Display PDF in Separate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae -
Biodiversity and Distribution of Cyanobacteria at Dronning Maud Land, East Antarctica
ACyctaan oBboatcatneriicaa eMasat lAacnittaarnctai c3a3. 17-28 Málaga, 201078 BIODIVERSITY AND DISTRIBUTION OF CYANOBACTERIA AT DRONNING MAUD LAND, EAST ANTARCTICA Shiv Mohan SINGH1, Purnima SINGH2 & Nooruddin THAJUDDIN3* 1National Centre for Antarctic and Ocean Research, Headland Sada, Vasco-Da-Gama, Goa 403804, India. 2Department of Biotechnology, Purvanchal University, Jaunpur, India. 3Department of Microbiology, Bharathidasan University, Tiruchirappalli – 620 024, Tamilnadu, India. *Author for correspondence: [email protected] Recibido el 20 febrero de 2008, aceptado para su publicación el 5 de junio de 2008 Publicado "on line" en junio de 2008 ABSTRACT. Biodiversity and distribution of cyanobacteria at Dronning Maud Land, East Antarctica.The current study describes the biodiversity and distribution of cyanobacteria from the natural habitats of Schirmacher land, East Antarctica surveyed during 23rd Indian Antarctic Expedition (2003–2004). Cyanobacteria were mapped using the Global Positioning System (GPS). A total of 109 species (91 species were non-heterocystous and 18 species were heterocystous) from 30 genera and 9 families were recorded; 67, 86 and 14 species of cyanobacteria were identified at altitudes of sea level >100 m, 101–150 m and 398–461 m, respectively. The relative frequency and relative density of cyanobacterial populations in the microbial mats showed that 11 species from 8 genera were abundant and 6 species (Phormidium angustissimum, P. tenue, P. uncinatum Schizothrix vaginata, Nostoc kihlmanii and Plectonema terebrans) could be considered as dominant species in the study area. Key words. Antarctic, cyanobacteria, biodiversity, blue-green algae, Schirmacher oasis, Species distribution. RESUMEN. Biodiversidad y distribución de las cianobacterias de Dronning Maud Land, Antártida Oriental. En este estudio se describe la biodiversidad y distribución de las cianobacterias presentes en los hábitats naturales de Schirmacher, Antártida Oriental, muestreados durante la 23ª Expedición India a la Antártida (2003-2004). -
Phycogeography of Freshwater Phytoplankton: Traditional Knowledge and New Molecular Tools
Hydrobiologia (2016) 764:3–27 DOI 10.1007/s10750-015-2259-4 PHYTOPLANKTON & SPATIAL GRADIENTS Review Paper Phycogeography of freshwater phytoplankton: traditional knowledge and new molecular tools Judit Padisa´k • Ga´bor Vasas • Ga´bor Borics Received: 29 November 2014 / Revised: 6 March 2015 / Accepted: 14 March 2015 / Published online: 31 March 2015 Ó Springer International Publishing Switzerland 2015 Abstract ‘‘Everything is everywhere, but environ- relevant for biogeography of freshwater phytoplank- ments selects.’’ Is this true? The cosmopolitan nature ton. The following topics are considered: dispersal of algae, including phytoplankton, has been highlight- agents and distances; survival strategies of species; ed in many textbooks and burnt into the minds of geographic distribution of different types; patterns of biologists during their studies. However, the accumu- invasions; tools of molecular genetics; and metabo- lating knowledge on the occurrence of individual lomics to explore dispersal patterns, island biogeog- phytoplankton species in habitats where they have not raphy, and associated species–area relationships for been seen before, reports on invasive phytoplankton algae. species, and the increasing number of papers with phylogenetic trees and tracing secondary metabolites, Keywords Distribution Á Dispersal Á Invasion Á especially cyanotoxins, contradict. Phytoplankton Island biogeography Á Genomics Á Bloom-forming species, with rare exceptions, are neither cosmopoli- cyanobacteria tan, nor ubiquists. In this review paper, -
KOCH, Arthur Richard, Jr., 1946- FLORIST ICS and ECOLOGY of ALGAE on SANDSTONE CLIFFS in EAST-CENTRAL and SOUTHEASTERN OHIO
77-2432 KOCH, Arthur Richard, Jr., 1946- FLORIST ICS AND ECOLOGY OF ALGAE ON SANDSTONE CLIFFS IN EAST-CENTRAL AND SOUTHEASTERN OHIO. The Ohio State University, Ph.D., 1976 Botany Xerox University Microfilms, Ann Arbor, Michigan 48106 FLORISTICS AND ECOLOGY OF ALGAE ON SANDSTONE CLIFFS IN EAST-CENTRAL AND SOUTHEASTERN OHIO DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Arthur Richard Koch, Jr., B.S., M.S. ***** The Ohio State University 1976 Reading Committee: Approved By Clarence E. Taft H. P. Hostetter Emanuel D. Rudolph Adviser / Department of Botany ACKNOWLEDGMENTS I am deeply grateful to Dr* Clarence E. Taft for his advice and encouragement throughout this investigation, and for his guidance of my studies for the past four years. I also acknowledge the many helpful suggestions of Dr* Donn C. Young in the initial planning of computer programs, the permission of the Ohio Department of Natural Resources to collect in the Hocking Hills State Parks, and the permission of the Ohio Historical Society to collect at Leo Petroglyph State Memorial. This study was aided by an Ohio Biological Survey Grant Finally, I thank my wife, Linda, for the many times in which she has helped me in the field, as well as in the prep aration of this manuscript. Her patience, love, and under standing have made the work expended in this study truly worthwhile. VITA February 2if, 1%6, • • Born— Schenectady, New York August, 1967 • • • • . B.S. (Botany), The University of Oklahoma, Norman, Oklahoma 1967-1968* •. -
Some New Myxophyceae from Szechwan Province, China
SOME NEW MYXOPHYCEAE FROM SZECHWAN PROVINCE, CHINA HAO-JAN CHU National University, Nanking, China During a ten-year period (1937-1946) of collecting algae in the mountainous Szechwan Province of China, the writer secured several new species of Myxophyceae. Six of these were collected from Mt. Omei in August, 1942, and have already been described (Chu, 1944). Additional collections from different localities in the province have brought to light other apparently undescribed Myxophyceae. In this paper one genus, five species and two varieties are considered as new to science; two species have been placed in a genus other than the one in which they were originally described. They all belong to the phylum Myxophyta, class Myxophy- ceae, order Chroococcales; the first six described in the paper are in the family Chroococcaceae and the remaining three in the Entophysalidaceae. 1. Chroococcus limneticus Lemm. var. multicellularis Chu var. nov. Figures 5, 6 Cellulae sphericae ad semisphericae, 4-128 vel plures in communi involucro gelatinoso, spherico, pyramidali quadratove; vagina lata, non lamellata, 4-8-16 cellulae plerumque confertae et in latiroe vagina gelatinosa, globosa, cinceracea subpurpureave inclusae; 8-16 coloniae vicissim in matris vagina gelatinosa inclusae; cellulae 5-9/x diam., intus pallide aut nitide caeruleo-virides, homogeneae. Cells spherical to semispherical, 4-128 or more in a common spherical, pyramidal or quadrate gelatinous envelope; sheath wide, not lamellated, 4-8-16 cells generally lying close together and enclosed in a wider ball-shaped pale-gray or pale-purple gelatinous sheath; 8-16 colonies in turn enclosed in the mother gelatinous envelope; cells 5-9/* in diameter; cell contents pale to bright green, homogeneous. -
Composition and Distribution of Subaerial Algal Assemblages in Galway City, Western Ireland
Cryptogamie, Algol., 2003, 24 (3): 245-267 © 2003 Adac. Tous droits réservés Composition and distribution of subaerial algal assemblages in Galway City, western Ireland Fabio RINDI* and Michael D. GUIRY Department of Botany, Martin Ryan Institute, National University of Ireland, Galway, Ireland (Received 5 October 2002, accepted 26 March 2003) Abstract – The subaerial algal assemblages of Galway City, western Ireland, were studied by examination of field collections and culture observations; four main types of assem- blages were identified. The blue-green assemblage was the most common on stone and cement walls; it was particularly well-developed at sites characterised by poor water drainage. Gloeocapsa alpina and other species of Gloeocapsa with coloured envelopes were the most common forms; Tolypothrix byssoidea and Nostoc microscopicum were also found frequently. The Trentepohlia assemblage occurred also on walls; it was usually produced by large growths of Trentepohlia iolithus, mainly on concrete. Trentepohlia cf. umbrina and Printzina lagenifera were less common and occurred on different substrata. The prasio- lalean assemblage was the community usually found at humid sites at the basis of many walls and corners. Rosenvingiella polyrhiza, Prasiola calophylla and Phormidium autumnale were the most common entities; Klebsormidium flaccidum and Prasiola crispa were locally abundant at some sites. The Desmococcus assemblage was represented by green growths at the basis of many trees and electric-light poles and less frequently occurred at the bases of walls. Desmococcus olivaceus was the dominant form, sometimes with Chlorella ellipsoidea. Trebouxia cf. arboricola, Apatococcus lobatus and Trentepohlia abietina were the most common corticolous algae. Fifty-one subaerial algae were recorded; most did not exhibit any obvious substratum preference, the Trentepohliaceae being the only remarkable excep- tion. -
« Ecosystems, Biodiversity and Eco-Development »
University of Sciences & Technology Houari Boumediene, Algiers- Algeria Faculty of Biological Sciences Laboratory of Dynamic & Biodiversity « Ecosystems, Biodiversity and Eco-development » 03-05 NOVEMBER, 2017 - TAMANRASSET - ALGERIA Publisher : Publications Direction. Chlef University (Algeria) ii COPYRIGHT NOTICE Copyright © 2020 by the Laboratory of Dynamic & Biodiversity (USTHB, Algiers, Algeria). Permission to make digital or hard copies of part or all of this work use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than Laboratory of Dynamic & Biodiversity must be honored. Patrons University of Sciences and Technologies Faculty of Biological Sciences Houari Boumedienne of Algiers, Algeria Sponsors Supporting Publisher Edition Hassiba Benbouali University of Chlef (Algeria) “Revue Nature et Technologie” NATEC iii COMMITTEES Organizing committee: ❖ President: Pr. Abdeslem ARAB (Houari Boumedienne University of Sciences and Tehnology USTHB, Algiers ❖ Honorary president: Pr. Mohamed SAIDI (Rector of USTHB) Advisors: ❖ Badis BAKOUCHE (USTHB, Algiers- Algeria) ❖ Amine CHAFAI (USTHB, Algiers- Algeria) ❖ Amina BELAIFA BOUAMRA (USTHB, Algiers- Algeria) ❖ Ilham Yasmine ARAB (USTHB, Algiers- Algeria) ❖ Ahlem RAYANE (USTHB, Algiers- Algeria) ❖ Ghiles SMAOUNE (USTHB, Algiers- Algeria) ❖ Hanane BOUMERDASSI (USTHB, Algiers- Algeria) Scientific advisory committee ❖ Pr. ABI AYAD S.M.A. (Univ. Oran- Algeria) ❖ Pr. ABI SAID M. (Univ. Beirut- Lebanon) ❖ Pr. ADIB S. (Univ. Lattakia- Syria) ❖ Pr. CHAKALI G. (ENSSA, Algiers- Algeria) ❖ Pr. CHOUIKHI A. (INOC, Izmir- Turkey) ❖ Pr. HACENE H. (USTHB, Algiers- Algeria) ❖ Pr. HEDAYATI S.A. (Univ. Gorgan- Iran) ❖ Pr. KARA M.H. (Univ. Annaba- Algeria) ❖ Pr. -
Name of the Manuscript
Available online: August 25, 2018 Commun.Fac.Sci.Univ.Ank.Series C Volume 27, Number 2, Pages 1-16 (2018) DOI: 10.1501/commuc_0000000193 ISSN 1303-6025 http://communications.science.ankara.edu.tr/index.php?series=C THE INVESTIGATION ON THE BLUE-GREEN ALGAE OF MOGAN LAKE, BEYTEPE POND AND DELİCE RIVER (KIZILIRMAK) AYLA BATU and NURAY (EMİR) AKBULUT Abstract. In this study Cyanobacteria species of Mogan Lake, Beytepe Pond and Delice River were taxonomically investigated. The cyanobacteria specimens have been collected by monthly intervals from Mogan Lake and Beytepe Pond between October 2010 and September 2011. For the Delice River the laboratory samples which were collected by montly intervals between July 2007-May 2008 have been evaluated.Totally 15 genus and 41 taxa were identified, 22 species from Mogan lake, 19 species from Beytepe pond and 13 species from Delice river respectively. During the study species like Planktolyngbya limnetica and Aphanocapsa incerta were frequently observed for all months in Mogan Lake, Chrococcus turgidus and Chrococcus minimus were abundant in Beytepe Pond while Kamptonema formosum was dominant in Delice River. As a result species diversity and density were generally rich in Mogan Lake during fall and summer season while very low in the Delice River during winter season. 1. Introduction Cyanobacteria (blue-green algae) are microscopic bacteria found in freshwater lakes, streams, soil and moistened rocks. Even though they are bacteria, cyanobacteria are too small to be seen by the naked eye, they can grow in colonies which are large enough to see. When algae grows too much it can form “blooms”, which can cause various problems. -
SHORT NOTE Cylindrospermopsis Raciborskii (Nostocales
Fottea 9(1): 45–47, 2009 45 SHORT NOTE Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria): A brief historic overview and recent discovery in the Assiniboine River (Canada) Hedy J. KLING Algal Taxonomy and Ecology Inc. 31 Laval Drive, Winnipeg, Manitoba, R3T 2X8 Canada; e-mail: hkling@mts. net Abstract: Cylindrospermopsis raciborskii (Wo ł o s z y ń s k a ) se e n a y y a et su b b a Ra j u is a freshwater planktonic nitrogen fixing filamentous toxic cyanobacterium (blue-green alga, cyanoprokaryote) belonging to the order Nostocales. Historically, it was thought to be a tropical or subtropical alga but in the past 26 years since it was recorded in Hungary in 1978, it has been found in increasing abundance in rivers and shallow water bodies in temperate regions of Asia, Africa, Australia, Europe, North America and South America by several researchers including most recently bR a n c o & se n n a (1991), Pa d i s á k (1997), ch a P m a n & sc h e l s k e (1997), Fa b b R o et al. (1996), dv o ř á k & ha š l e R (2007). ko m á R e k & ko m á R k o v á (2003) give a comprehensive summary of the nomenclature changes, phenotypic plasticity and historic distribution record to 2002. ko m á R e k & ko m á R k o v á (2003) note the first European record was by SKUJA in his 1937 documentation of Greek and middle Asian algae. -
Freshwater Phytoplankton ID SHEET
Aphanizomenon spp. Notes about Aphanizomenon: Freshwater Toxin: Saxitoxin N-fixation: Yes Phytoplankton Cyanophyta – Cyanophyceae – Nostocales 4 described species ID SHEET Trichomes solitary or gathered in small or large fascicles (clusters) with trichomes arranged in parallel layers. TARGET ALGAE Dillard, G. (1999). Credit: GreenWater Laboratories/CyanoLab Anabaena spp. Anabaena spp. Notes about Anabaena: (now Dolichospermum) (now Dolichospermum) akinete Toxin: Anatoxin-a N-fixation: Yes Cyanophyta – Cyanophyceae – Nostocales More than 80 known species heterocyte Trichomes are straight, curved or coiled, in some species with mucilaginous colorless envelopes, mat forming. heterocyte akinete Credit: GreenWater Laboratories/CyanoLab Credit: GreenWater Laboratories/CyanoLab Dillard, G. (1999). Credit: GreenWater Laboratories/CyanoLab Notes about Cylindrospermopsis: Toxin: Cylindrospermopsin N-fixation: Yes Cyanophyta – Cyanophyceae – Nostocales Around 10 known species Trichomes are straight, bent or spirally coiled. Cells are cylindrical or barrel-shaped pale blue- green or yellowish, with aerotypes. Heterocytes nWater Laboratories/CyanoLab and akinetes are terminal. Gree Credit: Cylindrospermopsis spp. Cylindrospermopsis spp. Straight morphotype Curved morphotype Dillard, G. (1999). Notes about Microcystis: K Toxin: Microcystin N-fixation: No Cyanophyta – Cyanophyceae – Chroococcales Around 25 known species Colonies are irregular, cloud-like with hollow spaces and sometimes with a well developed outer margin. Cells are spherical with may -
Annual Report 2010
78th Annual Report 2010 Page 1 The Freshwater Biological Association District, River Frome and other sites of Annual Membership rates for 2010 are as (FBA) is an independent membership scientific significance. follows: organisation and a registered Charity. FreshwaterLife - an initiative to draw Founded in 1929, our mission is Individual Member........................ £35 together information on freshwater fauna to advance freshwater science and flora and make it accessible online. Student Member.......................... £20 and encourage as many people as Corporate Membership................ £300 possible to adopt it as the best way to The Fritsch Collection - an active and Life Membership is also offered at a single understand, protect and manage our growing reference collection containing payment of £600 (or £325 at age 60 or precious water resources. millions of illustrations, identification notes over). We promote freshwater science by: and taxonomic bibliographic references for • disseminating information through algae (www.fritschalgae.info). websites, publications, scientific All enquiries about the FBA to: Knowledge Transfer meetings and courses The Freshwater Biological Association, Publications - the FBA is renowned for its • facilitating innovative and essential The Ferry Landing, Far Sawrey, Ambleside, range of high quality, authoritative, keys, research Cumbria, LA22 0LP, UK. reference texts and analysis guides. Its • providing sound independent titles include the definitive identification scientific opinion. Tel: +44 (0) 1539 442468. guides to much of the freshwater fauna of E-mail: [email protected], Britain and Ireland. Its journal Freshwater Supporting Science Web: www.fba.org.uk Reviews publishes review articles on all The FBA is based on the shore of subjects related to fresh waters. Windermere, the Lake District in Cumbria The FBA is a registered charity, number and alongside the River Frome, East Scientific Meetings and Courses - the Stoke in Dorset. -
Predictive Modeling of Microcystin Concentrations in Drinking Water Treatment Systems Of
Predictive Modeling of Microcystin Concentrations in Drinking Water Treatment Systems of Ohio and their Potential Health Effects Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By: Traven A. Wood, B.S. Graduate Program in Public Health The Ohio State University 2019 Thesis Committee: Mark H. Weir (Adviser) Jiyoung Lee Allison MacKay Copyright by Traven Aldin Wood 2019 Abstract Cyanobacteria present significant public health and engineering challenges due to their expansive growth and potential synthesis of microcystins in surface waters that are used as a drinking water source. Eutrophication of surface waters coupled with favorable climatic conditions can create ideal growth environments for these organisms to develop what is known as a cyanobacterial harmful algal bloom (cHAB). Development of methods to predict the presence and impact of microcystins in drinking water treatment systems is a complex process due to system uncertainties. This research developed two predictive models, first to estimate microcystin concentrations at a water treatment intake, second, to estimate the risks of finished water detections after treatment and resultant health effects to consumers. The first model uses qPCR data to adjust phycocyanin measurements to improve predictive linear regression relationships. Cyanobacterial 16S rRNA and mcy genes provide a quantitative means of measuring and detecting potentially toxic genera/speciess of a cHAB. Phycocyanin is a preferred predictive tool because it can be measured in real-time, but the drawback is that it cannot distinguish between toxic genera/speciess of a bloom. Therefore, it was hypothesized that genus specific ratios using qPCR data could be used to adjust phycocyanin measurements, making them more specific to the proportion of the bloom that is producing toxin.