control virus-infected or uninfected cultures. quired for the assembly of the small diameter fibrils ob- Analyses of corneal fibril morphology demonstrated served in the cornea. To test this, we used a dominant- that the reduction in type V collagen resulted in the as- negative retroviral strategy to decrease the levels of sembly of large-diameter fibrils with a broad size distri- type V collagen secreted by chicken corneal fibroblasts. bution, characteristics similar to fibrils produced in The chicken or(V) collagen gene was cloned, and ret- connective tissues with low type V concentrations. Im- roviral vectors that expressed a polycistronic mRNA munoelectron microscopy demonstrated the amino- encoding a truncated otl(V) minigene and the reporter terminal domain of type V collagen was associated with gene LacZ were constructed. -
Understanding the Basis of Ehlers–Danlos Syndrome in the Era of the Next-Generation Sequencing
Archives of Dermatological Research (2019) 311:265–275 https://doi.org/10.1007/s00403-019-01894-0 REVIEW Understanding the basis of Ehlers–Danlos syndrome in the era of the next-generation sequencing Francesca Cortini1,2 · Chiara Villa3 · Barbara Marinelli1 · Romina Combi3 · Angela Cecilia Pesatori1 · Alessandra Bassotti4 Received: 29 July 2018 / Revised: 26 November 2018 / Accepted: 12 February 2019 / Published online: 2 March 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Ehlers–Danlos syndrome (EDS) is a clinically and genetically heterogeneous group of heritable connective tissue disorders (HCTDs) defined by joint laxity, skin alterations, and joint hypermobility. The latest EDS classification recognized 13 sub- types in which the clinical and genetic phenotypes are often overlapping, making the diagnosis rather difficult and strength- ening the importance of the molecular diagnostic confirmation. New genetic techniques such as next-generation sequencing (NGS) gave the opportunity to identify the genetic bases of unresolved EDS types and support clinical counseling. To date, the molecular defects have been identified in 19 genes, mainly in those encoding collagen, its modifying enzymes or other constituents of the extracellular matrix (ECM). In this review we summarize the contribution of NGS technologies to the current knowledge of the genetic background in different EDS subtypes. Keywords Ehlers–Danlos syndrome · Heterogeneity · Heritable connective tissue disorders Introduction in 1988, represents the first attempt to classify EDS, recog- nizing 11 EDS subtypes [4], defined by Roman numerals and Ehlers–Danlos syndrome (EDS) comprises a clinically and classified according to clinical findings and the inheritance heterogeneous group of heritable connective tissue disor- pattern. -
Collagen Tissue Engineering: Development of Novel Biomaterials and Applications
0031-3998/08/6305-0492 Vol. 63, No. 5, 2008 PEDIATRIC RESEARCH Printed in U.S.A. Copyright © 2008 International Pediatric Research Foundation, Inc. Collagen Tissue Engineering: Development of Novel Biomaterials and Applications LIAN CEN, WEI LIU, LEI CUI, WENJIE ZHANG, AND YILIN CAO Department of Plastic and Reconstructive Surgery [W.L., L.C., W.Z., Y.C.], Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Tissue Engineering Center of China [L.C., W.L., L.C., W.Z., Y.C.], Shanghai 200235, China ABSTRACT: Scientific investigations involving collagen have in- regeneration is to restore both the structural integrity and the spired tissue engineering and design of biomaterials since collagen vivid remodeling process of native ECM, especially restoring the fibrils and their networks primarily regulate and define most tissues. delicate collagen networks under which normal physiologic re- The collagen networks form a highly organized, three-dimensional generation occurs. architecture to entrap other ingredients. Biomaterials are expected to Collagen molecules have a triple-helical structure and the function as cell scaffolds to replace native collagen-based extracel- lular matrix. The composition and properties of biomaterials used as presence of 4-hydroxyproline resulting from a posttransla- scaffold for tissue engineering significantly affect the regeneration of tional modification of peptide-bound prolyl residues provides neo-tissues and influence the conditions of collagen engineering. The a distinctive marker of these molecules (2). To date, 28 complex scenario of collagen characteristics, types, fibril arrange- collagen types have been identified; I, II, III, and V are the ment, and collagen structure-related functions (in a variety of con- main types that make up the essential part of collagen in bone, nective tissues including bone, cartilage, tendon, skin and cornea) are cartilage, tendon, skin, and muscle. -
Human Bronchial Fibroblasts Exhibit a Mesenchymal Stem Cell Phenotype and Multilineage Differentiating Potentialities
Laboratory Investigation (2005) 85, 962–971 & 2005 USCAP, Inc All rights reserved 0023-6837/05 $30.00 www.laboratoryinvestigation.org Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities Federica Sabatini1,3, Loredana Petecchia1, Manuela Tavian2, Vanina Jodon de Villeroche´3, Giovanni A Rossi1 and Danie`le Brouty-Boye´3 1Pulmonary Disease Unit, G. Gaslini Institute, Genoa, Italy; 2INSERM U506, IFR Andre´ Lwoff, Universite´ Paris XI, Villejuif, France and 3INSERM U602, IFR Andre´ Lwoff, Universite´ Paris XI, Villejuif, France Mesenchymal stem cells (MSCs) are multipotent cells able to differentiate along different pathways including chondrogenic, osteogenic and adipogenic lineages. MSCs with a fibroblast-like morphology have been identified in human fetal lung. However, their frequency and characterization in human adult lung have not been yet evaluated. Therefore, we analyzed the mesenchymal phenotype and differentiation ability of cultured human adult bronchial fibroblast-like cells (Br) in comparison with those of mesenchymal cell progenitors isolated from fetal lung (ICIG7) and adult bone marrow (BM212) tissues. Surface immunophenotyping by flow cytometry revealed a similar expression pattern of antigens characteristic of marrow-derived MSCs, including CD34 (À), CD45 (À), CD90/Thy-1 ( þ ), CD73/SH3, SH4 ( þ ), CD105/SH2 ( þ ) and CD166/ALCAM ( þ ) in Br, ICIG7 and BM212 cells. There was one exception, STRO-1 antigen, which was only weakly expressed in Br cells. Analysis of cytoskeleton and matrix composition by immunostaining showed that lung and marrow-derived cells homogeneously expressed vimentin and nestin proteins in intermediate filaments while they were all devoid of epithelial cytokeratins. Additionally, a-smooth muscle actin was also present in microfilaments of a low number of cells. -
Matrix Cross-Linking–Mediated Mechanotransduction Promotes Posttraumatic Osteoarthritis
Matrix cross-linking–mediated mechanotransduction promotes posttraumatic osteoarthritis Jin-Hong Kima,b, Gyuseok Leea, Yoonkyung Wona, Minju Leea, Ji-Sun Kwaka, Churl-Hong Chunc, and Jang-Soo Chuna,1 aSchool of Life Sciences, Cell Dynamics and Integrative Aging Research Centers, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; bDepartment of Biological Sciences, Seoul National University, Seoul 151-747, Korea; and cDepartment of Orthopedic Surgery, Wonkwang University School of Medicine, Iksan 570-711, Korea Edited by Gregg L. Semenza, Johns Hopkins University School of Medicine, Baltimore, MD, and approved June 23, 2015 (received for review March 22, 2015) Osteoarthritis (OA) is characterized by impairment of the load- In this study, we sought to determine molecular mechanisms bearing function of articular cartilage. OA cartilage matrix un- leading to ECM remodeling over the course of OA development dergoes extensive biophysical remodeling characterized by de- and to investigate how mechanical alterations in cartilage matrix creased compliance. In this study, we elucidate the mechanistic affect chondrocyte metabolism and regulate OA pathogenesis. origin of matrix remodeling and the downstream mechanotrans- duction pathway and further demonstrate an active role of this Results mechanism in OA pathogenesis. Aging and mechanical stress, the Aging-Associated Accumulation of Advanced Glycation End-Products two major risk factors of OA, promote cartilage matrix stiffening Drives Matrix Stiffening. Aging is one of the most prominent risk through the accumulation of advanced glycation end-products factors contributing to OA (4, 5). Aging processes have been and up-regulation of the collagen cross-linking enzyme lysyl implicated in elevating ECM stiffness in various tissues (9). -
Re-Evaluation of Lysyl Hydroxylation in the Collagen Triple Helix
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.16.877852; this version posted December 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Re-evaluation of lysyl hydroxylation in the collagen triple helix: lysyl hydroxylase 1 and prolyl 3- 2 hydroxylase 3 have site-differential and collagen type-dependent roles in lysine hydroxylation. 3 4 Short title: Two distinct mechanisms of LH1and P3H3 during collagen biosynthesis in the rER 5 6 Yoshihiro Ishikawa1,2,#,*, Yuki Taga3, Keith Zientek2, $, Nobuyo Mizuno2, ¶, Antti M. Salo4, Olesya 7 Semenova2, Sara Tufa2, Douglas R. Keene2, Paul Holden2, Kazunori Mizuno3, Johanna Myllyharju4 and 8 Hans Peter Bächinger1 9 10 1: Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, 11 Oregon, USA, 2: Shriners Hospital for Children, Research Department, Portland, Oregon, USA, 3: Nippi 12 Research Institute of Biomatrix, Ibaraki, Japan, 4: Oulu Center for Cell-Matrix Research, Biocenter Oulu 13 and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland. 14 15 Present address; #: Departments of Ophthalmology, University of California San Francisco, School of 16 Medicine, California, USA, $: Proteomics core facility, Oregon Health & Science University, Portland, 17 Oregon, USA, ¶: Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, 18 Oregon, USA. 19 20 *: Corresponding author: Yoshihiro Ishikawa, Ph.D., Department of Ophthalmology, University of 21 California, San Francisco, School of Medicine, California, USA; 22 Tel: (503) 866-5940, E-mail: [email protected] 23 ORCID-ID: https://orcid.org/0000-0003-2013-0518 24 25 Competing Interests: The authors declare that they have no competing interests related to this work 1 bioRxiv preprint doi: https://doi.org/10.1101/2019.12.16.877852; this version posted December 16, 2019. -
Lysyl Hydroxylases 1 and 2
D 1159 OULU 2012 D 1159 UNIVERSITY OF OULU P.O.B. 7500 FI-90014 UNIVERSITY OF OULU FINLAND ACTA UNIVERSITATIS OULUENSIS ACTA UNIVERSITATIS OULUENSIS ACTA SERIES EDITORS DMEDICA Marjo Hyry ASCIENTIAE RERUM NATURALIUM Marjo Hyry Senior Assistant Jorma Arhippainen LYSYL HYDROXYLASES 1 AND 2 BHUMANIORA Lecturer Santeri Palviainen CHARACTERIZATION OF THEIR IN VIVO ROLES IN MOUSE AND THE MOLECULAR LEVEL CTECHNICA CONSEQUENCES OF THE LYSYL HYDROXYLASE 2 Professor Hannu Heusala MUTATIONS FOUND IN BRUCK SYNDROME DMEDICA Professor Olli Vuolteenaho ESCIENTIAE RERUM SOCIALIUM Senior Researcher Eila Estola FSCRIPTA ACADEMICA Director Sinikka Eskelinen GOECONOMICA Professor Jari Juga EDITOR IN CHIEF Professor Olli Vuolteenaho PUBLICATIONS EDITOR Publications Editor Kirsti Nurkkala UNIVERSITY OF OULU GRADUATE SCHOOL; UNIVERSITY OF OULU, FACULTY OF MEDICINE, INSTITUTE OF BIOMEDICINE, ISBN 978-951-42-9841-7 (Paperback) DEPARTMENT OF MEDICAL BIOCHEMISTRY AND MOLECULAR BIOLOGY; ISBN 978-951-42-9842-4 (PDF) BIOCENTER OULU; ISSN 0355-3221 (Print) CENTER FOR CELL-MATRIX RESEARCH ISSN 1796-2234 (Online) ACTA UNIVERSITATIS OULUENSIS D Medica 1159 MARJO HYRY LYSYL HYDROXYLASES 1 AND 2 Characterization of their in vivo roles in mouse and the molecular level consequences of the lysyl hydroxylase 2 mutations found in Bruck syndrome Academic dissertation to be presented with the assent of the Doctoral Training Committee of Health and Biosciences of the University of Oulu for public defence in Auditorium F101 of the Department of Physiology (Aapistie 7), on 8 June 2012, at 10 a.m. UNIVERSITY OF OULU, OULU 2012 Copyright © 2012 Acta Univ. Oul. D 1159, 2012 Supervised by Professor Johanna Myllyharju Reviewed by Professor Heather Yeowell Professor Helen Skaer ISBN 978-951-42-9841-7 (Paperback) ISBN 978-951-42-9842-4 (PDF) ISSN 0355-3221 (Printed) ISSN 1796-2234 (Online) Cover Design Raimo Ahonen JUVENES PRINT TAMPERE 2012 Hyry, Marjo, Lysyl hydroxylases 1 and 2. -
Collagens—Structure, Function, and Biosynthesis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of East Anglia digital repository Advanced Drug Delivery Reviews 55 (2003) 1531–1546 www.elsevier.com/locate/addr Collagens—structure, function, and biosynthesis K. Gelsea,E.Po¨schlb, T. Aignera,* a Cartilage Research, Department of Pathology, University of Erlangen-Nu¨rnberg, Krankenhausstr. 8-10, D-91054 Erlangen, Germany b Department of Experimental Medicine I, University of Erlangen-Nu¨rnberg, 91054 Erlangen, Germany Received 20 January 2003; accepted 26 August 2003 Abstract The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the distribution and function of various collagen types in different tissues. It introduces their basic structural subunits and points out major steps in the biosynthesis and supramolecular processing of fibrillar collagens as prototypical members of this protein family. A final outlook indicates the importance of different collagen types not only for the understanding of collagen-related diseases, but also as a basis for the therapeutical use of members of this protein family discussed in other chapters of this issue. D 2003 Elsevier B.V. All rights reserved. Keywords: Collagen; Extracellular matrix; Fibrillogenesis; Connective tissue Contents 1. Collagens—general introduction ............................................. 1532 2. Collagens—the basic structural module.........................................