77-2432 KOCH, Arthur Richard, Jr., 1946- FLORIST ICS AND ECOLOGY OF ON SANDSTONE CLIFFS IN EAST-CENTRAL AND SOUTHEASTERN OHIO. The Ohio State University, Ph.D., 1976 Botany

Xerox University Microfilms, Ann Arbor, Michigan 48106 FLORISTICS AND ECOLOGY OF ALGAE ON SANDSTONE CLIFFS IN EAST-CENTRAL AND SOUTHEASTERN OHIO

DISSERTATION

Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate

School of The Ohio State University

By Arthur Richard Koch, Jr., B.S., M.S.

*****

The Ohio State University

1976

Reading Committee: Approved By Clarence E. Taft H. P. Hostetter Emanuel D. Rudolph

Adviser / Department of Botany ACKNOWLEDGMENTS

I am deeply grateful to Dr* Clarence E. Taft for his advice and encouragement throughout this investigation, and for his guidance of my studies for the past four years. I also acknowledge the many helpful suggestions of Dr* Donn C. Young in the initial planning of computer programs, the permission of the Ohio Department of Natural Resources to collect in the Hocking Hills State Parks, and the permission of the Ohio Historical Society to collect at Leo Petroglyph State Memorial. This study was aided by an Ohio Biological Survey Grant Finally, I thank my wife, Linda, for the many times in which she has helped me in the field, as well as in the prep aration of this manuscript. Her patience, love, and under­ standing have made the work expended in this study truly worthwhile. VITA

February 2if, 1%6, • • Born— Schenectady, New York August, 1967 • • • • . B.S. (Botany), The University of Oklahoma, Norman, Oklahoma 1967-1968* •...... National Science Foundation Trainee, Department of Botany and Microbiology, The University of Oklahoma, Norman, Oklahoma 1968-1970. • ••••• Peace Corps Volunteer Teacher, Malay College, Kuala Kangsar, Perak, West Malaysia 1971-1972. Graduate Teaching Assistant, Depart­ ment of Botany and Microbiology, The University of Oklahoma, Norman, Oklahoma^ and The University of Oklahoma Biological Station, Kingston, Oklahoma 1972-1973 ...... Graduate Teaching Associate, Depart­ ment of Botany, The Ohio State Uni­ versity, Columbus, Ohio Summer, 1973 • . • • . Graduate Teaching Assistant, The University of Oklahoma Biological Station, Kingston, Oklahoma July, 1973 ...... M.S. (Botany- Ecology) The Uni­ versity of Oklahoma, Norman, Oklahoma

1973-1975* ....•• Graduate Teaching Associate, Depart­ ment of Botany, The Ohio State Uni­ versity, Columbus, Ohio Fall, 1975 ...... Instructor (Introductory Limnology), Urbana College, Urbana, Ohio Spring, 1976 • • » • • Graduate Teaching Associate, Depart­ ment of Botany, The Ohio State Uni­ versity, Columbus, Ohio 1 iv PUBLICATIONS Some aspects of algal communities on selected leaf detritus in a spring-fed stream, Abst, Suppl, J, Phycol. 10: 21, 197*f. composition and relative biomass of algal communi­ ties on leaf detritus in a spring-fed stream. Proc. Okla. Acad. Sci. 5^: 1£f-l9* with P. G, Risser. 197^* Diatoms, including salt-water taxa, from southwestern Oklahoma. Proc. Okla. Acad. Sci. 55s 11-13* 1975* Floristic and ecological studies of algal communities that occur on sandstone cliffs in southeastern Ohio. Abst. Suppl, J, Phycol. 12: 9 . 1976.

FIELDS OF STUDY Major Field: Botany Studies in Plant Ecology. Professor Paul G. Risser Studies in Phycology. Professor Clarence E. Taft

v TABLE OF CONTENTS

Page DEDICATION* ...... ii ACKNOWLEDGMENTS...... iii VITA...... iv LIST OF TABLES...... viii LIST OF FIGURES ...... ix INTRODUCTION...... 1 DESCRIPTION OF STUDY SITES...... Licking County Sites - Hanover Cliff • • • • • k Licking County Sites - Blackhand Gorge Cliff • 11 Hocking County Sites - Rock House Cliff. . . . 11- Hocking County Sites - Ash Cave Cliff. .... 18 Jackson County Sites - Leo Petroglyph Cliffs • 32 Jackson County Sites - Stevenson*s Gorge Cliff 32 MATERIALS AND METHODS ...... kk RESULTS AND DISCUSSION...... 50 Taxonomic, Floristic, and Life History Comments on Some Algae Found on Ohio Sandstone Cliffs . 50 Cyanophyta. ••••*••.*.•••.• 50 Chlorophyta ...... 5*f Bacillariophyta 71 Pyrrhophyta •••••••••..•••• 71 Other Algae ••••••••••*•».. 75 Microenvironmental Factors and the Distribution of Cliff Algae ...... 80 Association Analysis ofAugust Collections 83 Association Analysis for Late March-Early April Collections ...... ••••• 97 Association Analysis ofDecember Collections 103 Association Analysis of June Collections, 111 vi Page Association Analysis of October Collections 119 Association Analysis of February Collec­ tions • •••..••••••••••••• 12*f General Discussion...... ••••••« o 129 CONCLUSIONS ...... 136 APPENDICES ...... 139 Appendix A. Occurrence of algal taxa'found'at study sites • ••••••••••• 1*f0 Appendix B. Algal taxa codes* ••••••••• 1*f5 Appendix C. Collection numbers, arranged by date and site ...... 1A-8 Appendix D. Occurrence of algal taxa in Febru-' ary collections •••••...•• 1^-9 Appendix E. Occurrence of algal taxa in Late‘ March-Early April collections . . . 152 Appendix F. Occurrence of algal taxa in June collections ...... * • 156 Appendix G. Occurrence of algal taxa in August collections ..••«..«•••• 161 Appendix H. Occurrence of algal taxa in October collections ...... 166 Appendix I. Occurrence of algal taxa in December collections •••••••••••• 171 Appendix J. Stands in association analysis sub­ groups, August, 1975. ••••••• 176 Appendix K. Stands in association analysis sub­ groups, late March-early April, 1975 177 Appendix L, Stands in association analysis sub­ groups, December, 1975. •»•••• 178 Appendix M. Stands in association analysis sub­ groups, June, 1975. ...*•••• 179 Appendix N. Stands in association analysis sub­ groups, October, 1975 .•••••• 180 LITERATURE CITED ...... 181

vii LIST OF TABLES

Table Page 1 Characteristics of moisture classes associated with cliff algal communities* • • • ^6 2 Temperature in plant masses at study sites • • Qk 3 Algae in collections from a vertical transect at the southeast-facing subsite at Hanover Cliff, August, 1975...... 90 A Algae in collections from a vertical transect at the north-facing subsite at Rock House Cliff, August, 1975*...... 9 V 3 Algae in collections from a horizontal transect at the east-facing seepage runoff subsite at Ash Cave, December, 1975...... 107

viii LIST OF FIGURES

Map of Ohio with locations of cliffs studied* Licking County sites are (1) Hanover Cliff and (2) Blackhand Gorge Cliff; Hocking County sites are (3) Rock House Cliff and (if) Ash Cave Cliff; and Jackson County sites are (5) Leo Petroglyph Cliffs and (6 ) Stevenson’s Gorge Cliff...... Portion of U.S.G.S. topographic map of Hanover Township in Licking County. The arrows indicate (1) south-facing and (2 ) southeast-facing sub­ sites of Hanover Cliff. ••••«•••••••• Photograph of the south-facing subsite at Hanover Cliff...... Photograph of the southeast-facing subsite at Hanover Cliff Portion of U.S.G.S. topographic map of the Licking River Gorge. The arrow indicates the location of Blackhand Gorge Cliff.. ••»•••• Photograph of the northwest-facing transect subsite at Blackhand Gorge Cliff. •••••».. Photograph of the north-facing transect subsite at Blackhand Gorge Cliff. •••••••••••• Portion of U.S.G.S. topographic map of Hocking County. The arrow indicates the location of Rock House Cliff.. ••••••.••••••••o.. Photograph of north-facing transect subsite at Rock House Cliff. •••••••••••••••• Photograph of north-facinjsubsite recessed into the Rock House Cliff...... Photograph of the northeast-facing subsite at Rock House Cliff. •••••••••••••••• Fig. Page 12 Portion of U.S.G.S. topographic map of Hocking County. The arrow indicates the location of Ash Cave Cliff...... 23

13 Photograph of the east-facing honeycomb subsite at Ash Cave Cliff.. •••••••••••••• 23

14 Photograph of the east-facing seepage subsite associated with mosses and sheltered by a Sambucus bush at Ash Cave Cliff...... 25

13 Photograph of east-facing subsite with a small pool of water at the base of a seepage area at Ash Cave Cliff. •••••••••••••••• 2o

16 Photograph of east-facing runoff area subsite at Ash Cave Cliff.. ••.••••••••••• 28

17 Photograph of the southeast-facing "Capitol” subsite at Ash Cave Cliff ••••••••••• 30 16 Portion of U.S.G.S. topographic map of Jackson County. Arrows indicate (1) the southwest- facing subsite immediately below the shelter, (2 ) the east-facing subsite at the bottom of the gorge below the shelter, and (3 ) the west- facing, seepage and conglomerate subsite at Leo Petroglyph Cliffs...... •

19 Photograph of the southwest-facing subsite located immediately below the shelter at Leo Petroglyph Cliffs.. •••••••••••••• 35 20 Photograph of the east-facing subsite at the bottom of the gorge below the shelter at Leo Petroglyph Cliffs ••••••••••••••• 35 21 Photograph of the west-facing seepage and conglomerate subsite at Leo Petroglyph Cliffs.. 37 22 Portion of U.S.G.S. topographic map of Jackson County. The arrow indicates the location of Stevenson's Gorge Cliff. •••••••..•• 39 23 Photograph of the northeast-facing subsite beneath the escarpment at Stevenson's Gorge Cliff...... 42

x Fig. Page 24 Photograph of the northwest-facing subsite at the base of an overhanging rock outcrop at Stevenson*s Gorge Cliff ••••••••».••• 42

25 Photograph of Trochiscia ohioensis sp. novo (X 4 0 0 ) ...... 57 26 Zygote formation, zygospore germination, and aplanospore of Cylindrocystis anornala Taft. . . . 63 27 Photograph of the release of two of four cells from a germinating zygospore of Cylindrocystis brebissonii var. .jenneri (Ralfs) Re'insch. & Kirchner ex Hansgirg. 66 28 Zygote formation in Actinotaenium curturn (BrA>.) Telling.. •••.•••••••••••••••• 69 29 Encystment sequence in Urococcus insignis (Hass.) Kutz...... 73 30 Photographs in different planes of Gloeocyanelluin aerialensis gen. et sp. nov.. •••••••••• 76

31 Association analysis of August, 1975, collections. 85 32 Ordination of association analysis subgroup of Gloeocystis runestris (Lyngb.) Bornet collections, August, 1975* * ...... 88

33 Association analysis of late March-early April, 1975, collections...... 98

34 Association Analysis of December, 1975, Collections.• ••••••••••••.••••• 105 35 Association Analysis of June, 1975, Collections . 112 36 Ordination of association analysis subgroup of Somierella sp. collections, June, 1975 ..... 114

37 Association Analysis of October, 1975, Collections ••••• 120

xi INTRODUCTION

This study concerns the floristics and ecology of algal communities that occur on sandstone cliffs in east- central and southeastern Ohio. To my knowledge it is the first major study of subaerial, epilithic algae undertaken on the North American continent, and is also the first ma­ jor study concerned solely with the floristics and ecology of algae occurring on acidic (below pH 5)9 sandstone cliffs. Seasonal changes occurring in the algal habitats during the year 1975 are reported and discussed. A multivariate anal­ ysis of the algal communities, using presence-absence data, is presented. Previously unreported information concerning several saccoderm desmid life cycles is included. Descrip­ tions and figures of a previously undescribed glaucocys- tacean alga and of a newly described species of Trochiscia are included. Hopefully, this study will provide the basis for further studies of the fascinating group of algae that occur in the subaerial, epilithic habitat. A few, less extensive investigations have been carried out on epilithic cliff algae in Ohio. Taft (1957* 1942, 1949) reported previously undescribed species of Mesotaenium and Cvlindrocystis. Lowe and Collins (1973) reported on the diatom flora of a Conoce-phalum mat at Rock House in the Hocking Hills State Park. Daily (194-2) examined chroococ- calean algae from Ohio, Indiana, and Kentucky, and several of his collection sites were cliffs in Hocking and Jackson Counties. In Europe, and in the tropics, several significant studies on cliff algae have been published. Marchesoni (1939) and Jaag (194-5) examined subaerial cliff algae in the Italian and Swiss Alps, respectively. Golubic (1967) classified cliff algal communities along the Yugoslavian seacoast after the method of Braun-Blanquet (1964-). Allen (1971) applied ordination and association analyses to dif­ ferent algal communities on cliffs in North Wales. Fritsch (1907) examined subaerial algal communities in Ceylon, and Zehnder (1953) studied subaerial algal communities in trop­ ical Africa. Many of these studies concerned algae on limestone or calcite cliffs, but algal communities on sand­ stone outcrops were not examined. Few of these investiga­ tions were based on intensive localized collecting, and only rarely were sampling areas revisited to investigate seasonal community variations. This study emphasizes intensive investigation of algal distribution in similar, adjacent microhabitats on sand­ stone cliffs. As many variables may influence composition of the algal vegetation, limiting study areas to selected sites and examining the floristic and environmental changes at these sites may aid in identifying ecological factors that are important in determining algal distribution. DESCRIPTION OF STUDY SITES

Six cliffs were chosen for a year’s study after various sandstone outcrops differing in exposure, moisture, texture, vegetation, and other ecological factors had been examined. Two cliffs each were located in eastern Licking County, in southeastern Hocking County, and in Jackson County (Fig. 1). Both Licking County and Hocking County cliffs were Blackhand Sandstone, while the Jackson County cliffs were Sharon Conglomerate, a sandstone-conglomerate formation that super­ ficially resembles the Blackhand Sandstone (Stout, 1916).

Licking County Sites - Hanover Cliff

The first Licking County cliff studied (Fig. 2) was located approximately 0.75 km due south of Hanover, on a service road adjacent to Ohio highway 16 (Hanover Township, R10W, T2N, Section 7). At this cliff, two subsites were chosen for examination. The first subsite (Fig. 3) was at the base of a south-facing outcrop, exposed to direct sun­ light, and moistened by runoff from overhanging ledges. The second subsite (Fig. k) faced due southeast, was sheltered from April to October by a small tree, and was moistened by seepage and condensation. The first exposure was dry after if 5

Fig* 1* Map of Ohio with locations of cliffs studied. The Licking County sites are (1) Hanover Cliff and (2) Blackhand Gorge Cliff; Hocking County sites are (3) Rock House Cliff and (4) Ash Cave Cliff; and the Jackson County sites are (3) Leo Petroglyph Cliffs and (6) Stevenson's Gorge Cliff. gyu‘»otM0<0'S»|!W iO»I«3S o w

NMOg V

O lN

▼ M9 I d AUU3 dT* ■* '**; L ' /

Jn o s i q v

AasNuane VH3

tdv^snij, ______* X O N M , - 4 3U9N

» N » l 9 m m 0 3 j H « » X Is [ 3 N a V M J0NVTHS'?fWVlM3,WlouOJMVOO 1U3M NVA

ODNvh J____ 9 U I N O h t n

I aovxbOi/ 1 lino rtod x AX € 3NV I JJO y 9 o ------f “”1 y o n y 3 9

yiOflViH'sy UMHD h i m

9 7

Fig* 2. Portion of U.S.G.S, topographic map (Hanover quad­ rangle) of Hanover Township in Licking County, Ohio. The arrows indicate (1) south-facing and (2) southeast-facing subsites of Hanover Cliff. 8

^^^anove¥ ’i ^ o 9

Fig# 3* Photograph of the south-facing subsite at Hanover Cliff.

Fig. Photograph of the southeast-facing subsite at Hanover Cliff. 10 11 the April collections and was not collected thereafter. Algae were collected at intervals throughout 1975 at the southeast-facing subsite at Hanover Cliff.

Licking County Sites - Blackhand Gorge Cliff

The second cliff studied in Licking County faced north and was located on the south side of the Licking River Gorge in Blackhand Gorge State Nature Preserve (Fig. 5) (Hanover Township, R10W, T2N, Section The cliff was located approximately 0.75 km from the road- into the village of Toboso, and 550 m from the entrance of the trail into the nature preserve. All subsites were deeply shaded by the forest canopy from April to October, 1975* Two subsites were a northwest-facing exposure (Fig. 6) moistened by con­ densation, and a north-facing area at the base of the cliff (Fig. 7) moistened by seepage and condensation. Another, smaller seepage area and a honeycomb area (characterized by raised, iron-bound ridges surrounding shallow pockets eroded into the softer sandstone) were also examined at the Black- hand Gorge Cliff.

Hocking County Sites - Rock House Cliff

The first Hocking County cliff studied was at Rock House (Fig. 8), in Hocking Hills State Park (Laurel Township R18W, T12N, Section 19)* The study area overlooked a 50 m 12

Fig. 5. Portion of U.S.G.S. topographic map (Toboso quad­ rangle) of the Licking River Gorge in Licking County, Ohio. The arrow indicates the location of Blackhand Gorge Cliff. 13 4

Fig* 6. Photograph of the northwest-facing transect subsite at Blackhand Gorge Cliff. Fig. 7* Photograph of the north-facing transect subsite at Blackhand Gorge Cliff.

$ 15 16

Fig. 8. Portion of U.S.G.S. topographic map (South Bloom- ingville quadrangle) in Hocking County, Ohio* The arrow indicates the location of Rock House Cliff. 1?

Gas Wi

1 *J: \W'. deep gorge and was close to the area examined by Lowe and Collins (1973)• Three subsites were selected for study. The first subsite faced due north and was moistened by seepage, condensation, and seepage-runoff from overhanging rocks (Fig. 9). A second north-facing subsite was located 10 m west and 1.65 w above the cliff base, and was slightly recessed into the cliff (Fig. 10). This subsite was moist­ ened by seepage and condensation. A third subsite faced due northeast and was sheltered by overhanging cliffs (Fig. 11). This third subsite was moistened by condensation and some seepage, and was 1.72 e; above the cliff base.

Hocking County Sites - Ash Cave Cliff

The second cliff examined in Hocking County was an east-facing exposure approximately 75 m in height. The cliff was located 225 m north of Ohio highway 56 and on the west side of the trail leading to Ash Cave, in Hocking Hills State Park (Fig. 12) (Benton Township, E18W, T13N, Section 26). Five subsites were selected at this cliff. The first subsite was an east-facing honeycomb area 2 k w north of the southern end of the cliff (Fig. 13). A second subsite was an east-facing seepage area asso­ ciated with mosses and sheltered by a Sambucus bush, k 7 m north of the southern end of the cliff (Fig. 1

Fig* 9* Photograph of north-facing transect subsite at Rock House Cliff* Fig* 10* Photograph of north-facing subsite recessed into the Rock House Cliff* 20

Vs** i t r M 21

Fig. 11. Photograph^ the northeast-facing subsite at Rock

23

Fig. 12. Portion of TJ.S.G.S. topographic map (South Bloom­ ington quadrangle) in Hocking County, Ohio. The arrow indicates the location of Ash Cave Cliff.

Fig. 13« Photograph of the east-facing honeycomb subsite at Ash Cave Cliff.

2 3

Fig* H * Photograph of the east-facing seepage subsite associated with mosses and sheltered by a Sambucus bush at Ash Cave Cliff. 26 27 The second subsite was sheltered from direct precipitation throughout the year, and from direct insolation from April to October, 1975* . A third subsite at the Ash Cave Cliff was an east- facing seepage area 58 m north of the southern end of the cliff escarpment and sheltered from direct insolation and runoff throughout the year by overhanging rocks (Fig. 15)• The subsite was characterized by conglomerate and by a 1+0 cm diameter pool of water at the cliff base. Standing water was present on all sampling dates in 1975 at this subsite. A fourth subsite selected at the Ash Cave Cliff was an east-facing runoff area 100 m north of the southern end of the cliff (Fig. 16). Water from overlying seepage areas flowed over the rocks after rains; otherwise, the subsite was moistened by condensation. This subsite was alternately damp or dry during most of the year. The fifth subsite at Ash Cave Cliff was 106 m north of the southern end of the escarpment, v/here the word "Capitol” had been carved into the soft, conglomerate-free sandstone (Fig. 17)* This southeast-facing subsite was exposed to direct insolation, and at the base of the subsite were seepage areas and associated Conocenhalum. 28

i

Fig# 15# Photograph of east-facing subsite with a small pool of water at the base of a seepage area at Ash Cave Cliff.

Fig. 16. Photograph of east-facing runoff area subsite at Ash Cave Cliff.

30

Fig. 17. Photograph of the southeast-facing "Capitol” sub­ site at Ash Cave Cliff.

32 Jackson County Sites - Leo Petroglyph Cliffs

Cliffs adjacent to and below the shelter at Leo Petro­ glyph State Memorial in Jackson County (Fig# 18) (Jackson Township, E19W, T8N, Sections 23 and 24) were chosen as an area for study with three subsites# The first subsite at Leo Petroglyph Cliffs faced due southwest and was located on an upper cliff at the rim of a gorge and immediately below the shelter protecting the Indian heiroglyphics (Fig. 19)# This subsite was moistened by condensation and, in the early spring months, by runoff from overlying mosses, leaf litter, and soil. The second subsite at Leo Petroglyph Cliffs faced due east and was at the bottom of the gorge below the shelter (Fig. 20). Moisture at this subsite was from condensation, and runoff from seepage occurred from January to May, 1975* The third subsite at Leo Petroglyph Cliffs, a conglom- erate-seepage area adjacent to a wooden bridge (Fig# 21) was located approximately 50 m down the gorge from the second subsite* This subsite faced due west, and was sheltered by an overhanging cliff#

Jackson County Sites - Stevenson*s Gorge Cliff

The second cliff studied in Jackson County was located at the head of Stevenson*s Gorge, a deep gorge located 2.3 km northwest of Jackson (Fig# 22) on Jackson County Road 59 33

Fig, 18, Portion of U.S.G.S. topographic map (Byer quad­ rangle) in Jackson County, Ohio, Arrows indicate CD the southwest-facing subsite immediately below the shelter, (2) the east-facing subsite at the bottom of the gorge below the shelter, and (3) the west-facing seepage and conglomerate sub­ site at Leo Petroglyph Cliffs. 3/f

too

<906

,eo 19

“O *66-

7 22

iriD M m

100' irris C' 35

Fig* 19* Photograph of the southwest-facing subsite located immediately below the shelter at Leo Petroglyph Cliffs. Fig. 20. Photograph of the east-facing subsite at the bottom of the gorge below the shelter at Leo Petroglyph Cliffs.

37

Fig. 21. Photograph of the west-facing seepage and conglom­ erate subsite at Leo Petroglyph Cliffs.

39

Fig. 22. Portion of U.S.G.S. topographic map (Jackson quad­ rangle) in Jackson County, Ohio. The arrow in­ dicates the location of Stevenson*s Gorge Cliff. v>

ELEV *f1 (Liberty Township, R19W, T7N, Section 12). Two subsites were examined at Stevenson*s Gorge Cliff* The first subsite, the underside of a 10 m high escarp­ ment, faced due south and was free of conglomerate. Part of this subsite was moistened by a portion of the runoff of a small stream that plunged over the lip of the overhanging ledge. The remainder of the subsite was moistened by con­ densation (Fig. 23). The second subsite at Stevenson*s Gorge Cliff faced due east, with a portion of this subsite being iron-bound sandstone (Fig. 2*0. This subsite was at the base of an overhanging rock outcrop, and was approximately 2,5 m above the base of the talus slope. The area was moistened by con­ densation, while seepage water from associated rocks dripped from a portion of the subsite. 42

Fig* 23* Photograph of the due south-facing subsite beneath the escarpment at Stevenson's Gorge Cliff.

Fig. 2Zf. Photograph of the due east-facing subsite at the base of an overhanging rock outcrop at Stevenson's Gorge Cliff.

MATERIALS AND METHODS

Cliffs selected for observation were visited at monthly intervals throughout 1975* Collections were taken from cliffs in Licking County, Ohio on January 4, February 15, April 1, May 2, June 2If, July 30, August 27, September 29, October 26, November 29, and December 30, 1975* Collections were made from Hocking County, Ohio, cliffs on January 11, February 15, March 29, April 28, June 2, August 15, Septem­ ber 12, October 25, November 28, and December 30, 1975* No July collections were made at Rock House Cliff or Ash Cave Cliff in Hocking County because of a delay in the receipt of a collecting permit from the Ohio Department of Natural Re­ sources, after new regulations governing collecting in Ohio state parks were implemented in June, 1975* Collections were made from Jackson County, Ohio, cliffs on January 17, February 22, April 2, May 3, June 20, July 22, August 29, September 27, October 31, November 28, and December 21, 1975* Sampling areas were selected so that effects of rock inclination under various exposures could be examined. Ver­ tical transects were established at all but two sites; hori­ zontal transects were established at the east-facing runoff subsite at Ash Cave Cliff and at the south-facing subsite at Vf 45 Stevenson’s Gorge Cliff, A wide range of moisture condi­ tions was present in every locality. Most of the sampling areas included rocks with various textures, including con­ glomerate, conglomerate-free rock, and iron-bound sandstone. All sampling areas included subsites with and without bryo- phytes. The sampling areas, except at two subsites were selected so that the collection areas were moistened solely by seepage and condensation. Collections were obtained by scraping algae from cm2 areas of rock surface with a clean knife into clean 28 X 57 mm glass vials, transported to the laboratory, and re­ frigerated at 4 C, Most algae were examined while living. Following examination, collections were preserved in Transeau’s fixative (6 parts water, 3 parts 95% ethyl alco­ hol, 1 part 40% formaldehyde). Fifty-five to 115 collec­ tions of algae were obtained each month from the various cliffs. Environmental data were collected at the cliff sites. Moisture was estimated by visual and tactile examination. The nine moisture classes that were established are given in Table 1, Temperature at the sites was measured in surface vegetation with a mercury thermometer. The pH was measured in the field with pHydrion paper, and later checked against a pH meter in the laboratory. Representative light readings were made with the light meter of a 35 mm Olympus Pen JT camera at the time of collection (between 1:00 and 5:00 in 46 Table 1. Characteristics of moisture classes associated with cliff algal communities.

Moisture Class Characteristics

1* dry Algal masses were both visually and tac- tilely dry, black in color, and often peeling away from the cliff face. 2 . dry to damp Algal masses were visually dry, but some moisture was present to the touch; the masses were dark green to olive in color, but appressed tightly to the cliff face.

damp A piece of filter paper was slightly dark­ ened with moisture when the paper was pressed against the algal mass.

4 « damp to wet The algal mass was expanded, and definite moistute was evident in the filter paper test; water was observed in the algal mass.

5 . wet Water was present in the algal masses, and would readily enter the filter paper by capillarity.

6 . wet to dripping Free water was evident; only occasional dripping of water was noted. 7 . dripping Actual dripping of water from algal masses was common.

8 . standing water Water was present in puddles or pools. 9 * running water Water, such as might be observed in a stream situation, was flowing over the algal masses. the afternoon), and the readings were later converted to ft-c hy comparison with a Weston meter, which also was used to measure light intensity at study areas in June, 1976* The presence or absence of a forest canopy was noted. The direction of exposure of the rock surface was measured with a Pathfinder compass. The single of inclination of the rock surface on which the algae were growing was computed in the laboratory from drawings smd measurements made in the field. Height above the base of the cliff was measured for each collection in the field. Conglomerate was recorded as abun­ dant, present, or absent. The iron-bound sandstone was re­ corded as present or absent. The iron-bound sandstone was observed as olive to black, scraped with a knife blade with great difficulty, and usually without conglomerate. Mosses and liverworts were listed as present or absent, with liver­ worts divided into thalloid or leafy classes. The visual presence of lichens was noted. All sites and subsites were photographed. Algae were identified using a Leitz dialux microscope with 10X, 40X, and 100X objectives, 10X wide field eyepieces, and a 1.25 n.a. Abbe condenser. Cyanophyta were identified according to Geitler (1932). and Mesotaeni- aceae were identified according to Prescott £t al. (1972, 1975) as far as possible; otherwise desmid nomenclature followed Krieger (1937), West and West (190*f, 1905, 1908, 1912), and West, West, and Carter (1923). The of 48 Krieger and Gerloff (1962, 1965* 1969) is followed for the genus . Diatoms were divided into two categories: Eunotia fallax var. gracillima Krasske (Hustedt, 1930) and other diatoms. This division was made because observations indicated that Eunotia fallax var. gracillima was found under a wider range of ecological conditions than were other diatoms. Other algae were identified according to Collins

(1909)» Desikachary (1959)* Huber-Pestalozzi (194-1)* King (1971)* Mattox and Bold (1962), Pascher (1915)* Patrick and Eeimer (1966), Prescott (1962), Skuoa (1964-), Smith (1950),

Taft and Taft (1971)* Whitford and Schumacher (1973)* and Wolle (1887). Culture techniques employed the media and methods of Deason and Bold (1960) and Chu (194-2), and using soil-water cultures in which soil from Ash Cave was tyndallized with deionized, Millipore-filtered water for one hour on three successive days after the method of Nichols (1973). Algae, with the exception of Chlorococcum-llke algae, Stichococcus bacillaris Nag., and Klebsormidium sp., did not grow well in the culture media and conditions provided (180 ft-c, 22 C, 16 hr photoperiod), so emphasis was placed on identifying algae from field-collected material. Two subsamples from each collection were examined as wet mounts, and a species list of the algae present was compiled. Each collection was examined critically, with the most time expended studying samples with high diversity. The 4 9 occasional reexamination of preserved material insured tax­ onomic constancy.

Data analyses utilized many of the techniques employed by Allen (1971) in his study of epilithic algae in Wales. All analyses utilized presence-absence data. Data were prepared for computer analyses after the methods of Hufford

<1972) and Young (1973, 1976). An IBM 370/168 digital com­ puter at the Instruction and Research Computer Center (IRCC) of The Ohio State University was used for the analyses. The analyses attempted were the perpendicular axes ordination of Qrloci (1966), the association analysis procedure of Williams and Lambert (1959), and frequency and Chi-square tests of association using the Statistical Program for the

Social Sciences (SPSS) statistical package (Nie et al., 1975)# The program for the association analysis precedure was written in FORTRAN IV by Aaron Supowit of the IRCC; other programs used were available through The Ohio State Univer­ sity Department of Botany, or the IRCC. RESULTS AND DISCUSSION

Taxonomic, Floristic, and Life History Comments on Some Algae Found on Ohio Sandstone Cliffs

A unique algal flora inhabited sandstone cliffs in southeastern and east-central Ohio* Several algae previ­ ously unreported in the North American literature are recorded, and two algal taxa new to science are described. The algal flora was composed of Cyanophyta, Chlorophyta, Bacillariophyta, a few species of Chrysophyta, Xanthophyta, and Euglenophyta, and one species of Pyrrhophyta. Most of the latter algae, with the exception of Urococcus insignis (Hass.) Kutz. (Pyrrhophyta) were rarely observed members of the subaerial flora.

Cyanophyta

Cyanophyta were well represented at damp to wet sites. The blue-green algal flora was mostly chroococcalean algae along with a few members of the Oscillatoriales, Nostocales, Scytonematales, and Stigonematales* , Various species of Chroococcus and Gloeocansa occurred in collections from damp or wet cliffs, and in seepage areas. In some instances, rust-colored pigments of the substrate 50 rocks may have been incorporated into the sheaths of certain species of Chroococcus and . Red pigmentation of blue-green algal sheaths was especially noticable in samples collected from Ash Cave Cliff, and is the key characteristic distinguishing many species of Gloeocapsa from unpigmented Gloeocapsa species. At Rock House Cliff and Ash Cave Cliff subsites, Gloeocapsa magma (Breb.) Hollerbach, Gloeocapsa sanguinea (Ag.) Kutz., Gloeocapsa ralfsiana (Harv.) Kutz., and Gloeocapsa itzigsohnii Bornet ex Kopf were found. The taxonomy of Geitler (1932) was followed, yet the suggestions of Jaag (191f5) and Golubic (1967) that these taxa should be considered forms of Gloeocapsa sanguinea is sound. When these algae were preserved in Transeau's fixative and later reexamined, much of the original red color of the sheaths had been lost, and these species were then nearly indistin­ guishable from the unpigmented species, Gloeocapsa granosa (Berk.) Kutz. and Gloeocapsa montana Kutz. Chroococcus varius A. Braun with red pigmented sheaths was collected from Ash. Cave Cliff, and was distinguished with difficulty from Gloeocapsa itzjgsohnii and other small Gloeocapsa spe­ cies. Daily (194-2) reported four species of Gloeocapsa and four species of Chroococcus from Ohio, Indiana, and Kentucky. While Daily's classification appears to be an oversimplifica­ tion, Geitler1s classification of the is

unnecessarily complex, and several of his species should be

reduced to synonomy. Much of the confusion in the taxonomy of Chroococcus and Gloeocapsa was paralleled by the confusion in the tax­ onomy of Aphanothece. Aphanocapsa. and Gloeothece. Daily (1942) combined Aphanothece saxicola Nag. and other small Aphanothece species into Anacystis marginata Menegh.; and Aphanothece stagnina (Spreng.) A. Braun ex Rabenh. was transferred into Anacystis rupestris var. prasina (A. Br.) Drouet and Daily. However, other subaerial species of Aphanothece were considered as Anacystis rupestris (A. Br.) Drouet and Daily. In the present material, a definite divi­ sion in cell size existed between Aphanothece castagnei (Breb.) Rabenh. (cell diameter 2-4.5p) and Aphanothece pallida (Kutz.) Rabenh. (cell diameter 6-8.>1), although overlap existed in dimensions of Aphanothece microspora (Menegh.) Rabenh., Aphanothece castagnei. and Aphanothece naegelii V/artm. ex Rabenh. Aphanocapsa species were difficult to distinguish using Geitler's classification. A definite overlap in dimensions occurred among Aphanocapsa musicola (Menegh.) Wille, Aphanocapsa grevillei (Hass.) Rabenh., and Aphanocapsa montana Cramer ex Wartin. Aphanocapsa fusco-lutea Hansg. was distinctive, although some care had to be exercised to distinguish this species fro a mucilaginous matrix of the fungal spores of Cladosporium sp. Gloeothece species were occasionally found in collec­ tions, especially from subsites at Ash Cave Cliff and from 53 the southwest-facing subsite at Leo Petroglyph Cliffs* The usual problems of identifying chroococcalean algae were present in identifying Gloeothece species* The most common species of Gloeothece found was Gloeothece fusco-lutea Nag* In general, as with all other chroococcalean species, large numbers of Gloeothece cells were examined and the most com­ mon size ranges were taken as ’’normal", except when other distinguishing characteristics of the organisms were clearly evident* Other Cyanophyta found included Nostoc microscopicum Carm* and two species of Anabaena* The Anabaena species were not identifiable, as no gonidia were observed during the study, and fewer than five heterocysts were attached to Anabaena filaments found in the entire study* Several growth forms of Nostoc microscopicum were encountered, and further work on the taxonomy and physiology of this species seems warranted* Oscillatoriales were represented by Oscillatoria species and species of Phormidium* Lvngbva and Microcoleus were each observed once. In general, the Oscillatoriales were observed rarely, and then in situations in which runoff from overlying soil may have been present* Scytonematales were represented in collections only by Scytonema hofmannii Ag. and an unidentified species of Scytonema. although Tolypothrix sp. occurred at other cliffs in the Hocking Hills during preliminary investigations. Stigonematales were represented by collections of Stigonema sp. and Stigonema minutum (Ag.) Hassal from Ash Cave Cliff. A polymorphic, stigonematalean alga encountered in wet areas at Hanover Cliff, Stevenson’s Gorge Cliff, Rock House Cliff, and Ash Cave Cliff exhibited characteristics of Hanalosinhon aureus W. and G. S. West, Hanalosinhon sp., Hapalosj-phon luteolus W. and G. S. West, and Sommierella sp. This taxon may be a new species of Sommierella. as many of the cells in the uniseriate filaments were broader than long, a characteristic of Sommierella rather than of Hanalosinhon. Much variation in cell size and shape from the description of the monotypic species Sommierella cossyrensis Borzi, figured in Geitler (1932), was found in various collections in which Sommierella was present. More study of the characteristics of this organism are warranted, however, before it is described as a new species.

Chlorophyta

Species of Chlorophyta were common in all the subaerial habitats examined. Chlorococcalean algae and members of the Tetrasporales, Ulotrichales, and Mesotaeniaeeae and Desmidia- ceae composed most of the chlorophycean flora. Chlorococcalean algae were often seen in collections, but never constituted a large proportion of the flora. Three or four cells of Chlorococcum sp. were found in many collections. Using the isolation techniques of Bischoff and Bold (1962), the genera Bracteococcus and Chlorococcum were identified from clonal cultures. As Bracteococcus and Chlorococcum are not distinguishable in field collec­ tions, both genera and all other "little green balls" were relegated to the category Chlorococcum sp. An excellent opportunity for further taxonomic and ecological research is available for someone who wishes to examine the Chlorococcum-like organisms of the Ohio subaerial cliff habitats. Additional chlorococcalean algae were found on the cliff surfaces. In drier areas, Ankistrodesmus falcatus (Corda) Ralfs. and its variety Ankistrodesmus falcatus var. mirabilis (West and West) G. S. West were occasionally encountered. Three species of Trochiscia. one of which is new to science and described later in this paper (Fig. 25), were found. Coelastrum microsuorum Nag. occurred in collec­ tions from the underside of a cliff at Stevenson*s Gorge Cliff, where part of a stream falling from a ledge flowed over part of the south-facing subsite„ A Pictyosphaer ium- like alga occurred in collections from Leo Petroglyph Cliffs and Stevenson*s Gorge Cliff in Jackson County. Scenedesmus bijuga (Turp.) Lagerh. was associated with the seepage pools at Rock House Cliff, Ash Cave Cliff, and Leo Petroglyph Cliffs. 56 Trochiscia ohioensis sp, novo

(Fig. 25) Cellulae vegetativae, singulae, sphericae 7*5-35 A diam. Paries crassus cum spinae. Spinae validae grandes ad /fju longae, curvae in cellulae grandes. Chloroplasti 3-5, aliquotes, parietales, indistinct!. Pyrenoides cares. Cellula mobilis non observata. Reproductio asexualis per autosporas. Reproductio sexualis non observata. Origio: Scopulus humidus in loco Leo Petroglyph State Memorial, Jackson County, Ohio, ab Arthur Richard Koch, Jr. lecto, designatio numero 1127 ex herbario auctore. Vegetative cells singular, spherical, 7*5-35ju in diam­ eter. Walls thick, with spines. Spines robust, large, to k}X long, curved in large cells. 3-5, plate­ like, parietal, indistinct. Pyrenoid absent. Motile cells not observed. Asexual reproduction by autospores. Sexual reproduction not observed. Origin: wet cliff at Leo Petroglyph State Memorial, Jackson County, Ohio, collected by Arthur Richard Koch, Jr., sample number 1127 in the her­ barium of the writer. One commonly encountered chlorococcalean alga was Scotiella nivalis (Chodat) F. E. Fritsch. Originally de­ scribed from Antarctica, Scotiella nivalis is commonly asso­ ciated with snow and glaciers. Smith (1950) reported this taxon from snowfields on Lassen Peak in California. Hoham et al. (1976) and Hoham (personal communication) found Figure 25 • Photograph of Trochiscia ohioensis sp. novo (X ZfOO) ta • flj v v 3181 ■.*■> %* v, T '*ta? SfSfcraKSfv*5?*S ® : w J 5 Scotiella nivalis in snow from Mt. Ranier in Washington and in snowbanks of the Adirondack Mountains in New York state. Skuja (1964) found Scotiella nivalis associated with mosses and liverworts in northern Finland. During the present study, Scotiella nivalis was isolated into clonal cultures in Bold*s Basal Medium (Nichols, 1973), and four autospores similar to those of Oocystis were observed. Hoham et al. (1976) believe that Scotiella nivalis is a zygote of the volvocalean alga Chioromonas. which also was found in the Washington snowfields and, unlike Oocystis, does not produce autospores. The fact that the organism from Ohio cliffs resembles that figured by Skuja (196Jf), while the organism Hoham et al. studied resembled that figured by Smith (1950) may indicate that two distinct taxa are involved. Clearly, additional culture studies of Scotiella found in the Ohio subaerial habitats may be warranted. Tetrasporalean algae were represented by four species Gloeocystis: Gloeocystis maxima Mainx., Gloeocystis amnia (Kutz.) Rabenh., Gloeocystis runestris (Lyngb.) Bornet, and “Gloeocystis coxae King", an unpublished taxon described by King (1971). Gloeocystis amnia and Gloeocystis runestris were found on the drier or driest cliffs studied, while "Gloeocystis coxae King" was confined to seepage areas. Gloeocystis runestris and "Gloeocystis coxae King" possibly may be polymorphisms of the same taxon, as separation of the two taxa was difficult when both occurred together. Attempts 6 0 at isolating "Gloeocystis coxae King” by duplication of King*s methods were unsuccessful* Difficulty was experi­ enced in separating the two species using cell shape and cell wall characters; however, Gloeocystis runestris cells were usually elliptical with a pyrenoid on one side of the cell, and were surrounded by several old mother cell walls* The cells of "Gloeocystis coxae King" were spherical with the central pyrenoid slightly off center, and there were but one or two mother cell walls surrounding the cells* Hormotila sp* occurred in several collections. When incubated in culture, the collections had a distinct, fruity odor; but isolation of Hormotila sp. into unialgal culture, so that it could be identified to species, failed. Hormotila sp. was found in damp, mucilaginous masses, was rare, and conformed with the size dimensions cited by King (1971) in his discussion of Hormotila mucigena Borzi. Ulotrichalean algae included species of Ulothrix. Stichococcus* Klebsormidium* Protococcus, and an unidentified green unicell resembling Geminella sp. Ulothrix sp* and Ulothrix tenerima Kutz. were occasionally found among gelat­ inous masses of green and blue-green algae at Ash Cave Cliff and at Leo Petroglyph Cliffs. Stichococcus was identified from clonal isolates of Hanover Cliff collections. Charac­ teristics of the isolated Stichococcus sp. matched those of Stichococcus bacillaris Nag., as described by Mattox and Bold (1962). Several isolates of Klebsormidium from Ohio cliffs matched the description of Klebsormidium flaccidum A. Braun provided by Mattox and Bold (1962). In over twen­ ty isolates of Klebsormidium obtained from field collections in the initial phases of this study, all isolates were Klebsormidium flaccidum. Protococcus viridis Agardh and Protococcus vestitus (Beinsch.) Wolle were collected in cliff scrapings, with Protococcus viridis especially common in samples from the southwest-facing subsite and the east-facing subsite at Leo Petroglyph Cliffs. Protococcus vestitus was closely asso­ ciated with leafy liverworts in damp to dripping environ­ ments, and was rarely found, and then only in small numbers, at damp sites where leafy liverworts were absent. Appar­ ently, Protococcus vestitus has been rarely observed, as the only reference to this taxon was in Wolle (1887)* None of the more recent algal keys (Whitford and Schumacher, 1973 Taft and Taft, 1971; Prescott, 1962; Pascher, 1915) refer to or figure any similar form. An unidentified green unicell resembling Geminella sp. was common in collections from drier sites. The unicell had a parietal, platelike plastid adjacent to the interior cell wall, was without pyrenoids or other black-staining (with iodine-potassium iodide) bodies, but possessed two granules, one at each end of the cell. The cell was a cylinder 4-6jx in diameter and 15-20^1 in length. This unicell should be studied from clonal cultures to determine its identity. Saccoderm desmids were abundant in all sites and habi­ tats. Cylindrocystis anomala Taft and Cylindrocystis brebissonii var. .Ienneri (Ralfs) Reinsch and Kirch, ex Hansg. were common, and Actinotaenium diplosporum (Lund.) Teil. (=Cylindrocystis diplospora Lund.) and Cylindrocystis brebissonii Menegh. nom. var. were also observed. Zygo­ spores of Cylindrocystis anomala and Cylindrocystis brebissonii var. .ienneri were common in summer collections. Cylindrocystis splendida Taft zygospores occurred on two occasions in collections from Ash Cave Cliff; however, con­ jugation of Cylindrocystis splendida and Cylindrocystis brebissonii var. .ienneri was never observed. Conjugation in Cylindrocystis anomala was observed in one collection obtained at Leo Petroglyph Cliffs (Fig. 26 h); however, aplanospores of Cylindrocystis anomala were found twice in field-collected material (Fig. 26 g). Aplanospores in the Mesotaeniaceae have been reported only once before, in Mesotaenium aplanosporum Taft (Taft, 1937). Aplanospores of Cylindrocystis anomala have walls iden­ tical in ornamentation to zygospore walls of that taxon (Fig. 26 g, a, b). The aplanospores resemble elongated zy­ gospores located inside the old cell wall. In February, 1975» collections, twenty germinating zygospores were seen in which two cells were either inside or were emerging from the ruptured, ornamented zygospore walls (Fig. 26 c, d). In October, 1975, collections, four cells were seen inside or 63

Fig. 26. Zygote formation, zygospore germination, and aplanospore of Cylindrocystis anomala Taft.

a* Surface view of zygospore. b. Median view of zygospore with if chloroplasts. c. Release of 2 cells from a germinating (?) zygospore. d. Release of 2 cells from a germinating (?) zygospore. e. Four cells within a mature zygospore. f. Release of if cells from a mature zygospore. g. Aplanospore. h. Zygote formation after conjugation. 64

10/

b

O

1 * -v'-’j 0 ’ - - > J J ;

d 65 emerging from zygospore walls (Fig, 26 e, f). Many of the "zygospores" common in the collections may in reality be aplanospores formed as the cliff dries, and the common, resistant, and ornamented stage of Cylindrocystis anomala may not be a zygospore, but an aplanospore or aplanosporan- gium. Research on zygospore and aplanospore induction in Cylindrocystis anomala may yield further information on this hypothesis. Release of four cells from germinating zygospores of Cylindrocystis brebissonii var. .ienneri was also observed (Fig, 27). The release of four cells from the zygospore of this taxon agrees with the observations of DeBary (1858) and Kaufman (19H)# Germinating zygospores of this taxon were common in October and November, 1975, samples obtained from Leo Petroglyph Cliffs and from the base of the Hanover Cliff southeast-facing subsite. Finding germinating mesotaeniacean zygospores in the field is rare (Taft, personal communica­ tion). The only accounts found of germinating zygospores in field collections were those of DeBary (1858) and Potthoff (1928). Reports of mesotaeniacean zygospores germinating in cultures were limited to Kaufman*s account of Cylindrocystis brebissonii var. .ienneri (Kaufman, 191*f) and Biebel's ac­ count of Netrium digitus var. lamellosum (Biebel, 1964)* Saccoderm desmid species other than those discussed above were especially common. Mesotaenium macrococcum var. minus (DeBary) Compere was common at the drier sites. 66

^■S* 2.7• Photograph of the release of two of four cells /Tom a germinating zygospore of Cylindrocvstis brebissonii var. .ienneri ( R a l f s . r,--- Kirchner ex Hansgirg. 67 Netrium digitus (Ehr.) Itzigs and Rothe was common where pools of water collected at cliff bases in Hocking County sites. Spirotaenia endospira (Br/b. Archer was common at Leo Petroglyph Cliffs subsites, and occasionally was found elsewhere in the spring and late fall months of 1975* In this study, all larger Mesotaenium taxa have been relegated into Mesotaenium macrococcum (Kutz.) Roy and Bisset. This presumably includes Mesotaenium aplanosporum Taft, which was described and is known only from sexually reproducing mate­ rial (Taft, 1937)* Evidence for occurrence of Mesotaenium chlamydosporum DeBary or any Mesotaenium taxa with purple . cytoplasm was not discovered. Actinotaenium curtum (Breb..) Teiling (=Penium curtum Breb.) was identified in many collections from wet to drip­ ping microhabitats, and was found in zygote formation (Fig. 28) at the southwest-facing subsite at Leo Petroglyph Cliffs Placoderm desmids, including species of Cosmarium. Closterium, Euastrum, Staurastrum. and Micrasterias americana (Ehr.) Ralfs were usually observed at wet to stand ing water situations, or where wet mosses predominated. Cosmarium cyclicum Lund, was by far the most common species of Cosmarium observed, and may have been the most tolerant of desiccated conditions. 69

Fig. 28. Zygote formation in Actinotaenium curtum (Breb.) Telling. 7 0

10y, 71 Bacillarlophyta

Though not identified to species in this study, diatoms were common in wet to running water habitats, or where the thalloid liverworts, Conocenhalum and Reboulia, were abun­ dant. Eunotia fallax var. gracillima Krasske (Hustedt, 1930) previously reported only once from North America (Patrick and Reimer, 1966), was abundant in many collections and was often the sole diatom present in dry to damp environments. The remarkable tolerance of this relatively large (35 JU in length, lOju in breadth) diatom is unexplained. Diatomella balfouriana Grev. was found in material collected from the seepage pool subsite at Ash Cave Cliff. This taxon had not been found east of Wyoming (Patrick and Reimer, 19 6 6 ) previous to this report. A major investiga­ tion should be made of cliff diatom communities in east- central and southeastern Ohio, and because most subaerial diatoms grow as unicells, seasonal dynamics of the community structure could be studied quantitatively.

Pyrrhophyta

The dinoflagellate Urococcus insignis (Hass.) Kutz. was common in the cliff environment. Swimming zoospores of Urococcus insignis were observed in October, 1975> field collections. Zoospore release and motility were not found 72 In cultures of collections in other months* One zoospore was released from each cell. Protoplast division was ob­ served in encysted Urococcus insignis cells, as well as in motile cells* Encystment of swimming cells of Urococcus insignis was observed (Fig. 29 a-f). The motile cell (Fig. 29 a) swam more slowly, then stopped and remained on the substrate. The cell rounded up, with the girdle and sulcus becoming in­ distinct and the outer flagellum cut off from the cell by the formation of a membrane (Fig. 29 b). A blister expanded on the girdle side, and the flagellum was lost (Fig. 29 c). A second membrane formed while the outer membrane broke away or became indistinct (Fig. 29 d); the second membrane ex­ panded slightly and moved away from the protoplast (Fig. 29 e). The organism became quiescent; remnants of the outer membrane remained attached (Fig. 29 f). Cytoplasmic stream­ ing continued vigorously throughout the encystment process. The only cliff areas from which Urococcus insignis was not collected were areas where some natural barrier, such as a long stretch of exposed, dry sandstone was present between overlying algal masses and the cliff base. Urococcus insignis zoospores may be able to swim up the sides of cliffs through surface films of water under wet conditions, become quiescent, encyst, and remain dormant in drier months. In culture studies, little cytoplasmic streaming was present

i*1 Prococcus insignis cells six hours after dry masses of 73

Fig. 29. Encystment sequence in Urococcus insignis (Hass.) Kutz. (fl= flagellum, pm= primary membrane, sm= secondary membrane, cw= cyst wall) a. Swimming zoospore. b« Primary membrane around immobile cell. c. Early development of secondary membrane and loss of flagellum. d. Expansion of primary membrane. e. Separation of secondary membrane from young cyst wall. f. Cyst after loss of primary membrane. 7k

p m

10x

b p m

p m cw s m

sm

p m p m s m smcw

d 75 algae were incubated in culture media. When the same cul­ tures were reexamined twelve hours later, vigorous cytoplas­ mic streaming was evident in the cells. Possibly, some mechanism maintaining dormancy had been overcome in the in­ tervening time interval. Urococcus insignis and some other subaerial algae may well have evolved physiological as well as morphological mechanisms that resist desiccation.

Other Algae

Several other groups of algae occurred in a few collec­ tions. Chrysophyta were rare: two unidentified species were found in collections from the west-facing seep at Leo Petroglyph Cliffs; Mallomonas akrokomos Ruttn. was collected from a stand under the waterfall at Stevenson*s Gorge Cliff, as were species of Trachelomonas (Euglenophyta); Chrysococcus radians Conrad, a new North American record, was collected at Hanover Cliff and at Stevenson*s Gorge Cliff. Tribonema sp. (Xanthophyta) occurred in runoff areas at the southwest- facing subsite of Leo Petroglyph Cliffs in February and

April, 1975* samples. Perhaps the most intriguing floristic discovery of this investigation was a new genus of glaucocystacean algae. Gloeocyanellum aerialense sp.. novo was found in damp to wet areas at Rock House Cliff, Ash Cave Cliff, and Leo Petroglyph Cliffs (Fig. 30). The alga resembles the genus Gloeocystis, but azure-colored cyanellae have replaced the chloroplasts. 76

Fig, 30. Photographs in different planes of Gloeocyanellum aerialense gen, et sp, nov, (X 1000),

78 Gloeocyanellum aerialense cells were rarely seen, and this taxon has not been isolated for study in culture. Gloeocyanellum gen. nov. (Fig. 30) Cellulae Gloeocysti similes, singulae ad seni denas (16 s) in Paries a sphericae. Paries e peripheria introrsum deinde se disassocians, et aggregationes cellularum ut col- onias singula, Gloeocysti similes liberans. Plastum ureco- latura, parietalis cyanella. Cyanella azureus, Gloeochaeti similes, fissuris saepe praeditum. Granulum centralera in membranum. Cellula mobilis non observata. Reproductio asexualis divisione cellularum vegetativarum, et fragmenta- tione coloniarum. Reproductio sexualis non observata. Gloeocystis-like cells, single to 16 within a spherical wall. Wall dissociating centripetally, liberating the cells as individuals. Plastid a cup-shaped, parietal cyanelle. Cyanelle azure, Gloeochaete-like with basal fissures. A granule present in the center of the protoplast. Cell motil­ ity not observed. Asexual reproduction by vegetative cell division and fragmentation of colonies. Sexual reproduction not observed. Gloeocyanellum aerialense sp. nov. (Species typica, Fig. 30) Cellulae vegetative, ellipsoidae, ovoideavae aut spheri­ cae 7-8 jx diam, singulas aut binae ad senas denas (16 s), circumcinctus a Parie cellulae parentalae. Coloniae 7 9 cellularum 15-22 ju diam. Cellulae liberatae e coloniis rum- pens Pariete cellula parente. Cyanella azureus, parietalis urceolatum, Gloeochatl similes, Granulum centralen et cyan­ ella, Cyanella separatus a Paries cellula, Cellula mobilis non observata, Reproductio asexualis divisone cellularum vegetativarum, et fragmentatione coloniarum, Reproductio sexualis non observata. Holotypus: Specimen ex scopulus hu- midus in loco Leo Petroglyph State Memorial, Jackson County, Ohio, ab Arthur Richard Koch, Jr. lecto, designatio numero 931 ex herbario auctore. Gloeocyanellum aerialense sp. novo (Type Species, Fig. 50) Vegetative cells ellipsoidal, ovoid, or spherical, 7-8 jx in diameter, single or in colonies of 2-16 cells, surrounded by a parental cell wall 15-22jx diameter. Release of cells by breaking apart of the parental cell wall. Cyanellae azure, parietal, cup-shaped, Gloeochaetae-like. Granule in center space of cyanella. Cyanella distinctly separate from cell wall. Motile cells not observed. Asexual reproduction by vegetative cell division, and by fragmentation of colonies. Sexual reproduction not observed. Holotype: specimen from a wet cliff at Leo Petroglyph State Memorial, Jackson County, Ohio, collected August 15, 1975, by Arthur Richard Koch, Jr., designated number 931 in the writer*s herbarium. A list of all alga taxa present and their occurrence at the study sites is given in Appendix A. 80 Microenvironmental Factors and the Distribution of Cliff Algae

As indicated in the previous subsection, many of the algae on sandstone cliffs in southeastern and east-central Ohio are rare or infrequently seen* The paucity of papers on algae in the subaerial environment contribute little in­ formation on which to base an examination of their ecology. Consequently, even a rudimentary idea of the various micro- ecological factors that affect algal distribution on acid cliff surfaces is lacking. Quantitative data are not meaningful in cliff algal communities because of the clonal growth habit of the algae and the little information available for comparison to any quantitative results obtained. Kershaw (1973) comments that species abundance may be related to gradients of environ­ mental parameters. Young (1976) and Allen (1971) comment that when presence-absence data are used, a measure of spe­ cies tolerance, rather than species dominance, is obtained. In subaerial habitats, many species may be at their limit of tolerance, as environmental stresses may be expected to be much more acute than if an intervening layer of water lay be­ tween the organism and a rapidly changing environment. Spe­ cies tolerance, then, may approach species dominance as an indicator of algal distribution in the subaerial environment. Major concepts are accessible because of the inherent simpli­ fication of data when species tolerance is determined, rather 81 than abundance* The emphasis in this part of the discussion is on hypotheses concerning how certain ecological factors affect the micro-environmental distribution of cliff algae, and to provide evidence as to why these hypotheses may be acceptable* Ecological factors affecting the distribution of most photosynthetic organisms may be summarized as light, temper­ ature, moisture, nutrients, and interactions with other or­ ganisms. Superimposed upon, and dependent upon these factors, are characteristics peculiar to algae, including their peri­ odicity (Transeau, 1916), and their ephemeral nature. Orga­ nisms including mosses, liverworts, fungi, and invertebrates on cliffs may affect algal distribution. Hanover Cliff and Blackhand Gorge Cliff are located on the edge of the Wisconsin glacial boundary (Forsyth, 1966). Glaciation may have re­ moved several algal species from their original habitats, and these habitats may not yet have been recolonized. Blackhand Sandstone and Sharon Conglomerate may have different proper­ ties that would cause the algal distribution on each to vary from the other. One way to examine vegetation patterns is to use the association analysis technique of Williams and Lambert (1959)* In association analysis, 2 X 2 contingency tables are used to establish a Chi-square matrix, and the Chi-square values are summed irrespective of whether they reflect a positive or a negative correlation. The species having the largest sum of 82 Chi-square values is chosen as the divisor, and the stands are divided into two groups, according to whether the spe­ cies having the largest sum of Chi-square values is present or absent. The two subgroups formed are independent of each other throughout the remainder of the analysis. For each subgroup, a new Chi-square matrix is created from the species of the included stands. The absolute Chi- square values are again summed. Again the species having the largest sum of Chi-square values is chosen as the divi­ sor, and the stands of the subgroup are divided, according to the presence or absence of that species. When no further significant correlations appear (at P = 0.05 or sum of Chi- square = 3*8if), subdivision ceases, and the groups are desig­ nated as "final.” As subdivision is hierarchial, a species serving as a divisor separating two subgroups may also be present in other, superior, independent subgroups or groups. Using association analysis, Williams and Lambert (1959) delineated subtle variations in two grasslands, according to variations in soil type and to differences in time expired since the occurrence of previous grassfires. Gittins (1965) obtained similar results from association and ordination analyses of some British grasslands. Greig-Smith, Austin, and

Whitmore (1967), Proctor (1967) and Webb et al. (1967) have ordinated subgroups produced by association analysis. Allen (1971) applied principle components ordination to subgroups of association analysis in studies of Welsh cliff algae. 83 A desirable way to examine algal distribution in a com­ plex environment is to select a time for study at which the environmental stresses would be at a maximum, and variables, such as ephemeral individuals, would be eliminated. One might postulate that hot, dry conditions and interspecific competition among organisms for inorganic ions and water would be at a maximum in the late summer in the subaerial environment. In late August, 1975, such conditions occurred. Algae in collections from this month were exposed to condi­ tions of minimum moisture and maximum temperature (Table 2).

Association Analysis of August Collections

Application of association analysis to August, 1975, data (Fig. 31), resulted in a division firstly on Sommierella sp., then, in sequence, on Protococcus vestitus, Scotiella nivalis, and Gloeocystis ruuestris. With two exceptions, all the stands (collections) in which Sommierella sp. occurred were in Hocking County. The exceptions were collections from a dry, red-brown seepage area cm above the base of the southeast- facing Hanover Cliff subsite, and a collection 15 cm below the mosses in the uppermost sample on the southwest-facing transect at Leo Petroglyph Cliffs. Stands at which Protococcus vestitus was present but Sommierella sp. was absent were highly heterogenous, but many mosses and liverworts were present. Of 2^ stands at which Table 2. Temperature in plant masses at study sitesa

Blackhand Rock Ash Leo Stevenson’s Collection Hanover Gorge House Cave Petroglyph Gorge Period® Cliff Cliff Cliff Cliff Cliffs Cliff

January 1 1 0 -1 1 c

February 1 1 2 1 11 5 Late Early March-April 10 8 8 8 11 7 Late Early April- May 12 11 11 10 9 9 June 21 18 20 19 20.5 19 July c 21 c c 20 20

August 20 18.5 20 21.5 23 19

September 17 14 14 15 13 13 October 14 12 12 12 8 7 November 6 5 5 5 5 3 December 2 2 0 4 -2 0 a = degrees Celsius, b « see page 44 for individual dates, c a no data. 85

Fig* 31• Association analysis of August, 1975, collections.*

* a listing of collections in groups 1-5 is found in Appendix J. ♦ indicates species is present in collections. - indicates species is absent in collections. *6

5 0 0 _

Sommierella sp. 100

CM

W 50 X < Protococcus vestitus

+ Scotiella nivalis + Qloeocystis| runestris I 10 - t V

87 Protococcus vestitus was present, 22 also contained bryo- phytes, the majority of which were leafy liverworts. Some association between Protococcus vestitus and bryophytes is suggested; a symbiotic or mutualistic relationship is pos­ sible, or both may have similar habitat requirements. The next division between collections occurred where Sommierella sp. and Protococcus vestitus were both absent, but where Scotiella nivalis was either present or absent. In contrast to the group subdivided on the presence of Protococcus vestitus, 10 of the 12 collections in which Scotiella nivalis occurred did not have bryophytes present. No obvious explanation for the distribution of Scotiella nivalis is immediately apparent, however. Floristically, the most similar collections were those in the Gloeocystis runestris present subgroup. Ordination of this subgroup indicated that the stands were very similar (Fig. 32), and was acceptable because contouring on the num­ ber of species, rather than on species quality, was minimal. The vertical transect at the southeast-facing subsite at Hanover Cliff was found to be under maximum moisture and tem­ perature stress, and was selected for closer study. When the transect was examined from the uppermost stand (213 cm above the cliff base) (Table 3)> Gloeocystis ruoestris and Mesotaenium macrococcum var. minus were "dominant" species. However, in collections examined from 1^2 to 10*f cm above the cliff base, Mesotaenium macrococcum. Eunotia fallax var. 66

Fig# 32. Ordination of association analysis subgroup of Gloeocystis runestris (Lyngb.) Bornet collections, August, 1975# 69

X

un

co Table 3 * Algae in collections from a vertical transect at the southeast-facing subsite at Hanover Cliff, August, 1975.

Collection No. 962 965 96/+ 965 966 967 968 969 970 971 972

Moisture class 1 1 1 1 1 1 1 1 1 1 1 Height (cm) above cliff base 213 198 168 1/+2 10/+ 7k z+3 23 23 3 38 Inclination (degrees) 225 215 220 2/+0 2/+0 2Z+0 220 220 220 180 235 Gloeocystis rupestris X XXXX XX X X XX Chlorococcum sp. - - - - - X X XXX X

Klebsormidium sp. X - - - X ------Mesotaenium macrococcum v.minus - X XX XXX X XXX Urococcus insignis - X - mm XX - - - - - Trentepohlia sp. - XX X - X -- - - Mesotaenium macrococcum - - - X ------Eunotia fallax v gracillima - - - XXX - - dead dead dead Gloeocystis ampla - - - X ------Chroococcus varius - - - XX - - - X - X Protococcus viridis XX XX

X present in collection - not present in collection dead protoplasts were either bleached or absent gracillima. Gloeocystis amula. and Chroococcus varius were present in addition to the usual Gloeocystis runestris- Mesotaenium macrococcum var* minus flora* Mesotaenium macrococcum and Chroococcus varius were not found again in August at Hanover Cliff except from collections taken at 38 cm or below, to the base of the cliff* These species did not occur in any other collections from the intervening 60 cm* Upon examination of field data, the only difference between the stands at which additional species were found, and those above and below, was that the angle of inclination of the rock of those stands was 20 degrees greater than it v/as on either side* The difference in inclination might mean that the rock, and algae, would receive less insolation than would surrounding collection areas, and less water would be lost by evaporation there than in surrounding stands* If moisture was the factor limiting algal distribution, more species would be able to exist there* April, May, and some June, 1975, collections from stands with greater inclination were moister than were collections above and below them on the transect at the southeast-facing subsite of Hanover Cliff* Available moisture would be expected to be greater at stands at which less evaporation would occur* Such stands might occur at the base of Hanover Cliff, and seepage areas there would supply additional moisture* Species additional to those in the above exposed stands would be expected to be 92 present there. Additional species at the base of the south- east- facing subsite at Hanover Cliff included Sommierella sp,, Scotiella nivalis, Chroococcus varius. Chrysococcus radians, Gloeocystis amnia, and Eunotia fallax var, gracillima. All these species were seen at sites on Sharon Conglomerate in Jackson County, and all except Chrysococcus radians were seen at Hocking County sites. The continuity of vegetation present suggests that the cliff algal communities are a con­ tinuum, rather than discrete entities, and that algal dis­ tribution is governed by environmental considerations, rather than by geological or glacial history. Additional evidence that slight moisture variations in microhabitats may limit the distribution of algae is provid­ ed by other stands of the Gloeocystis ruuestris present group. Stands 917, 918, and 919 differed from comparable stands at Rock House Cliff in two ways: stands 917 and 918 were on iron-bound sandstone, and stands 917, 918, and 919 faced due northeast rather than due north. Sites at similar elevations above the base of the cliff (913, 909, and 910) were on soft sandstone that was not iron-bound. If seepage through sand­ stone were diminished by a tight cementing together of the sand grains by iron compounds, or if moisture available by condensation were not absorbed by iron-bound sandstone as much as by softer sandstone, one would expect a flora more characteristic of drier stands to exist on the iron-bound rock. The driest stands examined were at Hanover Cliff; at 93 the southeast-facing subsite, the flora was composed of gloeocystis rupestris. Mesotaenium macrococcum var. minus, and a few other taxa. These two species were numerically major components of the flora of iron-bound substrate areas at the Bock House Cliff northeast-facing subsite, and numer­ ically minor components of the flora also resembled those seen at Hanover Cliff. Transect analysis of the north-facing transect at Rock House Cliff also revealed important information concerning algal distribution. When the distribution of algae in the collections at various heights above the cliff base was compared (Table if), a pattern in which certain algae were confined to distinct zones was evident. Placoderm desmids, including Staurastrum punctulatum Breb., Cosmarium cyclicum Lund., and Cosmarium subcostatum Nordst. were found at the seepage areas (903 and 90if) on the ledge surface; this result suggests that placoderm desmids are found in subaerial habi­ tats where water is easily available. Species of Chroococcus. Gloeocapsa. Aphanocapsa. and Aphanothece were found farther up the cliff (905, 906, 907, and 908). Some of these algae may have been limited to this portion of the transect by too much moisture at the seepage areas (903 and 90if) and by too little moisture at the stands immediately above these sampling areas. Sample 909 is of special interest, because it was taken at the base of a small ledge. Mosses were dominant, and Table 4 « Algae in collections from a vertical transect at the north-facing subsite at Rock House Cliff, August, 1975#

Collection No. 903 904 905 906 907 908 909 910 911 912

Moisture class 6 5 4 4 4 4 4 3 3 3 Height (cm) above cliff base 41 46 53 64 109 86 150 188 201 216 Inclination (degrees) Diatoms XXX mm X - «. • Eunotia fallax v.gracillima X X X XXXX X X Myxosarcina burmensis X - X - » - — • iScotiella nivalis XX X X X X X X XX tfrococcus insignis X XXXX X X X XX Protococcus vestiius X X .. _ _ . — - Staurastrurn punctulatum X ------Chlorococcura sp. X X XXXXXXXX Chroococcus varius X - X XX X X XX - ^rochiscia ohioensis sp. novo. X - XX XX X XX X Cosmarium cyclicum X X X ------Synechococcus aeruginosa X ------'Cosmarium costatura X X — —— — — ——— Cloeocapsa gelatinosa X - X X XX - > - - Anhanocarsa grevillei X - - X - XX --- Klebsormidium sp. XX X XX -- - X ''Gloeocystis coxae King" - - X X X X X - X - Gloeocyanellum aerialensis sp. novo. - - X X X X - X X X. Cylindrocystis anoinala - - X zy zy Zy - zy zy zy TJlothrix tenerrima - mm X X - X Sommiereila sp. -- XXXXX X — tloeoc.ystis ampla -- XX - XX X -- Ciiroococcus ininutus mm X X XX .. .. Chroococcus minor X X X _ Table Jf. Continued

Collection No. 903 90if 90 3 906 907 908 909 910 911 912

Gloeocapsa pranosa X _ X .. XX Cloeocansa dermochroa — — - X *» -— _ — Cosmarium specios'issumum -- X ------■ - Cosmarium subcrenatum -- X — - • — - - . — Actinotaenium curtuin --- X -- -- X - Anabaena sp. - -- XX - X — XX Mesotaenium macrococcum v minus M mm X mm mm — XX Hormotila sp. - - X mm mm _ — _ Cosmarium notabile v heterocrenatum - - -- - X • mm — mm Aphanothece castapnei ----- X - -- - Gloeocapsa kutsinsiana M —--- X - X -- Gloeocystis rupesuris — —— — —— X mm — X Cloeothece ralea mm - - -—- X mm — mm Coccomyxa dispar rnm - - —- mm X mm X Aphanothece naec;elii mm mm - - mm - X - • Cylindrocystis brebissonii v .ienneri - Zy — Cylindrocystis sp. mm X Aphanothece sp. X

X present in collection - not present in collection Zy present in collection only as zygospores

vOvn leafy liverworts were also present. The paucity of the flo­ ra of this collection when compared to collection sites on both sides is noteworthy, and its lack of diversity could be explained in many ways. Continuing up the cliff transect, fewer species of Chroococcales were found. Drier conditions were encountered (Table 4), therefore, Chroococcales may be limited by avail­ able moisture, Cylmarocystis anomala was encountered as vegetative cells only at the lowest stand at which it occur­ red, and was seen in drier stands only as zygospores or aplanospores. This distribution suggests that zygospore formation in Cylindrocystis anomala may be a function of moisture availability, August collections without Sommierella sp,, Protococcus vestitus. Scotiella nivalis, and Gloeocystis runestris divid­ ed into two categories, based upon the presence or absence of ”Gloeocystis coxae King”, In this instance, “Gloeocystis coxae King” may have been a morphological variant of Gloeocystis runestris. Most collections in which "Gloeocystis

i coxae King” occurred were taken from the ledge subsite at Stevenson*s Gorge Cliff, and were associated with Mesotaenium macrococcum var, minus, and other drier habitat forms. All collections without “Gloeocystis coxae King” were obtained from habitats of flowing or standing water. Several subsites, including Leo Petroglyph Cliffs seepage areas, the pool subsite at Ash Cave Cliff, and a seepage area at 97 Blackhand Gorge Cliff were represented in the collections* The absence of certain algal species, including Gloeocystis runestris and several chroococcalean algae, under these con­ ditions suggests that certain subaerial algae probably do not survive in environments with large amounts of free water#

Association Analysis for Late March-Early April Collections

Association analysis of late March-early April, 1975» collections resulted in four subgroups, dividing firstly on the presence or absence of diatoms other than Eunotia fallax var# gracillima. Of the three subgroups in which diatoms other than Eunotia fallax var# gracillima were present, one subgroup was formed of collections in which Cosmarium spp# were present, and the remaining collections, were divided into two subgroups according to the presence or absence of

Protococcus vestitus (Fig# 33)* The assemblage of collections in which diatoms other than Eunotia fallax var. gracillima were absent was highly heterogenous, and included collections from the driest areas of transects at Hanover Cliff and Blackhand Gorge Cliff, and collections in which Cyanophyta were abundant at Rock House Cliff and Ash Cave Cliff. When these collection areas were sampled in later months, diatoms other than Eunotia fallax var# gracillima were usually absent, and Eunotia fallax var# gracillima was occasionally absent, also# At Hanover Cliff 98

Fig# 33* Association analysis of late March-early April, 1975, collections,*

* a listing of collections in groups 1-4 is found in Appendix K, + indicates species is present in collections, - indicates species is absent in collections.

V. 100 _

+ Diatoms other than Eunotia fallax var. 50 . Jsra'cillima

I* x Cosmarium sop.

W - + — $ Protococcus :§ vestitus

10 - 1 2 3 4 100 and at Blackhand Gorge Cliff, there may not have been enough moisture present for survival of diatoms other than Eunotia fallax var. gracillima. The exclusion of diatoms, when Stigonema species were present, from the wet to dripping moss seep, and honeycomb areas at Ash Cave Cliff is unexplained. Samples containing diatoms other than Eunotia fallax var. gracillima were divided into two groups by the associa­ tion analysis. One subgroup contained collections with species of Cosmarium present; the second group contained col­ lections in which Cosmarium taxa were absent. For all asso­ ciation analyses, all Cosmarium taxa were combined into the taxon. Cosmarium spp., as entering individual Cosmarium taxa into the anlaysis program would have required a much larger data matrix. Individual taxa of Cosmarium would have been excluded, for the most part, from the Chi-square calculations, as most Cosmarium taxa occurred fewer than three times each in any collecting period. All sites at which Cosmarium spp. occurred fell into moisture classes 5-9 (Table 1). One sample associated with Conoceuhalum. at the base of a ledge at the Leo Petroglyph Cliffs southwest-facing subsite, supported a flora similar to that exhibited in the temporary pool at the base of the north- facing transect at Rock House Cliff. Cosmarium spp., Rhodomonas sp., Oscillatoria .iasorvensis Voulk, Trachelomonas sp., Chroococcus turgidus. Chroococcus minor, and Schizothrix sp. were present. That these species were collected at other times only in pools of standing water suggests that the thal- loid liverwort Conocenhalum may act as a miniature reservoir in which free water is available long after water outside the liverwort micro-environment has evaporated, Conocenhalum and other thalloid liverworts may be areas in which algae less resistant to desiccation continue to exist throughout dry months, Tribonema sp, was present at the southwest-facing subsite of Leo Petroglyph Cliffs in a runoff area in which Cosmarium taxa were also found. As Tribonema sp, is well known for its periodicity, the question of algal periodicity on cliffs is raised. If there is algal periodicity on cliffs, it is probably limited to ephemeral species. Three species of Cosmarium found in the east-facing runoff subsite at Ash Cave Cliff were not present at other times. In June samples, Klebsormidium sp, was found in wet situations, but was not found at the feame localities under the drier conditions of August, 1975* Algal periodicity on cliffs may be limited to those ephemeral algae that exist at the drier subsites during wetter months, and then become dormant, or are destroyed, when these subsites dry. Late March-early April collections having diatoms other than Eunotia fallax var, gracillima and Protococcus vestitus were obtained from conglomerate-free areas, with the excep­ tion of a conglomerate area on top of the ledge at the west- facing subsite at Leo Petroglyph Cliffs, Eunotia fallax var, gracillima was common in all collections, and occasionally comprised most of the algal cells present. Various members of a heterogenous assemblage of green algae, including Trochiscia ohioensis. Scotiella nivalis. Cylindrocystis anomala. Cylindrocystis breblssonii var. jenneri,’’Gloeocystis coxae King", and Chlorococcum sp., were also present. Few chroococcalean algae were seen except at Rock House Cliff, at the base of the Hanover Cliff southeast-facing subsite, and in a seepage pool of the west-facing subsite conglomerate ledge at Leo Petroglyph Cliffs. That chroococcalean algae were found only in stands from sites with the greatest mois­ ture again suggests that these chroococcalean algae are lim­ ited to the moister sandstone areas. Protococcus vestitus and bryophytes occurred together in 12 of 16 collections, and 3 of the remaining k collections may have had runoff from bryophytes. These results reinforce the possibility of a relationship between bryophytes and Protococcus vestitus. Late March-early April samples having diatoms other than Eunotia fallax var. gracillima. but without Cosmarium taxa Protococcus vestitus. formed a very heterogenous group. Several seepage areas were represented in this subgroup, in­ cluding the bases of the north-facing transect and northeast- facing subsite at Rock House Cliff, the base of the northwest- facing and north-facing seepage areas at Blackhand Gorge Cliff, the base of the southeast-facing subsite at Hanover Cliff, and seepage areas at the southwest-facing and west-facing subsites

at Leo Petroglyph Cliffs. Ordination of this heterogenous subgroup and of the sub­ group of collections having no diatoms other than Eunotia fallax var. gracillima. showed distinct contouring similar to that found by Allen (1971) in his application of ordina­ tion to algal communities on cliffs in Wales, Young (1973* 1976), using presence-absence data, experienced the same difficulty of ordination contouring of species-poor strip- mine diatom communities. Allen was able to compensate for this contouring, caused by species paucity in some samples, by using a standardization described by Orloci (1967) in a principle components ordination. Such a standardization was not available for the Orloci perpendicular axis technique lihed in this study; therefore, ordination results of this group had distinct species contouring. Allen comments: MIf two stands have two species each, then the most different that these two stands can be is two species, while two stands that have ten species each, have much greater potential differences available. Thus increase in species number is liable to produce an increase in interstand distance. There is a trend • " towards an artificial contouring that may be describ­ ed as artificial because it is derived from species number and not species quality.”

Association Analysis of December Collections

Association analysis of December, 1975 collections re­ vealed five subgroups. The first division was on the presence or absence of G1oeocyaneHum aerialense. resulting in one subgroup in which Gloeocyanellum aerialense was present, and

a remaining group without Gloeocyanellum aerialense» This to^ subgroup without Gloeocyanellum aerialense subdivided on Trochiscia ohioensis. Stands with Trochiscia ohioensis sub­ divided on the presence or absence of Protococcus vestitus. Stands without Trochiscia ohioensis subdivided on the pres­ ence or absence of Mesotaenium macrococcum var. minus (Fig.

34). The subgroup in which Gloeocyanellum aerialense occurred was composed of collections from subsites that, with one ex­ ception, were located in Hocking County, At the east-facing seepage runoff subsite at Ash Cave Cliff, this taxon occurred in samples 1321, 1322, 1323* and 1325 (Table 5)* Collection T32Zf was without Gloeocyanellum aerialense. Trochiscia ohioensis, or Mesotaenium macrococcum var. minus, and the flora was considerably different from that of 1321, 1322, 1323, and 1325. All ecological factors among 1321-1325, with one exception seemed equivalent. Samples 1321, 1322, 1323, and 1325 did not have any vegetation other than algae present, whereas a leafy liverwort was present in 1324. When the flo­ ra of 1324 was compared to that of adjacent collections, 1324 Was found to have few species of chroococcalean algae, where­ as several species of chroococcalean algae were found in the adjacent collections. The liverwort may have, in some way, inhibited the chroococcalean algal growth, allowing other species to become established. As several of the Chlorophyta that became established are the same species that inhabit drier subsites, it may be transpiration associated with the 105

S* 34* Association Analysis of December, 1973, Collections**

* a listing of collections in groups 1-5 is found in Appendix L.

* indicates species is present in collections. - indicates species is absent in collections. 106

100 - Gloeocyanellum aerialensis

50 - Trochiscia ohioensis

X 10- W -

1 : 2 - Protococcus Mesotaenium 5- vestitus macrococcum var* minus

4 Table 5* Algae in collections from a horizontal transect at the east-facing seepage runoff subsite at Ash Cave Cliff, December, 1975*

*

Collection No, 1321 1322 1323 1324 1325

Moisture class (frozen) 1 1 1 2 1 Height (cm) above cliff base 190 190 188 190 190 Inclination (degrees) 195 193 195 200 195 Chlorococcum sp. XX XX « Chroococcus varius X XXXX Coccomyxa dispar X -- X - Cylindrocystis anomala XXX -X

Eunotia fallax var, gracillima X - XXX

Gloeocapsa alpina X ---- Gloeocapsa granosa XXX - X Gloeocapsa sanguinea XX X - X

Gloeocyanellum aerialensis XXX - X Gloeocystis ampla X - X X mm "Gloeocystis coxae King" X - - X - Gloeothece fusco-lutea X - - - - Mesotaenium macrococcum var, minus X X - - -

Nostoc microscopicum X - X - X

Scotiella nivalis X - X - ' - Sommierella sp. XX XX X Table 5* Continued.

Collection No. 1321 1322 1323 1322f 1325

Urococcus insignis XXXX -

Gloeocystis rupestris - X XX -

Diatoms - - X X X

Oscillatoria subbrevis - - X - -

Trochiscia ohioensis - - X - -

Gloeocystis maxima -- XX -

Gloeocapsa magma - - X X X Cosmarium subholmiense -- X - -

Chroococcus minutus - - X m m -

Aphanocapsa grevillei - - X - -

Aphanocapsa musicola - - X --

Mesotaenium macrococcum - -- X -

Hormotila sp. --- X -

Anabaena sp. m m -- X - Chlorochytrium sp. -- X -

Gloeothece rupestris M - - - X

Gloeocystis sp. --- - X

Chroococcus minor -- - - • X Gloeocapsa itzigsohnii a m --- X Table 5* Continued*

Collection No, 1321 1322 1323 132Zf 1325

Actinotaenium curturn - - « - X Geminella-like green unicell - - - - X

X present in collection - not present in collection 110 leafy liverwort removed water from the cliff surface, and not enough water remained for survival of chroococcalean algae in the immediate vicinity of the leafy liverwort* A similar situation was noted in sample 726, in which mosses and liverworts were present at the base of honeycomb area at Ash Cave Cliff in June, 1975* Few chroococcalean algae occurred in sample 726, whereas chroococcalean species were abundant in other collections from the immediate vicinity* The association analysis subgroup with Mesotaenium macrococcum var* minor present, but with Gloeocyanellum aerialense and Trochiscia ohioensis absent, grouped the drier stands in the study areas together with collections from Stevenson*s Gorge Cliff. Species composition and algal distribution at the southeast-facing Hanover Cliff subsite were similar to the April and August, 1975, algal species distribution, indicating that the algal communities changed little, if at all over the entire growing season* Similar algal floras found at Stevenson*s Gorge Cliff, from several collections at the southwest-facing subsite at Leo Petroglyph Cliffs, from the "Capitol" subsite at Ash Cave Cliff, and from the Hanover Cliff southeast-facing subsite indicated that the cliff algae of the sites studied in east-central and southeastern Ohio are members of the same community. Ill Association Analysis of June Collections

Results similar to August analyses were obtained when the June, 1975, data were subjected to association analysis. Again, one subgroup of collections was formed in which Sommlerella sp. was present, and another group was formed in which Sommierella sp. did not occur (Fig. 35). Collections ih which Sommierella sp. occurred were from moister subsites at Rock House Cliff and Ash Cave Cliff, a seepage area at the base of Hanover Cliff, the base of the southwest-facing rim subsite at Leo Petroglyph Cliffs, and the stand under the waterfall at Stevenson's Gorge Cliff. Ordination of the Sommierella subgroup, though subject to contouring, yielded valuable information (Fig. 36). Two subgroups were formed in which available moisture was the dividing criterion. In subgroup A, all stands were wet or dripping except 729, which was damp to wet. Subgroup B stands were drier than were stands of subgroup A. Placoderm desmids, Eunotia fallax var. gracillima. and other diatoms were limited to stands in subgroup A, except that diatoms were associated with Conocenhalum at one site, and, unexpectedly, were found at one dry site. The occurrence of Cosmarium and other placo­ derm desmids only at stands with moisture values of 5-9 is the same result obtained in August and April collections, and supports the hypothesis that placoderm desmids are limited to subaerial cliff habitats of high moisture. The apparent lim­ itation of diatoms other than Eunotia fallax var. gracillima 112

Fig* 35* Association Analysis of June, 1975t Collections**

* a listing of collections in groups 1-5 is found in Appendix M. ♦ indicates species is present in collections* - indicates species is absent in collections* 113

100- Sommierella sp*

50- Trochiscia ohioensis

CM X w |6loeocystis x io- pirpestris < 5 Klebsormidiun sp, 5-

3 4 m

Fig. 36. Ordination of association analysis subgroup of Sommierella sp. collections, June, 1975* 115

X

CO

to CM 116 to wet conditions, or to conditions at which the presence of thalloid liverworts ameliorates the habitat, is the same result as was found in the late March-early April collections* That more species of Gloeoca-psa and Chroococcus were present in subgroup A suggests that the subaerial members of these genera are also restricted to the more moist environments, as also was suggested after examination of August data* Stands in which Sommeriella sp, was absent separated into two groups on the presence or absence of Trochiscia ohioensis. Stands in which Trochiscia ohioensis was present separated further into two groups, dividing upon the presence or absence of Klebsormidium sp. Stands in which Sommierella sp. and Trochiscia ohioensis were absent separated into two subgroups, dividing upon the presence or absence of Gloeocystis rupestris. Strong evidence for the association of Trochiscia ohioensis with bryophytes was provided by June, 1975, data. Trochiscia ohioensis was present in 51 collections, while bryophytes occurred in if.6 of these collections. Of the remaining 5 stands, 4 may have been affected by leachates from nearby mosses or liverworts; one sample, obtained from an area at the "Capitol" subsite at Ash Cave Cliff, was apparently devoid of bryophytes. Nutritional studies might reveal the existance of commonsalism between Trochiscia ohioensis and some bryophytes. 117 With two exceptions, all collections in which Trochiscia ohioensis and Klebsormidium sp. were present and Sommierella sp. absent were characterized by wet to dripping moisture conditions. The two exceptions were a damp stand located 15 cm above the base of the southwest-facing subsite at Leo Petroglyph Cliffs, and a damp stand associated with a thal- ICid liverwort at the base of the southeast-facing subsite at Hanover Cliff. Klebsormidium sp. appears to be an ephem­ eral alga restricted to sites at which abundant moisture is present. Filaments of Klebsormidium sp. occurred in several stands at the southeast-facing subsite of Hanover Cliff in late March-early April and June collections, but were seerr only rarely in the wetter areas at Hanover Cliff in August* The association analysis subgroup at which Sommierella sp. and Klebsormidium sp. were absent but at which Trochiscia ohioensis was present were, with one exception, characterized by liverworts or mosses. Prominent in this subgroup of stands were collections from the northwest-facing transect of Blackhand Gorge Cliff. Whan_this, transect was analyzed, the only stand at which Trochiscia ohioensis did not occur was where Reboulia sp. was attached to the cliff. As Trochiscia ohioensis was associated with Conocenhalum at other times in this study, the absence of Trochiscia ohioensis in the vicin­ ity of Reboulia sp. may or may not be species related. Cells and zygospores of Cvlindrocystis anomala occurred halfway

down the transect at the rear of a small ledge. Cells of 118 Cvllndrocvstis anomala were not seen again except associated with the wet, thalloid liverwort, Reboulia sp,; and zygo- spores of Cylindrocystis anomala were only seen in stands near the cliff base, where there was more moisture. Limi­ tation of Cylindrocystis anomala cells to moister areas and zygospores to drier conditions again suggests the hypothesis that formation of Cylindrocystis anomala zygospores is relat­ ed to a lessening of available moisture. The importance of available moisture in determining the flora present in a stand is also reinforced by collection 80A which, though lo­ cated at the cliff base, had 7 fewer taxa than samples imme­ diately above it. Collection 8CMf was obtained from mosses dislodged from the underlying bedrock, and was drier than areas above it. Essentially the same algae were found in the same mosses in an October, 1975s collection. Collections containing Gloeocystis runestris, but no Sommierella sp. or Trochiscia ohioensis. originated from drier stands including those at Hanover Cliff and Blackhand Gorge Cliff, These stands were dominated by Gloeocystis runestris. Mesotaenium macrococcum var, minus. and other algae tolerant o f drier conditions. All directions of stand exposure occurred in this subgroup, indicating that direction of exposure was not critical for the algal taxa occurring in this subgroup. Although a few additional species of ephemeral algae were found in this subgroup, the algal flora closely resembled that

August subgroup which included most stands from Hanover Cliff, June collections without Sommierella sp., Trochiscia ohioensis. or Gloeocystis rupestris were a heterogenous group composed mostly of collections from the southwest- facing subsite of Leo Petroglyph Cliffs, Diatoms were absent when samples 771 and 772 from a dried-up drip area at Leo Petroglyph Cliffs were examined. In early April collections from immediately adjacent stands 589 ancl 590, diatoms were the most abundant algae found. As all the diatoms found in the April collections were biraphid and motile, movement of diatoms out of desiccating environments may have occurred. Several taxa of diatoms were found in collections taken from most stands on the southeast-facing surface of Hanover Cliff in early April, but only Eunotia fallax var. gracilllma oc­ curred in August collections. Other diatoms were completely absent in August collections at Hanover Cliff.

Association Analysis of October Collections

Analyses of October, 1975> data supported results of ear­ lier months. Again, association analysis subdivided firstly upon Sommierella sp. (Fig. 37)• Stands with Sommierella sp. were from Hocking County, except for one collection each from Hanover Cliff and below the waterfall at Stevenson*s Gorge Cliff, Algal distribution at the north-facing transect of Rock House Cliff was similar to that of August, 1975# At the Ash Cave Cliff honeycomb subsite, as in June and December col­ lections, two collections with bryophytes present were 120

Fig. 37. Association Analysis of October, 1975, Collections.a

a a listing of collections in groups 1-if is found in Appendix N. ♦ indicates species is present in collections. - indicates species is absent in collections. 121

1 0 0 - Sommierella sp,

50 * Aphanocapsa grevillel • r Trochiscia okioensia"

W 1 0 - X <

5 - 122 dominated by Chlorophyta, without Sommierella sp,, and with few species of Cyanophyta, Surrounding areas without bryo­ phytes possessed Sommierella sp, and chroococcalean algae. Collections without Sommierella sp, divided into two groups, on Aphanocapsa grevillei. With the exception of two Hock House samples, collections with Aphanocapsa grevillei and without Sommierella sp, were obtained from Leo Petroglyph Cliffs, The grouping together of the stands at Leo Petroglyph Cliffs is unexplained. Collections in which Sommierella sp, and Aphanocapsa grevillei were both absent subdivided on the presence or ab­ sence of Trochiscia ohioensis. Again, Trochiscia ohioensis was closely associated with bryophytes. In this subgroup, bryophytes were found in 32 of 33 collections. Of 51 col­ lections in which Trochiscia ohioensis occurred, bryophytes were found in 47* This result was similar to that found in June, 1975, samples. In general, the makeup of the Trochiscia ohioensis subgroup of October stands was similar to that found in the same subgroup of June stands. Collections without Trochiscia ohioensis. Aphanocapsa grevillei. or Sommierella sp, were confined to dry stands at Hanover Cliff, Blackhand Gorge Cliff, the **Capitol*' subsite at Ash Cave Cliff, and stands at Leo Petroglyph Cliffs and Stevenson's Gorge Cliff. At all these stands, Mesotaenium macrococcum var. minus and Gloeocystis rupestris were abun­ dant, The composition and distribution of the algal flora 123 at various sites in the group closely paralleled the results obtained in other months. Two patterns emerged when a complete ordination of all October collections was analyzed. Stands in which diatoms formed more than 85% of total algal cell numbers grouped together and had moisture classes of 5 or greater; the single exception was a collection classified as ’'dry" at which Conoceuhalum was present. This exception was similar to that seen in other months. Stands in which green algae, especially Gloeocystis taxa and Mesotaenium macrococcum var. minus made up more than 85% of total algal cell numbers grouped together and had a moisture class of 1 (dry), Cyanophyta were the most abundant algae at stands under varying moistures, A complicating factor in the correlation of ordinations and algal distribution is that late October, 1975, sites were exposed to direct sunlight and dry conditions and, in some cases, had dried out considerably. One subsite experi­ encing severe drying was the east-facing moss seepage area at Ash Cave Cliff, October, November, and December, 1975, collections were noteworthy in that germinating zygospores of Cylindrocystis anomala and Cylindrocystis brebissonii var, .ienneri were found several times in Hocking and Jackson County collections.

In March, 1975, collections, only two cells were released from the zygospores of Cylindrocystis anomala, but in late fall collections, four cells emerged from zygospores. The 12if reasons are unknown for the emergence of cells from zygospores at this time, or for the variation in emerging cell numbers between late fall and early spring collections.

Association Analysis of February Collections

Association analysis of February collections gave only two final subgroups, dividing upon the presence or absence of Trochiscia ohioensis. The coexistence of Trochiscia ohioensis and bryophytes was high, Bryophytes were found in 18 of 20 stands in which Trochiscia ohioensis occurred. As February stands were not exposed to severe water stresses, the apparent interaction observed between Trochiscia ohioensis and bryo­ phytes may be nutritional or chemical. Because an interaction between Trochiscia ohioensis and mosses was thought to have masked the actions of other algal species, Trochiscia ohioensis was removed from the data, and a second association analysis was carried out. In this in­ stance, two groups were formed on the presence of Scotiella nivalis, at a sum of Chi-square values equal to 25,152, The group in which Scotiella nivalis was absent was further sub­ divided on Gloeocystis runestris at the sum of the Chi-square values equal to if.73^* Scotiella nivalis occurred in stands located on the sides of cliffs in damp to dripping environ­ ments, and co-occurred with Trochiscia ohioensis. Protococcus vestitus. and species of Cylindrocystis. Gloeocapsa. and Chroococcus. Scotiella nivalis and its associated flora 125 were not found either at stands in which standing water had accumulated or at dry sites at which Gloeocystis runestris and Mesotaenium macrococcum var. minus predominated. The second subdivision on Gloeocystis runestris may not have been ecologically meaningful, as stands without Gloeocystis runestris included the driest stands studied, the deep pits found in iron-bound sandstone, and the wettest stand, the underside of the southwest-facing subsite at Leo Petroglyph Cliffs. So far, evidence presented and discussed supports the hyopthesis that small variations in moisture in adjacent microhabitats determine the composition of the algal vegeta­ tion on cliff surfaces. Comments should be directed to alter- t native hypotheses that suggest light, temperature, or nutri­ ents may be primary factors that determine the makeup of the subaerial algal vegetation. In the areas studied, light quantity varied greatly ac­ cording to elevation of the sun, presence or absence of clouds, the numbers and elevation of clouds, and presence or absence of a forest canopy. A dense hemlock or hardwood forest canopy overshadowed all sites from mid-April to late October, 1975* In 1975» study areas were exposed to high light intensities, including occasional direct sunlight, from January to early April, and from late October through December. The maximum illumination recorded under the canopy at Ash Cave Cliff was

65 ft-c when the photocell of the Weston meter was held 126 horizontally at 2:00 in the afternoon of a cloudless, clear day in June, 1976. Wolfe, Wareham, and Scofield (1949) obtained similar, slightly higher (120 ft-c) values for the maximum insolation found under a similar canopy in a cove at Neotoma, a small valley in Hocking County, Ohio. Cyanophyta may grow in very low light intensities, and chroococcalean algae were found growing on cliffs in low light environments. Green algae, however, were not excluded from these low-light intensity environments. Under the lowest light measured, 6 ft-c at the seepage pool subsite at Ash Cave Cliff, Chroococcus turgidus and diatoms were abundant, and species of Cosmarium and Chlorococcum-like algae were occasional. Blue-green algae and green algae were inter­ mingled at the same, low light intensities (10-20 ft-c) at the east-facing seepage subsite associated with mosses at Ash Cave Cliff, at Rock House Cliff, and at Stevenson's Gorge Cliff. Green algae, but no blue-green algae, were found at Blackhand Gorge Cliff at 10 ft-c illumination. The most easily recognizable difference between cliff areas at which Cyanophyta were predominant and areas at which Chlorophyta were predominant was a difference in the degree of moisture rather than a difference in light intensity. The amount of light striking the sandstone cliffs may affect revegetation rates of scraped, bare, and uncolonized rock surfaces. In December, 1975, in a Gloeocystis 127 runestris-dominated area at Blackhand Gorge Cliff, no visible revegetation of areas scraped in June, July, or August was observed. At the southwest-facing subsite at Leo Petroglyph Cliffs, only slight revegetation of areas scraped clean in July.and August, 1975, was observed by the following November, By July, 1976, however, all scraped areas, including the Gloeocystis runestris-dominated collection areas, were cov­ ered by a thin film of green algae consisting primarily of Gloeocystis runestris. At Ash Cave and Rock House Cliff, scraped areas in which chroococcalean algae predominated were revegetated by chroococcalean algae in June, 1976, Probably little growth of cliff algae occurred when the forest canopy was closed, while most growth occurred when the canopy was open, Starr (in Stein, 1973) commented that algae may be maintained, without undergoing rapid growth, in laboratory culture at 50 ft-c. Similar light intensities under the closed forest canopy appear to have limited growth of cliff algae. Temperature did not seem to directly affect algal distri­ bution. Algal distribution on cliffs was constant throughout the study period, despite temperature variation (Table 2). Indirectly, however, the lower summer temperatures at the Hocking County sites may account for the occurrence of species of Gloeoca-psar Chroococcusr and other members of the blue- green algal communities there. Lower temperatures, lower

evaporation rates, and resulting higher humidities occur in 128 steep-sided valleys; Wolfe, Wareham, and Scofield (19Jf9) found that evaporation rates on ridge tops at Neotoma Valley were 80 times as great as they were in the adjacent cove. They attributed the resulting greater humidity in the cove to the stillness of the air and its lower temperature. Rice (I960) reported a similar phenomenon for a sandstone box canyon in central Oklahoma. A major reason for the occur­ rence of the blue-green algal communities on cliffs in Hocking County study areas may be that lower temperatures, less evaporation from the algal-rock interface, and higher humidities exist in the vicinity of the study areas. Effects of inorganic ions as variables, were minimized by selecting geologically similar sandstone cliffs for study. Runoff from soil and streams was minimized, but the difficulty experienced in interpreting algal ecology at one major subsite, the southwest-facing upper cliff rim subsite at Leo Petroglyph Cliffs, was possibly caused by runoff from soil affecting the cliff flora in the early spring. Mineral ions should be readily available to cliff algae, as the low pH (3*5-5*0) at all sites throughout the year should maximize their solubil­ ity. When methods for studying available nutrients on cliffs are devised, comparisons of algal floras on cliffs of differ­ ent chemical composition will become more significant. 129 General Discussion

This study was concerned with floristics of algae on sandstone cliffs in east-central and southeastern Ohio, and an explanation of algal distribution on cliffs in terms of variations in microhabitats* Unexpectedly, a unique, diverse flora was found. In most European studies of subaerial cliff algae, the blue green algae comprised the dominant portion of the flora* While Cyanophyta were important members of this subaerial flora, their distribution was severely lim­ ited. Chlorophyta, especially species of saccoderm desmids, Gloeocystis. and Bacillariophyta were more universally dis­ tributed. Fritsch (1907) and many other authors stress the importance of Trentepohlia aurea Mart, in the subaerial cliff flora. In this study, a species of Trente-pohlia resembling Trentepohlia aurea was seen in only one collection. The Trentepohlia taxon found elsewhere resembled Trentepohlia umbrina (Ktltz.) Hariot, and was common only in collections from Hanover Cliff, where it was significantly associated (P = 0.05) with masses of Gloeocystis rupestris. The subaerial cliff flora discovered also differed greatly from that reported in studies of soil algae. While Chlorococcum-like cells were present in many samples, they were rare numerically. Stichococcus bacillaris and pprotococcus yjr.ldis were found only occasionally in collec­ tions. Klebsormidium sp. was confined to occasional collec­ tions from wet areas. Allen (1971) suggested that 130 Klebsormidium was confined to stands that dry out. Results of this study suggest that Klebsormidium sp. is associated with stands where free water is present. ‘Species of Oscillatoria. Phormidium. Microcoleus. Lyngbya. and other filamentous, blue-green members of the soil flora were rarely observed, except where runoff from soil occurred. Schizothrix calcicola. a major dominant on rock surfaces in Wales (Allen, 1971) was rarely observed in this study. Calothrix parietina Thuret. often observed on cliffs in the Swiss Alps (Jaag, 1945) was not found. Stigonema minutum (Ag.) Hassal, common at many stands on Welsh cliffs (Allen, 1970 and on acid rocks in the Swiss Alps (Jaag, 1945) was observed in only a few collections at Ash Cave Cliff. As was found by Allen (1971)* Stigonema minutum did seem to have a characteristic associated flora, Stigonema minutum occurred in so few samples that no conclusions can be drawn. The occurrence of Sommierella sp., observed only previously from wet, warm volcanic rocks on the island of Pantelleria, is unexplained. Variation in Sommierella sp. should be more closely examined before its exact taxonomic position is determined. Chroococcalean algae found in samples were diverse, but their distribution was severely limited. Jaag (1945) devoted much of his study to Gloeocapsa sanguinea and other Gloeo­ capsa. which he included as forms of that taxon. Gloeocapsa sanguinea was abundant in almost every collection Jaag examined. Stands in which Jaag found chroococcalean blue- 131 green algae abundant possessed abundant moisture; similar results were found in this study. Species of Cosmarium and other placoderm desmids iden­ tified in this study were usually referred to by West and West (190£f) as “alpine desmids characteristic of dripping rocks or boggy areas.“ More research should be carried out on the subaerial desmids of sandstone cliffs in Ohio, esp­ ecially those of Hocking County. The only other discovery of Scotiella nivalis associated with mosses was by Skuja (196^)f from Swedish Lapland collections. That Ohio subaerial cliff habitats may be refugia for some northern algal spec­ ies such as Cosmarium taxa or Scotiella nivalis is a dis­ tinct possibility. Other possible alpine or glacial relict species are Chrysococcus radians and, possibly, Cylindro­ cystis brebissonii var. .ienneri. whose zygospores occasionally resembled the zygospores of Cylindrocystis brebissonii f. cryophila. which Prescott (1972) reported from Alaska. Diatoms were often observed in collections from cliff surfaces. Eunotia fallax var. gracillima. Pinnularia borealis, and a small naviculoid diatom were found in dry habitats; further investigations on the drought tolerance of these diatoms seems warranted. Additionally, a floristic study of the diatoms present on sandstone cliffs would prove rewarding. Movement of diatoms away from desiccating areas on cliffs is probable. Addition of diatom species to the data matrix for ordination would eliminate species contouring, 132 and might bring about a greater separation of points than is now possible with presence-absence ordination* Analysis methods provided much useful information, although use of presence-absence data may have indicated only the most obvious ecological trends* Greig-Smith (in Patil et al., 1971), argues that presence-absence data provide more ecological information than do quantitative measures of species* The use of presence-absence data in this study was appropriate because little is known about growth rates of different species of cliff algae, as well as the probability that clones had been established on cliff surfaces. The Orloci perpendicular axis ordination provided valid information as long as contouring, caused by species paucity, was not present* In many cases, however, contouring of ordination data occurred. Adjusting stands by eliminating rare species, as was done by Allen (1971), may make ordin­ ation data more meaningful; or diatom species could be included in the ordination* The inclusion of sill question­ able species of Gloeocapsa and Chroococcus in an ordination is inconsistent, while only two categories of diatoms, rep­ resenting 13 or more valid species, are also included in that ordination. The association analysis technique worked well and was valuable in spot-lighting exceptions to constant local en­ vironments. The association analysis technique was dis­ advantageous in that stands were divided on the basis of one 133 species, and if that species occurred in a transitional habitat, conflicting ecological inferences were obtained. Strong correlations of individual species with specific environmental factors could mask other ecological information. Difficulties of this nature were experienced when Trochiscia ohioensis and Protococcus vestitus correlated strongly with bryophytes. A third difficulty was that a large number of samples had to be examined before sufficient environmental data was obtained. Much less information was gleaned from association analysis of 5^ samples in February collections than was obtained from analysis of 88 December collections. An excessive sample number hampered close examination of association analysis results. More difficulty in inter­ preting results was experienced when June, 1975* samples were analyzed than when August, 1975, samples were analyzed, al­ though more information was eventually obtained from June data. Association analysis of 90-100 collections yielded optimum results for the time and energy expended. Allen (1971) speculated that ”on rock surfaces, dry conditions give greater importance to small variations in water availability, while the presence of free water removes all correlations between the algae and the quantity of water,” Presence evidence indicates the first part of this speculation is the central factor determining distribution of algae on sandstone cliffs in Ohio. Free water, however, does eliminate certain algae from localized environments. The limitation of diatoms and placoderm desmids to environ­ ments in which abundant free water is present is one confirm­ ation of Allen*s hypothesis. The discovery that thalloid liverworts may modify the environment also confirms Allen*s idea. The absence of Gloeocystis runestris. Mesotaenium macrococcum var. minus and chroococcalean algae from habitats in which free water is present, and the limitation of many species of chroococcalean algae to damp, but not dry habitats, suggests that abundant free water may limit the distribution of specific algae in cliff microhabitats. The importance of small variations in moisture to algal life cycles is also indicated by the limitation of vegetative cells of Cylin­ drocystis anomala to moister areas while its zygospores occur in drier microhabitats. Microhabitats of cliff algae in east-central and south­ eastern Ohio are stable and cliff algal communities undergo little floristic change caused by environmental variations. Changes in light and temperature affect the rate of growth, but not the floristic composition of algal communities that occur in cliff microhabitats. Moister sites revegetate faster than do drier sites. Increase in algal biomass is influenced by the presence or absence of the forest canopy immediately adjacent to the cliff. A surprising result is the slow rate of algal growth in the subaerial environments. Large algal masses observed in this study may have required many years to develop. Our ignorance of algae that occur in subaerial environ­ ments is monumental. That few comparisons could be drawn between results obtained in this study and results obtained in major European studies of subaerial cliff algae, or studies of soil algae indicate the lack of understanding of the subaerial sandstone cliff habitat. Culture work on many of the organisms could be carried out to reexamine conclusions drawn about moisture stress in microhabitats. The importance of aeration for the subaerial algae might make another fruitful investigation. This study was confined to six cliffs; intensive investigation of other cliffs in east-central or southeastern Ohio would go far in substan­ tiating or refuting present conclusions. CONCLUSIONS

Two major conclusions have been reached in this study: First, a rich subaerial algal flora of at least 170 species of algae, exclusive of diatoms, occurs on sandstone cliffs in east-central and southeastern Ohio. Second, small var­ iations in moisture are the main ecological factors deter­ mining distribution of algal species in the cliff habitats examined. Temperature, light, and inorganic nutrients may affect the quantity of algal biomass on cliffs, but species quality is determined by available moisture. Several algal taxa characteristic of arctic or alpine habitats are present, including various species of Cosmarium. Scotiella nivalis, and Chrysococcus radians. The distribution of most algae varies continuously over the sites studied, and what appear to be discrete communities are part of a continuum. Growth of algae on cliffs occurs slowly, and cliff algal communities were stable through the study period. Most revegetation of disturbed areas occurred when the forest canopy was absent. When the forest canopy was present, sufficient light may have been present for maintenance of algal communities, but very little increase in size of algal masses was observed.

136 137 Gloeocystis rapestris, Mesotaenium macrococcum var minus and other green algae occur on dry cliffs, Chroococcalean algae, especially species of Aphanocapsa, Aphanothece, Gloeocapsa, and Chroococcus are found on damp cliffs, but are not present on dry cliffs. Diatoms and placoderm des­ mids occur in subaerial habitats where free water is abundant, although Eunotia fallax var, gracillima and a few other diatom species may tolerate drier conditions. Movement of diatoms away from desiccating conditions on cliffs is likely, Saccoderm desmids are distributed under many moisture con­ ditions* Free water may exclude some species of chroococ­ calean algae and Chlorophyta from subaerial environments, Bryophytes influence the distribution of cliff algae, Thalloid liverworts may retain moisture for long periods of time, and algal taxa less resistant to desiccating conditions are often associated with them, Trochiscia ohioensis and Protococcus vestitus are associated with leafy liverworts or mosses, Chroococcalean algae are absent from the immediate environments of mosses or leafy liverworts, except where abundant moisture is present. Life cycles of algae may be governed by availability of moisture. Zygospore formation in Cylindrocystis anomala may be conditioned by drying of the habitat, Aplanospore for­ mation occurs and two or four cells result when zygospores of Cylindrocystis anomala germinate. In Cylindrocystis brebissonii var, .ienneri, four cells emerged from germinating zygospores. Quantitative data of cliff algal communities are not meaningful because of the clonal growth habit of some algal species. Association analysis combined with analysis of spatially close stands yielded ecologically important in­ formation about variations in cliff algal communities. The Usefulness of Orloci perpendicular axis ordination method was limited because contouring caused by species paucity masked separation of stands by species quality. APPENDICES 1/fO

Appendix A. Occurrence of algal taxa found at study sites.a

Taxa Cliffb BG HC RH AC LP SG

Actinotaenium curtum (Breb.) Teiling mm XXX Actinotaenium diptosporum (Lund) Teiling - - X X - Anabaena sp. 1 X X X X X X Anabaena sp. 2 - - XX Ankistrodesmus faleatus (Corda) Ralfs. X - XXX X AnKis trodesmus falcatus var. mirabilis Vwest & west) G. S. West - - mm X mm Aphanocapsa fusco-lutea Hansg. X X X Aphanocapsa grevillei. (Hass.) Rabenh. — XXX X 'Aphanocapsa raontana"Tramer ex Wartm. — — X - X - 'Aphanocapsa musicola (Menegh.) Wille X - X XX X Aphanothece castagnei (Breb.) Rabenh. - - X X X X Aphanothece microspora (Menegh.) Rabenh. —.. XX - Aphanothece naegelii Wartm. ex Rabenh. XXXX X Aphanothece nldulahs Pft Richt. mm — XX X - Aphanothece pallida (Kutz.) Rabenh. m. — X X _ X Aphanothece saxicola Nag, r - XX X X Aphanothece stagnina (Spreng.) A. Braun ex Rabenh, _ XX mm Aphanothece sp. -_ X - X am Cnlamydomonas sp. - X XXXX Chlorochytrium sp. X • X X X X Chlorococcun sp. „ XXX X X X Ohroococcus helveticus Nag. mm A.Y «• Chroococcus lithophi^us Ercpgovic* mm X X Ml Chroo'c oc cus m'i'n'br '(Kutz.) N^g. - •m X X X X bhroococcus minutus (Kutz.) Nag. — - X X X X Chroococcus schizodermaticus W. West - X X X - Chro'o'co'ccus tenax (Kircfon.) Hifiron. AY Chroococcus turgidus (Kutz.) Nag. Ml X X X X X Chroococcus varius A. Braun XX X X X X Chroococcus sp. AY Ml Chrysococcus radians Conrad X - X X Chrysophyt'e sp. 1 — — X -— . — Chrysophyte sp. 2 m . ~ — — X Closterium ehrenbergii Meneghi - X X - mm Clostbr'ium sp. AY doccomy'xa dispar Bchmidle X X X X XX Coelastrum microporum Nag. «• — «• —— X Appendix A. Continued.

Taxa Cliff BG HC RH AC LP SG

Cosmarium annulaturn (Nag.) DeBary - - - X - mm Cosmarium asphaerosporum var. strigosum Nords"ET - - mm X a. ■ .. Cosmarium binum Nordst. - X - mm - Cosmarium caelatum Ralfs - - XX X - Cosmarium contractum Kirchn. - - XX - - Cosmarium costaturn Nordst. - - X - - Cosmarium crenatum Ralfs - - X -1 — — Cosmarium crenatum var. blcrenatum Nordst. - - - — X _ Cos'marium 'eyeli'cum Lund. - X XXX _ Cosmarium gal'eri'tum Nordst. - - X --• Coamarium granarum Breb. - - — X _ Cosmarium grantii"“Roy & Biss. - - X - - - Cosmarium hammeri Reinsch. - - - XX - Cosmarium hexalobum var. minus Roy & Biss. - - - - X — Cosmarium holmiense Lund. - - - X - Cosmarium laeve Raoenh. - ~ X - - - Cosmarium notabile var. heterocrenatum (West & west)' Krieger & Gerloff - - X mm X a. Cosmarium nymannianum Grun. - - XX X - Cosmarium pok'o'rnya'num (Grun.) V/est & G. S. west - - mm X Cosmarium pseudobroomei Wolle « - - X —— Cosmarium pus'illum (Br'bb. ) Arch. - - -i - X - Cosmarium ralfsii var. alpinum Raciborski - - XX - Hi Cosmariiim retusum (Perty) Rabenh. - - - X - - Cosmarium schrnidt’ianum Forster - - - X -- Cosmarium speciosissumum Schmidle - - X — - Cosmarium speciosum Lund. - - XX mm — Cosmarium subcostaturn Nordst. - - XXX “ Cosmarium subcos-batum var. beckii (Gutw.) West & G. West - - X mm Cosmarium subcrenatum Hantzsch. - - X X X - Cosmarium subcucumis Schmidle - - X -- — Cosmarium sukholm'iense Gutv;. - - X X -1 Cosmarium tetragonum var. lundellii Cooke - - - X —— Cosmarium tineturn Ralfs - - - X - Cosmarium undulatum Corda. - - XXX - Cosmarium spp. •• X X XX X Cylindrocystis anomala Taft X X XX XX Cylindrocystis brebissonii Menegh* - X • X X Appendix A. Continued

Taxa Cliff BG HC RH AC LP SG

Cylindrocystis brebissonii var. .jenneri (Ralfs) Reinsch & Kirchner ex Hansgirg. - X X X X X Cylindrocystis splendida Taft X - X X - - Cylindrocystis sp. X X X X X - Matomella b'alfouriana Grev. - - - X - - liatoms other than iSunotia fallax var. gracillima X X X X X X Pic tyosphaerium-like alga - X X - X X Plnooryon sp. - - - - - X jEuastrum"' sp. - - X - - - Eunotia^fallax var. gracilliina Krasske X X X X X X Glaucocystis sp. n X jloeocapsa alpina (Nag.) emgnd. Brand --XX jjLoeocapsa atrata (Turp.^ Kutz. - - X X X X oeocapsa dermochroma Nag. f| - - X X - X jloeocapsa fusco-lutea t(|Nag.) Kutz. - - X X X - Sloeocapsa gelatinosa Kutz. M - - X X X X jloeocapsa granosa '(Berk.) Kutz. - - X X X X jloeocapsa itzigsohnii Bornet in Zopf - - - X jloeocapsa kutzingiana Nag. - - X X X Gloe'ocapsa magma (fer^b.) Hollerbach - X X X - X 51oeocapsa montana Kutz. M - - X X - X (jloeocapsa pol.ydermat^ca Kutz. - - - X - - (jloeocapsa punctata Nag. |f - - - X - - G1 oeocapsa ralfsiana (Harv. )t|Kutz. - - - X - - (jloeocapsa sanguinea (Ag.) Kujjz. - - XX -X Sloeocapsa shuttleworthiana Kutz. AY SToeo'caps'a sp. a. X X «■ jl'oeocyanellum aerialensis sp. novo - • XXX X jloeocystis ampla (Kdtz.) Rabenh• X X XX XX lkGloeocystis coxae King” X X XX XX Gloeocystis maxima Mainx. AY (jloe'ocystis rupestris (Lyngb.) Bornet XXX X XX ^oeocystTs sp. X XX X XX (Sioeothece coerulea GeitJ,er AY Gloeothece fusco-lutea Nag. a. a. X X X .. 'Gloeothece p'ai'ea (kutz.) Rabenh. - XX mm Gloe'othec'e rupestris (Lyngb.) Bornet — .. mm X X — Green unicell (Geminella-like) - XXX X Hormotila sp. XX X X • X KlebsormTdium sp. XXX X X X Appendix A* Continued*

Taxa Cliff BG HCRH AC LPSG

Lyngbya so* mm XX Mallomonas akrokomos Ruttn. .. mm .. X Mesotaenium apianosporum Taft. •• X X XX X Mesotaenium ciacrococcum (Kutz.) Roy 8c kiss. *• X X X X *“ Mesotaenium macrococcum var. minus (DeBary) Compere XX XXXX Mesotaenium sp. ■» X XXXX Micraster!as am eric ana (Ehrenb.) Ralfs - .. X — - - Kicrocoleus sp. mm XX _ Kicrbspora pachyderma (Wille) Lagerh. - — — -1 X Microthamnion Thietzin^ianum Nag. - -- - X mm Mbu'geo'tia s p . - X - X - Myxosarcina burmensis Sku.ia XXX XXX Myxosarcina spectabilis Geitler —M XX XX Netrium digitus (Shrenb.) Itzigs & Rothe. -- XX X - Tfostoc micro'sco'picum Carm. •» XXX XX bedogonium sp. - XX X - boc'ysFis sp. n XX — .. -— Oscillatoria irrigua Kutz. -- - - X ~ Oscillatoria ^a'sorvensis Voulk wm XXXX bscillatbria subbrevis Schmidle m. XXX _ Oscillatoria s p . m . XX X X _ khormidium inundatum Kutz. mm mm mm X Phormidium sp. mm mm X X X .. Pro'fococcus vestitus (Reinsch.) Wolle XXXX XX Rrotococcus vir'i'd’is Agardh. XXXX X X Protococcus sp. X mm .. XX Kliizbc'rirjsi's sp. .. mm XX X •M Phodomonas sp. - m. •M - X _ Scenedesmus bijuga (Turp.) Lagerh. - mm X XX - Schizothrix calcicola (Ag.) Gom. m m mm XX X — Schizothrix sp. mm mm X XXX ScoTiiel'la nivalis (Chodat) F«E* Fritsch XX XX X X Bcytonema Hofmanni Ag. » - XX -- Sc^ytonema sp. « - - X X - Sbmmiereila sp. m m XXX X X Spirotaenia endospira (Breb.) Arch* » - XX XX kpirotaenia sp. — - mm - X «• Siaurastrum raeriani Reinsch. M mm X X mm btaurastrum puric tulaturn Brbb. - - XX X - Appendix A* Continued,

Taxa Cliff BG HC RH AC LP SG

Stichococcus hacillaris Nag, X X XXXX Stichococcus s p . M X X _ Stigonema minutum (Ag,) Hassal, - - XX -- Stigpnema sp. — - X X — Synecnococcus aeruginosa Nag. — _ XXX X Trachelomon'as Viispida (Perty) Stein - -- - - X Trachel'ononas horrida Palmer €» ■ — — — — X Trachelom'onas sp. — X X Trentepoliiia sp. X XXXX X TriTTonerna minus (7/olle) Hazen — ——— X _ Trochiscia onioensis sp. novo X X XX XX trochiscia reticularis (Reinsch) Hansgirg X - mm - X - Trochiscia stauroides Reinsch XX mm .. Trochiscia s p . It <_ .. _ X mm Ulothirx tenerrima Kutz. XX XXX _ Uiothrix sp. lt mm X X mm - TJrococcus insignis (Hass.) Kutz. X XX XXX &ygogonium sp. - mm X X X -

a List of algal taxa found in collections during 1975.

b BQ =.Blackhand Gorge Cliff HC = Hanover Cliff RH = Rock House Cliff AC * Ash Cave Cliff LP » Leo Petroglyph Cliffs SG = StevensonJs Gorge Cliff 1if5

APPENDIX 5. ALGAL TAXA CaQgs. 0101 ANAfaAENA SP. 1 0102 ANAbAcNA SP. 2 3201 APHANu Ch PS A RJSCT-UOTEX ------QZOc APHANOCA^A GREVILLEI 0203 APHAMuChPSA ^jSCICOLA 02 0*t Ap Ha Nil C A PS A MjNTANA 02 05 APHAN0CA°5A Mu NT AN V~=~~2CT4------0301 APHANJTriECE CASTA&Nel 030* APHmMGTh SCE 'JAEGELII 0303 APHANOTHECE SA XI COLA ~ 030A "AP Ha Mu TH F C E~ 3 T A GNTNA------0305 APHa NJThEC F SP. 030b ApMANuTrtECE M ICRCS P3P.A 0307 APHANuTnECE d ALl IOA 0308 APHANu Th ECE MiDJLANS 0401 Tk Ei^Tc Pj MLIa SP. I 0402 Tk EimTc.Pu Hi_I a 5 P * 2 0501 CHLAMYOjMjrjHS SP. " Oo 01 ChLCRCCHYTRI CJm~‘S?.------0701 CriLURCiCoCCUM SP. OdOi GLOEOCYmNELLUM AERIALENSIS OyOi ChRuQoOCCuS M1 NOP 0902 Ch RJOCOCCJS m im u TJS 0903 CH^GOCOCCUS SCHI 7. JOERMAT IC'JS 0904 CriRUOCOCCuS TcNAX 0905 ChRQOCQCCJS TJRG 10 JS 0906 ChRuOCOCCjS' VARIUS 0907 CHROOCOCCuS SP. 0906 Crt.Ranu occus lithophilus 0909 CnRuOuOCCuS HcLVETICUS 1001 CuCoOMYXA DISPAR ~ 1101 CQSMAkljM CYCLICUM 1102 CJSMAKIUM nymannianum 1103 CUSf.ARljM Pu SILLUM ” lio^t CuSrtARlj4 SPEC IJSI SSOMOFT 1105 CliSMAkluM S^BCOSTATUM 1106 C0SMAKU1 SJBCRENATUM 1107 Cu SMAk IUM Sj BCUCUMIS 1106 CGSMAkUM Mu Ta BILE VAR. HET£ROCRp N A TIJM 1109 CGSKAk I j M SPP. 1110 CUSMARUM CONTRACrUM 1111 COSMARIUM LAEVF " 1 1 1 2 CuSi*'. Ai’i luM GRANTI T 1113 CuSHAKT jM SPEC IQSJM 1114 C U S M A R IU M RtTuSUM 1115 CUSMAkluM Tc TRAu OMUM VAR. LUMDELLII 111b COSMARIJM RALPSII VAP. ALP INUM 1117 CUSMAkluM S J3110LMI EiNSh 1118 CQSMAkljM A.n NJLATJM 1119 CUSMAXljM GRANATUM 1120 CuSKARIuM SQBCHSTa T!T-1~"VAR". GE"CK~IT 1121 Cu Sh Ar I u M Cj STATUM 1122 C J S M A K IJM OJRKOKNYAN’JM 1123 STAURmSIRUM VERIA n I = 3702 1124 Cu SMAr IQM IJOJLATJM 1125 COSMARIJM GALtRlTjM 1126 Cusmak I um crenatum 1127 CUSMARIJM QINJM 1if6

APPENDIX B. CONTINUED

11*8 COSMARium SJBH3LMIENSE * 1117 1129 CUSMAKI j M SCHMIDT!ANUM 1130- "CUSMARTUT CAELATUM ...... 1131 CUSMAk IJM hammeri 1132 COSMAk I j M HEXALJPjM VAR* MINUS 1133 C J S M A R I U M TI N C T U M 1134 CGSMARIJM PSEJOuBROOMEI— 1133 C l» S M A RIJ M A6PHAERGSP3RUM VAR. STRIGGSUM 1130 CuSMARIJM HjLMIENSE 1137 CUSMARI jM CRENATUM VAR. 3ICRP.NATUM 1231' CYLINDRjCYSTIS A’lJWAITA ------1232 CYLIND3JCYSTIS lRc’ ISSONII VAR. JENNERI 1233 CYLINDRJCYSTIS SDL ENJ1 DA 1204 cylinjrjcystis Sp. 1235 CYLINj Rj CYSTI s uRt 31 VS'ONTl 1206 A C TI N J Tm E N I j OIPLOSPORJM 1331 31 AT 3mS OTHER THAN EUiNOTTA FALLAX VAR. GRACILLIMA 1431 EONJTIA E ALL AX v'AR ■ RAC I I I IMA_____ 4601” GLAj Cj CYSTIS SPT 1501 Gl 3c Ou A p S A ALPINA 1302 GLOc 3C AP SA ATKATA 1503 GLDtOCAPSA DERMOCHROA_ 153* Gl Ol OCAPSa FUSCO-LUTEA 1505 Gl OEOCAPSA G^l ATINOSA 1336 GLOfcOwAPSA GRANGSA 1507 Gl Oc OCAPSa \UTZINGIANA 1536 GL3E3CAPSA M A 1309 Gl Oc Ol. APSa MONTANA 1310 Gl DEOwAPSA SANGUINEA 1511 GLDEOCAPSA s p . 1512 Gl DEOCAPSA ITZTGSJHNTT 1513 vjLOc GCAPSA RALp SIa NA 1514 GLDtOCAPSA SHUT!LEW3RTHIANA 1515 SuObOvAPSA punctata 1316 GLOEOCAPSA P 3 L YD E R V A TTCA ------1631 A M D L A 1632 "ULUEJCYSTIS COXAE KING" 1603 GL0E3CYSTIS RJPtSTRlS 1604 GLDtO^YSTIS s p . ------1605 GLOtOCYSTIS MAXIMA 1701 GLOc OIHECE palga 1702 GLDEOT’HcCt RUPESTRIS 1703 aphanuthel G -p all -id a- = -3 ot------1704 GLOcOfHtCE FJSCJ-LUTGA 1705 GL3E0T HtCE CDERULEA 1601 GREEN J.mICFLL RbSeMuLING GEMINGLLA SP. 1V01 SGMMlcRtLLA SP. ~ ------• 2001 KLEoSJRMlJ IJM SP. 2131 HURMOTIl A SP. 2201 VALLOMD.NAs a KROKOMOS 2301 MESUTa FM jm « PLANO SPDRUH- 233c MESDTa E 4IUM MACk OC'JCCUM 2303 MESJTa - *1JM MaCk OCOCCUM var . m in u s 2334 Mc SGTa EM jm SP . 2401 MYXUSAKLINA RJRMENSIS...... 2402 MYXdSARCINA SPECTAOILIS 2301 NETkluM 0IG1TUS 2631 NGSTOC MICRUSCOPICJM •/> *-< _! I—i CO

ii o f r r i i < 3 3 ; /> ! > ~ ” l VI b < < < r 7 l - i - 7 r < 'ii h> <: 2 ! V I o£ 1—< i / I n f u j i / > o o o n u < < < > - h « - * 5 : >iij o: DDlrt O II t?L-4< o r'cf ►-< •“■nixfi.j OJl JNJILCf r € . c C *.9» L— 1— 1—4 < U «-« —«< VI <11 Of OlD'-'H - J _ T i — I— 1U -4 r re- t—iClf <*--< ;2 . m u jj o ■ ifi-t z \ n z ' a 3 L * - i n i j j • u - lu n n>-J- UJ < D a. o'U zts>cr ■• —> i »_j< Z)of O' U_ xi/'Tiucxi— u j v n_ t o. c l v 'oooo»-ii-i • 00 • ooxrix • << * < -Jl/1 i -tO'.X ! m o .TiY/i/1/ •/w /i.ii/iw y “>'i30CL ILi < » (/I1 l/> *—* ^ •OOO'iOlCXLL' ujy v i o f nc i f if Try y n n D -D-**-! -ii-i u< <<.jyyyn.nny<-i i / i . U j j :x .x x j i D -0 1— I— V I n n o o n i r n ~>i >i u )7"nfo'- v < r < o V l > - I — I—!— -X •—! H iJ .J U '/lT r _l S!3C IJilJ X U O U . J O X X 3 w . l H H H . 3 n ■D-0C3LUJ •xanxxjo r s z >rtni:u: U ! n i / 1l / l ' / 1 0 0 '-f1' f r ' y _ / —1—Jl— O'1!— ICYITCLC.< i—r > 3 i C L U l O *— -*r-» •j-i -u j _>i j:3 o n u ^ .ri—i— z ~ r .- 4i-i.-«i-«')C'if u n o JJ-un u u ir.n nn I J K— 1— i— I— / I 11 >•Di j.-f if n n z x V l _ l _ l 7 J y QonuiNM nnonn tt'n'Tina noTIXXTXO lM nh-l-niTK X Ooooonom— cr OL' C ! CO I— OO o o c n 33 V '—4 H — o./ia_)J_)_ii- if •>J i-( —< I f Of Of ^ LO ■ IX Ol1 >- -w 0 3 I UJU UU i-n nnnniuTTnsvHH H 7nnnnnrinoft'nno in /I /Io x r xt i j j j u j u i Q . I— >- of Jflf of O -Jof >- r-J-JLLl'lfTfOfn—li-l 3 h h : i XoCX o n n no i f CL Q-Q.Q. Cl. t/ll'M/)Wl(/11/1V1CO oo vioooo v 'o i OOOOI— I— h - l D D O M U D O D I - l - l — U H 7 a - < < y y > youjo O l - Of 0 Z I UJ f-tr-tl'J.'O "0 r-l —I >J fO -J-r-liSJ -4 i-l-i —4l\l i-l-H CM .<1 —I *-l SJ ^ *-• ~ l -* ** r* —* fSJ ’ 01 oooooooooonnoonoonnoooooooononnoooooononnoonoooooooooooooo ooo a. r- -oro uco^'OO—4^i—injrO"'K'nn oor^f-cooo j»o •> o>-* ^ «-i —c "vj ."M n ■J'in xj-on-O'O' >o —irvin-d-^in'/i onco > Oi-jnjro n j-xi < ('jf'jMMmJ-'i-<-Lt-'*-<'<>J-<<'<'J'<'i'ininininininiriiniriiriir\in»o<'>o>X5 «ox)iO ! ! ' 1 . : lifd

Appendix C. Collection numbers, arranged by date and site.a

Month Site Numbers

February BG 449- 454 HC 455- 460 RH 4 6 1 - 4 7 3 AC 474- 487 LP 489- 504 SG 505- 510 Late March- Early April RH 511- 519 AC 520- 538 BG 540- 555 HC 556- 575 LP 577- 606 SG 607- 611 June AC 724- 739 RH 740- 754 LP 755- 786 SG 787- 795 BG 796- 821 HC 822- 843 August RH 903- 921 AC 922- 942 BG 943- 961 HC 962- 973 SG 974- 982 LP 983-1006 October RH 1111-1129 AC 1130-1150 BG 1151-1162 HC 1163-1171 SG 1172-1179 LP 1180-1204 December RH 1292-1306 AC 1307-1325 LP 1327-1344 SG 1345-1352 BG 1353-1369 HC 1370-1378

a (BH= Blackhand Gorge Cliff; HC= Hanover Cliff; RH= Rock House Cliff; AC= Ash Cave Cliff; LP= Leo Petroglyph Cliffs; SG= Stevenson*s Gorge Cliff). 1 FE3RUARY COLLECTIONS OCCURRENCE IN ALGAL TAXA OF D. APPENDIX oooooooooooooooooJo< oOOOOOOOOOOOOOOOOO o o o o o o o o o o 4-4'4'4'4'4'4'4'4'4-4'4'4'4'44'4' 4'4'4'4'4>4'4'4'4'4'4'4'4-4 4'44'4' 4'4 4'4'4-4'4'4'4'4' •4-J-4-J-4-4-4-J-J-J-J-40'CP0'O'CP o> O'o o a-o O'O'O'O'O'O'O'O'O'ui ui up ji ui oi ai oi ui 'Ji oi 4s •4 O'oi 4s w ui rvi rv h-o o o cp od c j-4->i -Joco'uiu'ui4'4'0-'orv.rvt—^-Ovoo: - j O'ui 4s oj ru ru ►—o o *—•*—■*—>*-*p«ji—'iut—*p—uj pup—uJf4p-*ujr\j p—UJivp-*DJrvp--pj*— pjp—rup—pup - p- p—*-* p-.|_.p-.p.‘M P H H )-1 OOOOOOOOOOOOOOOOO OOOOOOOOOOOOOCOOOO o o o o o o o o o o pjpuropopopjruporopopopopururopuporupjropjpoporopopjpjpor\jpjr\ii\jpurupj rurorcjporopjruropuru o o o o a o o o OOOOOOCDO OUOCOODOOOOOO o o o o o o o o o b o o o p o O h O p— UH— OJI— l-P'OK'Oh-HHP' UJU.’ *—,4'Pup-4'C:p-f'Jr-'4'*—■ c h h h ^ h p h m h UJ P-* P-* *-* P— -4CP4JO'4 ' O'4 - O' 0'4'U)0'UJUitUf-g4' 4'Hk0WO0'U'JWO4W4 OUJCPCPUJCPCPCPCP-P'CD 4' UJ O' O' OOO o o c o o c o o o o o c c o OOOOOOOOOOOOO o o o o o o o o o o o o o p o (“•MU' p— p-* ru i—* v>JuJp-,rup-,4''Op-**-*ro p-p— p-‘p-t— •*—’ • r—• *—■ <—•»—• ►—* *—• CP*—'DJUJp—UJOJU>UJP- P— *— P-* UJ UJ OOO OOOOO o o c o c c o o o OOOOOOOOOOCOO OOOOOOOOOO OOOOO o o o O O O u O OO j OO u u OO QOOOoGOOOOOOO O O O O O O o o o o < 3 0 0 0 0 o o o OOOOO OOOOOOOPO C- C C O O O o o o o c o o DOCOCOOOCjp o o o p o ‘ P-* t—• p-*p-* *—*-•>—•* } I r o o o o ooooooooooooooooo o b c o o o a o b o o o o o o o o o o w o c o O *— IV I— *— I— O O O 4s p- O i— 4' K) Po *—■ p-'p-Tnj*—■Op-’Ujp- rup-|p-*p-‘p",u ’. op o b * o o CD 4) -J4J-4 O *-» O' O' -J 45 4J UJ DJ PU Po 4' I- 41 U> 4s 4'(4>4'4'-4UJp-uJ L(P4'4'CP4'p-4'UJ|uJ —J-4 o o o o OOOOOOOOOOOOOOOOO o o o o o o o o D C j C O O O O O D o o PJOp-'O »-*>—*-,r\jp j4'O JO 'i—‘i—rui-ot—'p- *—poi—• p—*—**—•*—*p— *—>*—•*—* *— p-p-TOP-p-1!—*U)^~* p-p- o o c o C O O O O O O O O O O O o o o P C OCCOOOOO p o o o o o o o p o o o o o o ooooooooooooooooo o p o o o o o o b o o o o o o o o o o o o o o OCOOCOOOOOODOOODC OOOOOOOO DC'OCPOOOp o o h-— *—• ►— (—• *—• r—* I—■ I—11—■ I—• *— r—• *—• I—* *—• k—* t—■ *—■ *—■ *—• ►—• r—1 ^ P P H P H M P * p-*p-* i 1 L OOOOOOOPO o o o o o o b o o o : o p o o o b o o o o o o o o o o i- 4 ' N O h h DC h h e p- 14s O 4" P-* N! a i— p-*-*Pop-*p-*PoI-*0 CC'P*HOPJM p-p— o Ul U'UJ O'O'O O'43 ui *- u> o o uj ru oj cp pu u» ui uipuJ*—poun —J U> P-* 43 ru u j -43 UJ p-* UJO OOOOOOODO cooooooooooo o o o o o o o bp o o o o o o o p o o *—* cp UJ UJ 4s uJ p-* *■— O' ui r— P— i — *—* *—* I u ru Pu *—• p— O' W pP'HHP *-* (-**-* CPP-‘l-J0'OJP-*Kj p-p— coooocooo ooOOOOOOOOOO C D O O O D O b o o o o o o o o o o oaooooooo aoocoooooooo o o o o o o O o o o o o o o o o o o OOOOOOODO oooooooooooo o p o o o o o p o o o o o o o p o o P—»—• p— |—* P-* P-M—* *—* p— p P-* P-* P-* P-* P-* p* I-* t-*pJ *-**-*t- j ooooooobo o o o o o b o o b o o L o o o b o p o o o b o o o o UJt\JPUO4'PJUl*—‘P0 o o o *—* P-* P— 4' p“* P-PO *—* UJ r-4 ' p- P-* *-* HO p p-POPo o o 4P p- uj uj ru i-1 oj-f- 4s uJ uJ 43 43'04'DPUJvO tP4' U34'CPuJPJC' CP 4'4>0J4'UJUJ -J OOOOOOODO o o o OOOOO o o o b o o o o o b o o o o o o o p-ruuJUJi-'p-'p-p-’UJ -4P0 CP I—* p— p— *—* P-* POP-* P-* k— PU P-* PO PO KJ f— (3s P-* *-* UJ UJ P-* I-* OOOOOOOPO o o o o o p o o OO O b O P O O o p o o o o o o o o OOOOOOOOO o o o OOOOO o o O O O O O O o b o o o o o o o o OOOOOooco o o o OOOOO o o G ' O O C ' O D O o o p-p-p-^-*p —*■—p- - r - —•*-**—**—* p-* -*)—**-**-* r ool 0D0C30 OO 3 0 o 3 0 0 0 3 O 3 0 0 0 o o porv, P-O PoUJp- *-<(—* U> 4~ O P-* p— P-* UJ 4' ru -**-*4'0 o UJ UJ P— UJ 43 O 4' O CJlPU 4»P— 43 Ln ovn *— jJ o 4* UJ I'J 4) 4> 4' OOl o p o o o OO DO o b o c o 3 o 3 0 0 0 o o l_J UJP-1 p-*p-*i-*ru O p- t-*r— Po Jv »—* CP P—- p— M i-i- CP P-* *— oo 3 O O O O O 0 0 p o OOOOOO o 3 0 0 0 o o o oo o o OOOO o o 3 0 o 3 0 0 0 o O 3 0 0 0 o o o oo 3 O 3 0 0 0 o o PC o 3 0 0 0 3 o 3 0 0 0 o o o —* p— — p- p—p— J—* ■—*— p- -*p— p- p—■— p- *-*

o 3 O 3 0 0 0 OO 3 0 a 3 0 0 0 3 O 3 0 O o 3 C 4 '0 - 4 ' p- p-p- 3P-* o - ujpuo \J P-* ■—4* *~* -4 -4 jJO p-'JI U1U1 MUl UJV4'043 4 C31 4*ru cp IU CP 3 O 3 0 0 0 o o 3 0 o 3 0 0 0 3 O 3 0 O o o —* r - — r-p—O' 034' jJUl CD — r-p—PJ O' Jjp- UJ ru UI o 3 O 3 c o o o o 3 0 O 3000 3 o 30 O o o o 3 O 3 0 0 0 OO 3 0 o 300 0 3 O 30 O O o o 3 O 3 0 0 0 o o 30 o 3000 3 o 30 O o o — p— — *—*-**-* p-p- - - P-* — *—*—**— *-* — p- P-*

o 3 O 3 O O o o 3 0 o 3 00 0 3 o 3 o 4* 3 Uj -* O r — p-r- DO CP — P-OIM JJ PJ PO UJ \ j 4> i-n ruui cnro OUJ o tPvOPUU) f* 4P \J o o 3 O O O O OO 3 0 o 300 0 3 o 3 o p”< jJ p-’CP UJ4' —JIV T' P— p-» U p-UJPU *-* -* M o 3 O O O O OO 3 0 o 300 0 3 o 3 o o 3 o b o o o o DO o 3 00 0 3 o 3 o o 3 O D O O o o 30 o 3 00 0 3 o o — r - -* p—p— p-p- *-* -*i—‘ p—p— P-*

6<7l 150

o oo o o c o o o oo o o c o o o oo o o c o o H >Oh ■J" •4 H o oo o c o o c r- in cr ir in c\ f" m H(M c o sf ■d' o oo c o o c

o oo O OO ooO o c o oo o OGCj ooc o c o oo o ooc oo o H OfM pH pH fM o HO o ooc oo o 'd- mm m iroc HNtr fM (NJ HO m hcmo" 'd’Hff OH O oo o ooc oo c T - j H O cooodo ooc o do ooooo a o d o O cOOOOO ooa o ao ooaoo a o O o O coooqo o ao ooaoo d o a o H (VH C C in —4h fH r4 f\J f»4 H nj HIM o coooqo ooooo o a o CM cv t-moMlm Onnrio 3 m H>JD o c>t* H O ^ ^ mo fNJ'd-INJ't-CM n i n n m o cioooqo oocjoo c a o Ii I pH rH p— 4 r~4 f4 ^ ^ »-4 H r4 ^4 o qooooo idoooo o ao ooaoo a OO o OOOOO looooq o ao ooooo a a o o dooodo io o o o a a ao ooooo a o o o *o r * r-4 f—4 r 4 (NJ i h h r'j >43»—i »»4 *"4 r4 **4 HJ H vO o aooaoo IOOOOO o oo ooaoo a o o o O' rtcvmr-CMn • o -J" m o o f-H O' (M m>c or-cm m vO pH Q> o v j" »-4 < \| H immoonj ^■h MOh 00000 ooo.oooo OO OC o dCOCQO > 0000(0 ooooooo o a o o o o 3 00000 looooa ooooooo o o o o o H n H iHiH * *-4 >h rj ^h f M H H IM H m (N| H pH pH HH imp o Oooooo > 0 0 0 0 0 ooooooo o OO o o m Hvhf\imvdo ^ O O O M >o>-fr-i>om>0'n m pH f — m n H dHOHl^mOOOOC| ooooooo o a o o o

i r-4 •"4 **4 «»4 r<^ pH pH — 4 oooooooo— ( pH P“ l H H H ^

^* (—4 H »—I >n P"H r—> p H p H pH pH pH pH p H pH pH pH f\J (\J mmf mmr-mo"d-pH. j- (\l rO >0 'fl'Ornd-OHio ,3„4,H(MHH HH i m . M-HH H pH pH pH p“H p—P f\J (>>J >43 pH pH pH pH i—H p—J pH pH >*• pH >J3 pH fO C M pH pH m pH pH fJ> ooooooooo 000.0 0000 0000 ooooooooooooo ooooooo m r-m roo'cr' M-momfMM-oomM-miniM om 'D>o i— r - d s O H in Hvj-r-imoooom pH pH O pH p*| — 4 r\J pH f\J Q pH O MiMmcMpH pH pH in pH pH pH pH Q3 pH HQHHf'J-tpH ooooooooo OOOOOOOOOOOO ooooooooooooo ooooooo

cvj fM njrj nj nj nj nj nj (M nj (\j nj ng <\j (\j nj nj (\j tvj nj (M fM «M (M fM fM (M fM (NJ (NJ (NJ (M (M fM fM (M C oooooooooooooooooOOOO OOOOOOOOOOOOOOOO (MlMfMfMfMfMtMfMOOOOOOOO 7. H(\)HHMff>H(MfOHH(\JHMH(NJHIMHNfn pH pH (M pH pH PJ pH pH (M pH fM pH (NJ pH (NJ m pH pH pH pH P J pH (Nj (>P| U. aoro o ^ h HfNjnj nj o HHfMnj mm .f in in in •o n-r-<*3 O'0 oh ,nr>j cm mm vt-M->*• m >o r- ao co O' ii' O' a. n-r-oo on co a? cd oo a O'O'0s O'o c*'d> O'cn cr O'o'oo'o'o'd'oooooaoooo 0 0 0 0 0 0 0 0 a M- -d- %* 't m in in in in in in in m in 1 n m in in in uN ■ n in 000,0000,0 0000000,00 0000 OOOOOOOOOOOOOOOO OOOOOOOO i I APPENDIX D. CONTINUED.______!______0510102 014010001 013010001 043010001 015060001 009050001 024010001 002030001 0510202 003010001 003030001 026010001 041010001 002020001 061010001 009020001

"ENTRTE-S" r-4"T]F~EACH CO L I EC TION CODES 7 3 E ^ APPE N O lX C ) ENTRY 5 OF EACH LINE = COLLECTION COMPUTER CARD « ENTRIES 6-7 = MONTH OF COLLECTION OTHER ENTRIES = ALGAL TAXA CODE NUMBERS truiuiuiuiuiuiuiuiuiui u’uiuiuiu'uivjiuiu'uivnuivpuiuiuiuiu.uiuiuiu'.uiu'.uiuiu'uiuiuiuiuicpui 79 ujujujwujojujujujrjrjrjrjpjr'jrjfMrjrjf\jpjpjpjr'jrjf'jr\)p-‘i— p- p- p- p- p- p- p- p- p- p- p- p- p- p- p- p- T9 UiU^^UJM p- CC'O'O 0 ? - J - J cr cp u 1- f ' u w i v pu p- o o o vC cr. co-g —j o> u> vjn-f--T'-M » U’ u j M r y •— m r j p- i>j p- p- p- p- ru p- pj p- p - ru p - no p-> p-* p-'rup-r'jp-rup-'Ujr'jp-Tup-pjp-'rjp-p-r'jr—UJfup-ujrup-Pjr—p— OOOOOOOOOOO ooooocoooooooooooooooooooooooooooo UJUJUJUJUIUJOJUJLUUJUJ U I OJ UJ UJ UJ UJ UJ UJ UJ U> UJ UJ CU UJ UJ UJ UJ UJ UJ UJ U» UJ UJ U» UJ UJ U> OJ U) UJ UJ UJ UJ UJ o o o o o o o o o o uCOOOOOOOONO oooooooooooooo OOOOOOOOO J - H h - p- 4' i“ I—* Po p- Po hCj-OO chp-C-PW C CUC j h P'J- p CP'I-P' p C p ' UC4P-4HHP-H m UJCPUICM jJ 0 ,' 0 ' P - 4 ' p- >0'0 0"0-U'0CPUJoi-'rurvj ru'OuJO'tMvouJCPouJij'uJ'CJ p-OOUiru4-P-UO OO p- o o o c o o c OOOOOOOOOOOO ooooooooooooo o OOOGOOUJCSO HI j JO t\J P- U) UJ P-* P- P-*P 'O 'P —Cr'P-P-'UJp-P-'i—*UJP— UWlyKP^HNHHHruHH PPPPHPOPP o o o OOOOOOO CCCOOOCOCCCC ooooooccooccoo OOOOOOOOO o o o o o o o o o o o OOOOOOOOOooo oooooooooooooo O u O O C O O O O o o o o OOOOOOO ooccoocoocoo C‘OOC'OCOC'Oooooo OOOOOOOOO o p-p-p-p-p-p-p-pfp- c 73 OOO tj o o o o o o o o o o o o oooooooo © 0 0 0 0 0 0 0 6 0 0 0 0 0 0 6 0 73 CJ- i J-,^P “MHPJI-‘ 0 4 ' f ' J P - Ujp- >Oi—'P-1!—'-F'POOp-'U J U I—‘ i—‘C-F' OP-P-4'4'OJOI\) m vOUJCQOCPCPCPUJUI J3 POUJCP ■F'CP O m vO CP v£> Ul UI f\> O UJ so-F'4 • P-*-F* CP U> p- 4't>mpoujp-‘4'0o z o o o o o o o o o o o o o o o o 0 0 OOOOOOCOooooo 0 0 0 0 0 0 0 0 9 0 n O' P—* I—* r— POPjrufMP-* O p- oJ ru p -p -‘ -4 P 0 p -‘ p-‘ pi‘ p j uiujujocpoop-p-ujuii— p-rur-uicop- r n . o o o o o o o o o o o o o o o o 0 0 0 0 0 0 0 0 0 oooooo0 0 0 0 0 0 0 0 O 0 o o o o o o o o o o o o o o o o ooooooooooooooooo o o o o o o o o a o c o p o o c o o o o o o c o o OOOOOOOOCOooooooo o o o o o o o o ~n fHHPPPHHHHPPMHHPPP > o o o,L o o o o o o o o o OOO ooooooooo OOOO c!) o o o o o r - FJP-P- ISjp* INJUJP* P- P-fJ UJ p h w O p CT UJ4'p-,O ujuJ4>i\jui uiu-r-u-Ciru > o o o o o o o o o OOOOOOOOOooooooo© o o o d o O l — vOr-P-'UJp— fOUl i*'p-*pjpjpop-‘p-,cpp-,cop-*cproi-*p-'(\)p*i 4‘-l'Jp-pj*C4 o o o o o o o o o ooooooooooooooooo o o o o o o o o o o o o o o ooooooooooooooooo o o o o o o o o o o o o o o 00000000000000000 ; O O O O O X P-P-P-lf-P-11 *—• r—“»—* I—* . ,PJH HP‘H H P‘P'HHPJHP*HP'P‘ p-p-p-pfp- > I 1 • ! j O O l p o o o o ©OOOOOOOOOOO ! 0 0 9 ■ oo o o o 4'p- C m -Pi-' CO p p -Ph -Ph u i ^O O 4 ^ 0 p- p-p-r'J4‘,4v pjp-'PO ooJOcn vCi-i>u» .no jujJuip-uio© pj © ©■ UI CP 4 'p j* p j OUJO O O C O OOP-OOOOOOOOO 0 0 o i O O O Q O PU^P— CPP-P-CD CPP-'UJP-1!—,P0P*,CPI—•Cpp-'PO . p—»cP P“ uip-p-pp ru O O O O O O O OOOOOOOOOOOOIOO o : 0 0 0 Q 0 O O O O O O O ©OOOOOOOOOOO ; 0 0 o OOOOO m o o c o o o o 000000000000 ; 0 0 o I O O O Q O •— I— fr— P-C'HHI-'P^P'P-ipjjf-ip-ip-1 i p-p-' pi* X 1 ' I j 3> o o ^ o o o o o o o 6 0 O 0 o o o o o o | o o o O O : O O O ' 73 OP-P1 ■ P H O K ryOO O Cp'p'Pop' P j ! 4 ' p- p* p - o P - O l r> -J u v jj u j 4" vO ui 4-0-4 -4 P-U 1 C P U ) 0 4 s : U>CP of sOvO : U 4 ' 4 l X o o o O O C p- OOO O OOOOOO !00 q> 0 0 l O O O C I p - p ' O ' O P - O i — PP P-r\)'SJi\)p-p- I P -P - Pj) •—•CP P-*!-*! m OOO OOOO 0 0 0 .O OOOOOO 0 0 0 0 o o o d o > o o o o o o o OOO O OOOOOOloo 0 0 o o o d o yO OOO o o o o OOO O OOOOOO |CO C O O O O Q O p-p-p-p- PPP-P- P- r—p—pi* p-p—p- p-p -

O O O o o o o I o o o o o o o 0 0 o > OP0H-1 UJP-4P"1 O H d O O O 0 4 u> TD P -JJ-f1’ 4" POUJCP Ul ©'JjUiOUJsO JJP- o JJ 7 3 O O O o o o o o o o o o o 0 0 c o P-P-p- P-CUP-IN) U I o uip-ppo- uDcn TOP-* Pi p - o u p o o o o o o o o o o 0 0 c o o o o o o o o o o o o o o 0 0 c o n o o o o o o o OOQOOO 0 0 c o o p - p - p ‘ p - p - p -

o o o o o o o 0 0 0 0 0 0 c m POO O fu p p p - 4 * 0 p - UJ P-O c o O - F - u n -JUJ'OO' P - © PJ CP ISJPJ p. 4* H o o o o o o o OO 0 0 0 0 c o P-* p - p - O ' * OJ H OJ p-1 CP UJ p - •PJ In p- o o o © o o o o 0 0 0 0 0 0 c o z o o © o o o o 0 0 0 0 0 0 c o to o o © o o o o 0 0 0 0 0 0 o p- p- ppp- p - p - p - p - 153

o □ o o o o o o O o o o o o o o o o o o o o o o o o o o o o o o o »H ro H rH 43 H r4 rH o □ o o o O o O o O' 4" tvi c o O' 4- CD o o A (VI 4" 4- (VJ o m m (VI o D o o o o o o o o

-J o D o 3 0 OOOD o o o o o O o o D o DC ooop o o o o o o o o D o DO o o o o o o o o o o 0 p~> ■■4 H HfH rH p (O rH o rH 00 a 3 0 o o o o o o p o o o 4-cn Hwoto ro 0 m o O' o og a c o 4"4”(VJrH (VI o o 4- o o o o DO ooop o o o O o o

rH rH rHrH o 3 o OO oooo o o o o o o o O O O 0 O o D o p o o o o o o o o o o o O O o 0 O o 0 o po oooo o o o o o o OO o o o rH VI rH f~4 pH POHr*rH rH rH (VI s rH rH COrH 0 sO o D o 00 oooo o o o o O a o 00 o O o (VJ A I- p r - 'ArAPOrH o (VI 4- (VI rr 4- 4- 'C4 > ro p O' Vi o 4-0 rH 4" >—I 4~ o o rH (VJ o OO o 00 0000 o o o c o I 1 H rHrH rH rH rH rH rH rHrHrHrH rH rH rH rH ^4 pH o o 0 0 a oooooooo o O j 0 0 O O O O 1o 00 o 0 0 0 o o 0 0 0 oooooooo o o poo o o o o j o 00 o 0 0 0 o o 0 0 0 oooooooo o o o o o o o o o I o 00 o 0 0 0 >r> pH rHOJrHrHrHrHrHrH ro (VJ (VI rHrH (0 rH rH rH rH 43 kA •H mmiA o o 0 0 0 Oooooooo o OOOO O O O O I o OO o 0 0 0 mi a 4-’ r-4rn ffi'Onj-csom vf) rH rH (A 43 <£>rnmmro \0 4" oor-o IA (VJ (A rH 4" (O rH 4“ rH CDrOrHrHrH.VJrHrHrHrH 4 4-rHrH(VJ(\JrHfs|(VJ (VJ rH C3 (VJOOPV! 4* rH PJ 0(0 o OOO >000000000 o oooooooo o o o o o o o 0 0 0 r o p o 000000000000000 00000000000 o o o o o o o o 0 0 0 0 6 o oooocoocoooooco OOOOOOOOOOO C ooooooo OOC o p o 000000000000000 OOOOOOOOOOO O O O O O O O O 0 0 0 rH »fH rH rH (VJ rH rH rH rH rH PA rH rH rH rH rH rH fT)rHrHrs|P»JrHrH(VJrHmfPIHPIPimHiHvfH rH (VJPO o op o oooobooooooOOOO OOOOOOOOOOO oooooooo 0 0 0 UJ O' 00 4- rHvO(^)r~(VJpPlpP''O4- 0,.'PO'O-f>POrH -O 43 (D 4^ i-h rH O O 43 4-mmmr-4(MiA 4 43 43 b ^'fl­ H ■4* rH rH O rH rHrH pH rH (A rH rH rH rH f*A rH Q Q rH rvj rH 43 rO (VJ rH rHO (VJ rvj PVJ O rH rH O r H rH rH r o p o o o o o o o o o o 0 0 OOOO ooooOoooooooooooooo OOO

rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH *-H rH rH rH rH rH rH rH rH rH rH O lb oooo 00 oooooo 000 00 000 000 oooooooOOOOOOOOOOOO oooooOOOOOcooooooooooooo00oooooo0 0 OOOOOOOOOO opooooooooo000aooooooo000ooooo00OOOOOOOOOOOO f0iHlfVrHrHrHr(3rHfP|rHrHrH(VJrHrHrHrjrnrHrHrH43OPnOr0rHrHrHrH(VJ(M m m O m r A —(r-HrHrH_,rQ(VJ 00000000 OOOOOOOOOO 3 0 00 OOOOOOOOOO OOOOOOOOOOOO vOrHrHpPirH4-v04'434"4-4-43rn 44''043 4 4 ‘l^-0"/3s0-0'00'0r-4"'0'0 43 43 0 sO PA PO rH^ 4-pa lA'O UJ rH p rH rH pp| rH rH rH rH rH rH rH rH rH rH rH rH rH rH < *3 C3 03 rH rH rH rH (VJ VJ ' ) rH rH rH HHHHlVJHrPlONHrHH OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOO mmmmmm4-4-4- _ . opooooooopooooooooooooooooooooooOOOOOOOOOOOO (—4 no rO (*"4 r4 p-4 f4 ^H pH ^4 pH ^»4 ^ pH ^4 pH rH r-4 OJ r-4 pH *-H r-H rH pH *H OvJ H rH ^4 pH rH rH p H rH p H f\J rH OvJ rH PVJ pH UJ 'O0 'Or~r-f(JOrH(vj(n4-u3'O oo'OrHrvjnvn j- 'jv .o a- a;> ;.t> o o rH m4'vt-4’4'4-4‘ 4‘ 4-4"UV'j'.ir,ir\iAcriU3inijvu'.m>jD'0v0'0O'0 v0 43 4343'OP'l*-^f'-A»A-P- a. i a i a la i a la la i a lA la a (A uv i a u \ la 'A in i a la i a la i a va u t u a j v la in i a in x u a lAlA;A(AlA(A(AiA(A>AlAlA ooooooooooooooooooooooooooooooooOOOOOOOOOOOO T i . i . I ; I i I I i . I I 1 I ' I ! I OOOOOOOOOOOOOJ* oooooooooc oooooooooofio oc-o ooooo > up ui ui ui ui up ui ui ui U1 u> ui u> ui u ui u> U ui ui u> ui ui u> ui ui ui ui u. ui u> ui ui u- u. ui ui u . ui ui ui y t ui ”0 0-£) ^)'& s0 0'*0 0 ROCOCO U/UJf\jrjp-t—OvO'GC"-4«4-JO'Ui4'UJOJpjr'jp-*t—t—co4;>4j'Ccr>co—J-J-Junu^^ m f—»—pjt—pjf— rjt—rut— rot—p—rjt— t—UJPJi— t—t—i—rjf—U f — ojpji— pjf—UJpjf—pJp-*UJPJt—PJf—rot— OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCOO o 4- 4> 4- 4> 4- 4 ■ ■ f ' 4' 4* 4- 4 1 4* 4' 4 > 4' 4' o o c o o o q o o O o o o o o OOOOOOOOOOO ooooooooooooooooo f— O Ul t— UJ t—1f— t— 4 f—4 t—*»—■ f—UU—C l —1 *—*_p^ • ►— »—• I—• c. l—CTlf—f—-P -pf—PJU-'P-UJU'-f'f—f—P-" m 4- -J i- UJ CP 4> INJ UJ Ui UJ OJ UJ UJ UJ uJCDPj4.O'OJ0Jt—UJf—PJ O p-* un 4^ f—r u - j uj uj o -~J1 — o o -j uj uj ro-p* OOOOOOOOOOOOOOO O O O O 0 C O U> O O C occoooccoocoooodjo t—I—t—t—t—t—t—f—t—t—f—I—I—I—f— f—I—I—f—UJf— f— O f —O f — 1— on— o jf— 1— t— f— t— 1— u i f — f—t— f— r y f— OOOOOOOOOOOOOOO OOODCOOOOOO OOOOOOOOOOOOOOOOO o OOOOOOOOOoooooo OOOOOOOOOOO ooooooooooooooooo o OOOOO'oooooooooo ooooooooooo OOO O O O O O OOClOO ooc? o t—f— 1— I—f—r—I—I—‘t—f—f—t—I—t—f—t—f— oo OOO o o o 9 o o o ooooooo00006 0 0 0 ooooOooooo 0 0 0 4 f— 4 'U J 4 ' i—• 4 f— O f— PO 4 - P-t—f—t—I—'f—f—I— PuOUJUJCHU>C'f-4 —CO i - 1 f— ff t — c uj o -4 -u J r—u j 4 * t— 4> i— 4~ pd 4 - O u i r j C M 4 4 - O' C p u ji— O -J4>U > x>u>4'-4;4'Lupjujpjpj 4 'd 'U J m o o o o c o o o o o o o o C O C O O O C iO O u w O COO oooooooooo 0 0 0 o t— f— f—f— f— t— I— f— f— I— I— PO t—1— 4 s P J UJ p j >— P jPJf— r 00 f— t— f— I— u>»— f— cm — 1— ru-PUJf— •— tf h o o o o o o o o o o o o o OOCOOOOIOOOO 0 0 0 OOOOOOOOOO GOo o o OOO o o o o o o o oo o o o o o o t o o o o 000 oooooooooo 0 C 0 oooooooooo 0 9 0 o o o o o o o o o o o o o o o a c o o c i o o o o oco t—*—t—t—i-p 1—1—f—1-7*1— *-j* *—• o oooooooooo i —4'COUJUJ UJt— LuUJf— 4s!—f\Jt— O f — I— UJl— O PJ UJO'4'UJGP'— UJUJ-Ul o r - j -jcpi— jjPOOuJuJCPrvj 4 > C u J OOOOOOOOOO: O o o o o o o o o o 00 OCUJOOOOOOO 0 9 0 t—1— r—1—■ t u t—r—pj t—t— : t—r jt —f—UUP-Pur— f— P—f— f—f—-JCUf—I—*f—C&PJ/V r—fpPJ o OOOOOOOOOO; o o o o o o o o o CO oooooooooo 0 9 0 o OOOOOOOOOO o o o o o o o o o 00 oooooooooo 0 0 0 o OOOOOOOOOO! o o o o o o o o o 00 oooooooooo OQO f—I— f—I—P—I—f—f—H-1 o o o o o £>00000000 o o o o O O O o U J 4 - PJ 4 s O O f-O PJf— OOft* UJ f— PJ u> -4 i—t—o 0 0 0 - j u j p j o p j Uj p j p - 4 ' 4 - o o o o OOOOOOOOO o o o o t— 1— O'*— f— uJ-jpuirut— f—t— f—t— o ooo o 00 o o o o o o o o o o o o o o ooo o o o o o o o o o o o o o o o ooo o 00 i OOOOOOOOO o o o o o o 6 0 o o o o o o 00 t; £ 0 0 0 UJOUJ OJ UJ o I t-ur uJOf—pj-Puh UJO -J I PJ 4>f- f-^ocjo-ip -JsO 4- 4 - CO t— -.14* o I o C O O O O O O O 00 O C O 0 0 0 CP f—r— I— f— t— PJf—1+ I— U I t— H*t— I—• t—11— o o o C o O O O O O O 00 o 0 00 o c o o o o O O o o o o o o O o o 0 00 o c o o o o o c o o o o o o 00 o o 00 oc o t—t— C3 o 00 o o 00 o £ oco UI 4 0 v. C? Put— 4 - t— U f— O' UJ f-vO 9 UJUJ o PJf- CP o (3 o C o c> 00 o oc o ru t— UI h' PJI— t— PJ o o o C o u c> 00 o oc o o o o cpo o c> 00 o o o o o o C J O o 00 o od o f—f- t—

o < 3 0 o 00 o o o u ui r j u i UJ M 4't— o o 4* O' 43 -I'CP -4 UJ4> -4 o o C 3 0 o 00 o UJ f— f - f— I—I— f— o o C 3 0 o o 00 o o d o o o o o C 3 0 o 00 o o 00 o o o o 00 o 00I—I— o o 00 o o

*751 ’ APPENDIX E. CONTINUED. 0599104 014010001 013010001 007010001 055010001 060010001 012020001 043010001 —-05992 04 016020001 0600104 014010001 013010001 043010001 020010001 0601104 013010001 014010001 043010001 0 16020001 041010001 023020001 031010001 0601204 003010001 007010001 026010001 009020001 012020001 034010001 — 0602104 013010001 014010001 007010001 0 16020001 0120200017-009060001 0603104 016020001 014010001 013010001 043010001 041010001 0510100GI noooi 0603204 012020001 016030001 001010001 0604104 016030001 016020001 014010001 013010001 031010001 OOROlOOOl 023020001 — 0 6 0 4 2 0 4 041010001 0605104 016030001 016020001 014010001 023030001 013010001 ' 0606104 016020001 041010001 013010001 014010001 043010001 024010001 011090001 0607104 016020001 009060001 041010001 007010001 011090001 014010001 010010001 — 0608104 014010001 013010001041010001 031010001 043010001~016020001—009060 00r 0608204 051010001 0609104 014010001 013010001 041010001 031010001 007010001 051010001 016020001 0609204 043010001 034010001 — 0 6 1 0 1 0 4 - 0 1 3 0 1 0 0 0 1 - 014010001—OG 9050001- -0 0 9 0 2 0 0 0 1 —0-1-90 TOO (Hr 0200-10 0 01 - 0-1205 0001- 0610204 012010001 00701C001 022010001 033010001 049020001 026010001 009060001 0610304 063020001 041010001 003070001 049030001 009010001 0 6 1 1 1 0 4 023030001 016030001 016020001 009060001 007010001 014010001

9 ENTRIES 1-4 OF EACH LINE = COLLECTION CODES (SEE APPENDIX C) ENTRY 5 OF EACH LINE = COLLECTION COMPUTER CARD ,4* ENTR.I£S_ 6--7 =_J4QNTH~-0F— COLLECTION OTHER ENTRIES = ALGAL TAXA CODE NUMBERS (SEE APPENDIX B) } oooooooooooooociooooooooooooooQdooooooc.J. J,J o o o o > •J ~>J -'J -»J --4 “U—J —U —J M —J M “4 —4 “4 —J —4 —4 --J —4 ~4 ~4 —4 -~4 —J ~4 ~4 —.J —4 —^ —4 - 4 ~4 —J *-4—J -4 -4 “J *4 * o 4'4'4'UJOJUioJUJUJUJUiuJUJiiJUJUJUJUJUJUJUJUJUiOJUJUJUJUJrurur\jr\jrururururvrvru ru ru ru ru - o h-— — 4icn-4-4a'C'0'Uiuiui-r'4'4-UJU.u)ruru— — — — ocov0'C43'0cr>cr>-4-4 0 'C 'C r' U i u i 4 ' 4 ' m ojiu — — — ru — co g — u>tu — ujiu — uiru — ru— 4 *0 3 ^ — uitv— 4 'uitu — ru — ru — ojru — ru — ru — o ooooooooooooo ooooooooooooc ooooo oooo o a o o d o O'O' O' O' 0'0'0'CMJ'0'0'CM>CT'0'CrCM>0'0'0'0''a'00,'0'0>’OCr'00'CrO'C>0,C7'a'C7'0'0' O' / o o o o o o o o o o OOOOOOOOOOOOOOOOO o o o o o o oooooo o o o d HrHHHCOHI-K ruruor-.i i— — (4 — — — O 4'— 4-0 — ■n h-CDOCT'U)-JvO,aivn(jJ ■>100'r-'OvOO-f'Uh' 0*0 411 — 4 * 43 4 J 4 ' ' 0 — 43 0* Ui*OCJ O'UJ'OO' — o o o c . g o — o o O O O O O O O OOOCJio o c o o o O C ' o o o o oooooci o o o q HC'HUJHI-'O'Off'H — r— OJ *0 G — — — — i— — UJ — — — — UJ — — tv UJ — — — h -OJOC'H — — — ui oooooooooc OCOOOOOOOOOOOO ooo OOO o o o oooooo o o o o o oooooooooo OOOOOOOOOOOOOOOOO o o o o o o o o uh o o a o o o o o o o o o o o o o o o O C - O O O O O O O O O O c c - o o o o o o o o o o o o o oa c o o a o H-H-— H-H-M c dI ' 73 o o o o o o o o o o O O O O O O O O o o d o o o o o o o o o o o o o d o o 73 — — ru — 4 * — — o ru — — i u c i— r u — r u o o rvj o o h - h - — u> o O —C 4-4-ru — H — ru m — — UI0J4'C*C'-4*Q4' ui — -4 04 1 0 * 0 * 0 vD h - - j o r*> O' i u O' O'- 4 * 0 - 4 U>—UI 4 > c n O' — vO z HOOOCOOOOO O O O O O O O O 0000000 o o o o o o o o o o o o Q o (U Ut — — — IG UJ — — — c o — — r u — ru — u i 0 1 — — O ' — 4 * — — —, — — — — OJ — Ul UJ — m oooooooooo O O O O O O O O o o o o o o c o o o o o o o o p o o g oooooooooo OOOOOOOO o o o o o o o a o o o o o o OO o o a acoooooooo o o o o o o o o cooocooo o o o o o o o o d o o d r- r — > o o o o o o o o o o O O o o o o o o o o ! o o o o ;o o d co c o o o o d o d r - < n 0JO4*O4*— — — ru — (NJ OJ r j o c - M v ONONJ'h ^' ru OJ i—* — — — ru 4* — M o o ru-uuj'uo'uioa^o 0-0 a* a j o J U J 4 * *CI CH GO. 43 uJ O' Co OJ UI u i m r u 4 * — uj uiui 'O ■O > o o o o o o o o o o O O o o o o o o o o o o o o o o — o o o o o o q o Q — — — — — CM — 4* — — UJ :4 H- H- H- — H- ! 4 — OJ — OO' — H-H-H- — 4"; O' CM o o o o o o o o o o o o ococo o o o o o o o o o o o o o o o o q o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o d o d > o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o p o X — — — — — o > ! I i o o o o o o o o o o o o l o o o o ' o o o o o o o o o ' o o o !o o o o 5 ru4'ruu>— ruou>— U>0 h'nOOO — O h - — fv) o — 0 4 * — r o — ;— r u N ru ru -P'oo-^'ooooro 4**0 ru ouiiu-j >ui ru ui — u) 4 ' 43 43 — U»UJ C7* 4* OJ — UJ H-i o o o o o o o o o o o c o o o o OO OOOOO o o o o ooo—o ° i h UI fNJ O' O UJ — — Ui — — ru UJ — UJ — UJ c — *— ui — — fu'cr'ru— -a* H UWH* ri o o o o o o o o o oo o c c c o coooo o o OOOOO o o c o O' z o o o o o o o o o oo o o o o o ooooo o o o o o o o : o o a o O; tn C-OOOOOOOO o o o o o o o OOOOO OO 0 0 , 0 0 0 o o o o o ————— —— ——— —— — —— — — o j o ooooooooo :oo o i o oo o o p o o o o o 'o o o o o o o o -FUJO — 4'fUUJ — 4* r u — CH — G—— UJO 0 4*10— — UJ UIUJ o IU 'O' O' — lUJ •-J1H—: — '■OlO'U1 4--J (au)40U 4' 0*4" -4 UJ m OOCOOOOMO :oo HO O h - , o o!o — OO 0 0 :0 0 0 O o o o o o H|\)3'4'Hlk)H^H I— ru -JH — O' ru ruiuJO —— — —— — — — —— — UJ OOOOOOOOO oo OjO oo; o o o o OO o o!o o o O o o o o OOOOOOOOO !00 o ! o oo! o o o o o o o o jo o o o o o o o o OOOOOOOOO ioo o ! o COi o o o o OO OOlOOO o o o o o z •— I— — — — ——— — —— —— — —— — — (/> *-*r

o c J o o o o o o loo o o o o o o o b o o o o o O o o o o o — , o — ru 14' — u>ui o ——— UiO ——o —ru o o — — ru — O H — i>;iu — O' UJU1 CMJ1 r u u i 4J —U1CH 'CM) O' Ui vO UIUJ 43 -40 43 UJ 0 0 , 0 — 0 O — o o O O o o oo oo ooOOO o oo o o —— o O' — — O' o 4> — ruui — OS O'CMoJ UI —— — ru 0 0 , 0 0 0 oo o i o o o o ooo oo ocpoo o oo o o o o o o o oo o o OO o obo op ooooo o oo o o o o o c o oo o o o o o c po oo oc ooo o oo o o —— ——— — — ———— — ——— — — — — — ——

oo! a o o oo oo o o o o oo o oo o o o oo o o ww OJfU OH o> JNH- — ——— — PO ru o o 04* o UJ H- 4s UI o o Ol*o — 41 — UI MU' UI — 4*ru — *o sO 4* — 4' vO oo! o o o oo o o o o o oo od oo O O o oo o o — —— U> — O' — UI — —uru CM— — UI — O' O' —— — ru oo! o o o oo CIO oo o o DO oo OO o o o oo o o OOi o o o po oo oo o o DO oo oo O O o oo o o oo o oo po oo o o o o DO c D OO o o o oo o o — —— — — — — —— — —— — — — —— — —

9^1 PE DX . CONTINUED F.APPENDIX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOJ. >ooooo d < J—J -I'-J-J—3—3-*4*4 C4cr0'crc?'ar'0'0'c'u iu 'u iu iu iu iu iu iu iu iu iu iu iu iu iu iu iu iu iu i4444'44444'4444'4s4 O' UlJ' U> U' M fV O O «£> 4 s D CO CD CO —J O' O' U1 U 1 4 UJ U< U) M H- C O O 4 > 'O v£> CO CD UI UI U> OJ U> OJ IV M M M h—mh-mh—MMMMU>MML>JMH-H-iMMMH-H—i>»MMMH-oJMH'*uJMMMMMM4'-JM M 4 U i M M OOOOOOOOOOOOoooooocooooaOOOOOOOOoooooooooooo 0'0'0'P'0C s0'0s0'0'^C7'CX'0'0'0' t— m ui m •+■ m m m 4 »—* •—* - m o M 4 c o m C 1 M r— H— O M h NOON h O- u> 'jj m 4) (jJ vO -J oj *— M u> m 4 oJ (jJ OJ oj h- Cr< O' oj oj 4 o O' ui mj O H - 4 ' L J 4 D U J U 1 4 M a > Ul Ul O' -4 O 4 COU'OOOOCCMOOOCOaOOOOUOOOOCO o C C O C 1 o c o o o o c o o o o o h-M h-M C O O ' t— U IU J O'MMMMM coocooocoooooooooooooooooooo o o o a o o o o o o o o o c o o aocoooooooooaooocooaoooaoooo o o o o o o o o o o o o o o o o cooooooaocooccoaooooooooocoo o o o a o o c o o o o o o o o o ^—(—If-JI^HJ^—l - l H - M H - M H - j M H - M M H - M Mr— r H-H-H-H-l MMMMHjMMMH- I ooooo odocoa o o o o o o o o d ,o o o o o o o c i o o o o o o o o o o o d t— H-H-1— 0 J'Hh'f-'OW U I W 4 0 0 H H H o m i — m h - 4 o m m O H - M M4 0M4U1M4M 44'C'0'4 UMO'H-j-J O O O J O J —irocr'-f' 4DUI4 4 CHU 1Ojrocou>uiMoouJu» OOOOO OOOMOC c o a o o c o o o o o o o o o o o o o o o o o o o c o o q *—•»—<'UjoiJh- m h -u j4 m m H-H-H—UIH- h - p - h - CT’ O Jt-' m h - p - m h -(— Ih - u > UI M M M M ’H-tMUJMM ooooo oooooo o o o o o o o o o c a o o o o o o o c o a c o o d c o o a ooooo oaooco o o o o o o o o o o o o o o o o o o o o a o o o d o o o a ooooo oooooo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o H-MMMH-{MMMM I i o o o o o o o o o o o oodooooo ocjoo a o o o o o o o o o o a o o q C C ^ H H M M M M M U> 4 H 0 4 4 C 4 4 COM 4 HCHOO MO O H H H I - ) H - w a —j -U ujct 'M O'MO' u c m o jJMf\ioa-ouiuJ 43 4>UJ4J O ' 3D u i a - J UJ-J O H- O' H- MH-CO o o o o o o a o o c o o o o o o o o o o o o o o o o o o OO O M O o a o o a M h- H- r01— o j m m o m m HfMHh-r'I-H Ul 4> M H- 4' m i u uii— . Ml—1a> H- 1-* M H— H— H-4 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o d o o d o o o o o o o o o o o o o o o o o o o o o o a a o o o o o o o o o o d o o o c o o o o o o o o o o o o o o o o o o o o o c o o o o o o o o o o o d O O Q ^ y -* |a^ * » M ^ H -H -H i

a d o o o o o o o ] o o o o o o d o o c o o o o o oo J a d ood 4 4 C O J O H t J o U1U> 0 O Mi U J t j J M M 4 -0 4 4 H-H-OJ OOJl— p 4 d OOJ *--4 43 c m J - 4 4 4 N v O O m 4 ' 4 oJ M 0,133 O' o a H-LU -F''0 -P' 3 Di—*-p U1H-U1 o o o o o o a o o o o o o : o o o o o o o o o o od o o o o o c o o q h- m h - h— O' roc-»»—» MM M U > H i H-MMM t o * - ' »— r\j H-O H-P- H-H— H— H-H-H- Ul H-M COOOO G d o CO o o q o c o o o d a o o o ooi o o o o o o o o q OOOOO o a o o o 0 0 0 1 o o o o OOOO o o oo; o o o o o a o o o o o o o o o a o o o o o o o o o o o a i o o o o O O j o o o o o o o o o t—• t—*»—•»—• M M i - j M m m : H- H- MH- Hi i T I o o o d o o d o o d o o o o o o 0lojc 3 0 0 o o O O Q O O C o o d u j 4 h- q m m m w MO MOJO M M M O OHOH MO oq 4 H— 4 O h h H -4 0 4 h- 4 - J 4 u i d 4 4 > M O ' - j d 0 0 4 3 cncJ-j oo CD-J vOMi H—M l— -3U1U H - O ' '33 COOOO o a o o o o o q o o o o o o j o o o o O O j O O O O p O M O O M H — I— M l — 4 H i — H-M 4 * M M m m H-UJ|H-I— U»i— M M l U l M M OOOOO o d o o o o o o o o o o o o o o o o o o l Cr O CD O Cl C OOO o o o o o o a o o o o o o o o o o oaioo o o OO! ooo ooa ooa o o o o o o a o o o , o o o 000,0 o o o o o o oo ooo ooc OOO M M M M MM. I— r—* ►—*!<—- o o a o o c o o o o o o o o | o a o o o o o o o a o o a o o o o o a * - o u o o o MO HGCH H— H— o OIUI H-O O O P 0 4 H-H-M M 4 43 OJ - 4 U >o UJsOt CD-3 4 4 J 0 J 3 3 UiUl -f> 040' ui a — J vir ' O M P MH-Ul o o o o o c c o o ! o o o o o i o UP o o ; o o o O o . o o o M M O MM 'Ol M M t \ UI M U1‘ MM M t f ' M i M U l O I-* MlH— oo- H- r—i h— 4 s O' OJM O O C I O o c o o o o o o o o o o a o o i o o o o c ! o o o o o o o o a o o c o o o : o o o o o o o o a d o oo o o j o o o ooo o o a o o c o o o o o o c o : o o o o o p o o o o o o o o o o

o o d o o o oo o o oooo oo od oo o o o o ooa O M M M U) o 0 4 h- o 0 4 H 4 H-p- p -a h- m o OOJM PW a » o co co 4 U i ru o J i M v O O m 0;h- U l CH H-4> O'O «4 0 4 0 M4C4 o o o o o o ooj oo oooc oo d o o o o; OCO ooo m m 4 ru m ro M Ul O'M H-jH- M M C4H-H- O h m o o d o o o OO! oo oooo oo o o o o o OOO ooo oooa o o O I O oo o o o o OOP o o o o o o OOI oo § o o a o o o O O ! O O oood o o oio oo o o, OOO ooo P-H-H-lH-

t e l APPENDIX F. CONTINUED, a o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o a o o p— p— p- oooo oo-o ooaoooooooo o oao o o o o o o o o o ooa o o o o o o o j o o o o «o o o a o ooooo-ooo o o a o o o o po O U 3 r - r ~ p-r-p-r-r—r ~ p - r —r —rr ~ —r —r - f —c o r o c o o o c o o o r a c o m c o o o c o c o c o c o c o o o o o o o o o o o o o o o o o o o o o o o c o o 40 o o o j—4 4 — (VJ pH f—4 4 «H pH — m r4p o ^ v-Xm jo - rv v mm —m(vj p-4 m nj vf-'X o vX f— .m m ar vO O m m ^ o o m r-4 pH m " J m - p pH (VJ m 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OOOOOOOOOOOOOOOOOOOOOOOOOOOO a o o o a o a o o a a o o o o n o o o o o o o b o (H o < V o JD O p H .J -m p - 4 3 — 4 ( V aoococcocoooo I ( V Ioooooooo o o p oooooooo ooooooooooooo —1 ooooooooooooo j * l " 0 > - t moooooooo o s ' i "r- ' X c > p i ' m r v i p h « o p - p j c j c - p h - C' • < •— H p CT' H ooooooooooooo r f-4 pooooaoo OOOOOOOO ooooooooooooo pooopooo OOOOODO o o mKr-CJ:W o o o h h o p H H oo oo oo 00 00 oo mo oo vJTVj HH oo oo oo m- pH oo oo oo oo "0 p O p O p d o v O a * o pH , h p H r v j m r—4 4 -

4 c o c o (jc v o o - c H o ( \ j m m m *• a o o o m o — ■ p- r- r- r- r — r— p — r — 4 — r— r — p- c — r— p- 4 — r— p- p — p- p — p — p — p- p — p — p — p- r— p — p — r * — p — p — p- p — p- p- r — o o 4 ^ o c o 4 < V J m — 4 ( V I p H ^ p H — 4 ru m mM r P o <0 o o

0 0 0 3 +0, 00 o o m o 4 — o o o c o o —1 p H ru OOHpH-j-pHOnoO-rrHPU ! \ f rH rH H \ —*(JIHrH \ rH \ O f f\j H r H f (\J H r * I-H (\J r— C\J H H r H r ro r —4 r —4 —4 r —4 9 —4 r —4 r - 4 r - 4 r —4 ' O ' 0 0 0 ' U * 0 ' 0 ' 0 ^ ) ' f l j ) ' 0 ' 0 ' C ' 0 ' 0 ' 0 0 ' 0 » i ) ' 0 ' j ) o o OOOOOOOOOOOOOOOOOOO tr oPpj* c o o o p o o o O O O O O O O O O O O O O ammo H p oooo oooo oooa OOOO O O O N O ocr-r-or. O O O J P o o o o pH ooc:c pj^-mjpj ooo o oo n"l 4 — pHjpH |C O O C '.O O O O om-d-i-H ooop 00 -o o in 000:0 o o o o o in o O' o o o o C' J PJ 9—4 r-4 r—4 pHjpH p H (M m o O lO O o m o o o o >n m o a o p H ( \ J _ 4 . J - 3 .H J V — 4 i r-4 9—4 in o o o o o o o OOOOOOOO OOOO —mj ^ j *— m f—4 r-4 4 r p-4 TvJ 4 H r H oooo OOOOOOOO O O O O O oooooooo O O O oooooooo cr-oooo >Or4«llCCP OOOO OOOO 4 9— fVJ ooooo v u m m m j p oooo ooooo o o pH r v j * — 4 opooo ooaoo r i—1 vO m oaooo i—4ix r inoo m oaooo m oaooo ooooo ooooo oaooo opooo 9-4 r-4oa OP oa oa 4 — r

r-4 —4 — | ( V J .J - 4 —

sj- HHH —4 9— CT' P., a- p 4 - ^ H 9-4 *-4 00 PJO ' O O J P H . 00 00 00 00 n J m p H ( V J m — 4 o it, m o r—4 r—4 \C (%j f-IQHv}- oooo -nt—m 1—4r-J r-4 r-* OOOC r — 4 r —4 r — 4 r — 4 oooo OOOO 1—4 —4 oooo

CO pH pH pH pH pH 1 1 ;oo loo I—tcvj O - J - j p <5 H OO OO OO OO OO OO pH rH OO OO OO OO OO Q(\l 9 OO r—4ao r-4 OO r-4 r-4 - m 0 - 4 —4 j -

r o - J - V f - O V f ooooo i ooooo —(—4 ooooo, ; O O O O O •a-'j-a-j-o ! O O — O O 4O — ! O 40— O O 4 O —O 4 I 9-4 j O O O O O r ! —4 O O m-fcr^O; r O — 4 O O CO r — 4 r —4 o o o o o i O C O O C r—4 ooooo; r—4 r—4 aoooo; r—4 r-mmmsO; H J r J V O O ooaooi ! O O O 4 ^ O O 000001 ooooo; J- ! 0 0 0 0 , 0 ooaoo ooooo oin minor; -JvOruvO OOOOO 9 (VJ— 0 0 0 0 0 OC jO O O O O O O « H p in -|rH p o o o o a o o o o a y + t f T I J - , r - l < \ J o o o o a —4 r - 4 r —4 r —4 r —4 pH PJ J P H r p i ; o m m i H o iHfvj rH r-4 o o o a 4 r J 1000

o o o o o o o o o o o o o o o (?v a a J . —4 m p H p H m p H p H ( V J p H pH p H p H a 0 0 0 0 0 0 0 O O O O O O O O O O O

0000000 00 *3" —i o m ( - 4 % i " c o o m « 4 " « x o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 4—4 o o o o o o o o o o (VI o o o o o pH pH pH 4—4 o o 4 o o — o o o o o o i o m — m in 4 m o m — nJ" o o o o o o o o o o — o o o o o o o o o o o o o o o o o o o o ooo o o o o o o o o o o —) m 'U' o oo t O O O «vj- ■4-9.tr ooo ! rH H rH r ooo o o o ooo •J" ! —4 O O O ooo; — I O O O o o o o O' o o o m O O O o o 0 0 0 o 4 400 o o o o o o o o o o 9 4 — — C \ H p H m m m 4 4 — o r—4 9—4 r*; p o m rH o *• o H 1 -4 4 p tpo(— m4*00 pO 0 * (*—m st"pho 4 m m (V J — 4 — 4 m H — l O v * p —4 r— o o o o o o min—I—loo H ( V J — 4 ^ ( V J ^ ( \| 4 — 0 m,|-ih- —no o o o o o o r—4 o o o o o o o o o o o o o 0 OOOOOO o o o o rH o —im m o ao o O (M o m o o o c o > 1 44 - m rX 4—4m O sj" *o p o op PJ —4 —4 r —4 r —4 —4 r —4 r —4 r — J V 4— * n o > n s o a n o u n o o o o r—4 r—4 4 \t" —4 —J — r—4 o o o o — V J p o o o a b 3 3 3 VJ 3 3 o o r—4 r—4 r—4 4 — 4 —4 r—4 r o o m O (VJ a O o o o o 4 — CO00 3

p a o 0 0 0 j O' -j- o o 4 — 000 000 (VI o 0 0 0 o o o o o o H (VJ ^ 158 r—4 —4 “— 4 (4J *0 o !• o o o o o o a o APPENDIX F. CONTINUED.

— 0 7-80 106- 01 0-1506000-1- 015-100081 ■ 002620 001 0789206 003010001 02 601C001 007010001 031030001 012020001 019010001 041010001 0789306 031010001 024010001 043010001 033020001 0790106 016U30001 009060001 034010001 023030001 007010001 014010001 041010001 - 07 902 06 031020001 013010001-02 0010001- 0791106 023030001 009060001 007010001 016020001 016010001 020010001 0794106 023030001 016030001 0795106 023030001 016030001 009060001 013010001 014010001 007010001 07 9o106 0140 10001- ■04 30-1000 1—007-01000-1- 0 3 1 0 1 0 0 0 1 04X010001_ -0 3 4 0-10001 . - 013010001 0797106 014010001 043010001 034010001 0 13010001 007010001 031010001 012010001 0797206 041010001 0796106 043010001 014010001 031010001 041010001 013010001 007010001 016030001 - 07962 06 034010001 0799106 014010001 007010001 043010001 031010001 041010001 0500106 014010001 043010001 041010001 031010001 013010001 012010001 007010001 030G2 06 034010001 016030001 — OdOl106 016030001- 04301C001 —014010 Q 04 —0 31010001—01601-00 Olr-0 12 010001—013 Q10 0 01 0301206 007010001 041010001 0302106 043010001 014010001 016020001 041010001 013010001 007010001 016030001 0602206 031010001 012010001 034010001 _ 0303106 043010001 014010001 016020001 016030001 013010 001-007010 004-012010001 0603206 031010001 012040001 034010001 0004106 0-^3010001 014010001 007010001 016030001 041010001 0605106 014010001 041010001 031010001 007010001 013010001 0606106 014010001 007 0100 01_ 01301000 l_0 3LO 10001.4)41010004 06 07106 016040001 OC7Q1COC1 041010001 013010001 014010001 0603106 016030001 014010001 007010001 041010001 0309106 014010001 007010C01 016030001 041010001 0810106 0160 30001 021010001 014010001 0311106 016030001 016010001 007010001 0 14010001 0812106 007010001 031020001 0813106 014010701 016030001 01301 0001 03141 06 014010001 013010001 04101 0001...Q 43 010OQ1_QZQ0.L0.Q01_Q3.I 0.1 0001 -007010001 O d lo l06 0160 30001 014010001 01602 0001 007010001 013010001------0317106 014010001. 013010001 00701 0001 0 16020001 041010001 0818106 014010001 041010001 00701 0001 013010001 0819106 041010001 016030001 01401 0001 007010001. Q16Q10Q01 0820106 0160 30001 007010001 01301 0001 0821106 016030001 014010001 01601 0001 043010001 • 0822106 016030001 023030001 04301 0001 007010001 014010001 018010001 021010001 ^ 08 222 06 C1601OOu1 004010001 01301 0001. 02Q0100QL 0 12050001 0823106 016030001 014010 001' 00501 0001 004010001 08 24106 016030001 007010001 01401 0001 0 12010001 0825106 016030001 043010001- 01401 0001 013 010001 020010001 023030001 023040001 VJ! 0826106 016030001 004010001 04301 0001 023030001 01! VO APPENDIX F. CONTINUED.

Q 827.106 1-043-0-10001- 014040001—920010001 007010001 0828106 023030001 016030001 004010001 007010001 018010001 043010001 014010001 0823206 012010001 0829106 016030001 023030001 004010001 043010001 014010001 018010001 0830106 016030001. -023030001- 020010001-01401000-1—018010001-007040004- -0 12020001- 0330206 009360001 04301C001 0831106 0160 30001 023030001 004010001 009060001 018010001 014010001 007010001 0831206 043010001 020010001 013010001 012020001 0832106 023030001. .016030001. -013010001-00701-000-1—04-40 4rO 004------:------0333106 023030001 016030001 014010001 08 34106 016J 30001 034010001 009060001 014010001 016010001 043010001 023030001 0334206 031020001 0835106 016030001- .023030001 - 004010001 03 36106 023030001 013010001 007010001 014010001 020010001 0337106 016030001 014010001 023030001 045010001 007010001 018010001 0836106 023030001 016030001 018010001 007010001 ___0839106 01 6Q.300U.1 Q16Q 1QQG1 _DC9a60QQl_ -023.03-000-1- -0430-10001- 0340106 016030001 016010001 043010001 023030001 013010001 045010001 031020001 0841106 013010001 014010001 04 3010001 0 3401GOO 1 016030001 016010001 045010001 0841206 001010001 020010001 031020001 013010001 007010001 051010001 023020001 _ 084 13Uo 041010001 041040001 -009060001. 0842106 043010001 009060001 016010001 034010001" 045010001 012050001 007010001 0342206 019010001 016040001 004010001 028030001 023030001 018010001 016030001 0842306 Cl 4010001 0843106 .0160 IQ0Q.I.J32303QQQ.L -QU1Q.1-QQ0.1— Q34 Q1Q QQ L...04 3 n 1 0 a a l _ .a 45 n 1 n a m „n n 7 n l p n p i 0843206 016030001 004010001

.^|NTgIES_JL~4-J2£--E4C_H JJUttE-=__C0LLECJION-CODES (SEE APPENDIX Cl ENTRT^DP EACH LINE = COLLECTION COMPUTER CARD f# ENTRIES 6-7 = MONTH OF COLLECTION OTHER ENTRIES = ALGAL TAXA CODE NUMBERS (SEE APPENDIX B) r I I i ooooooooooooooooooooooooooooooooooooooooooo) d( i > U^'£)>C<>'0'0Uj'Ci'0'C)'£)'GO'0'0'£''C>0'£O'£l'£>v0'0'0'G'0\C't>'£>Ov0UJ»0>£>'G'£>s0'£>vC>0>0'0'0 *0 NMNMNHHh'HI—'HHMHh■h'MHHHHHHHCOOOOOOOOOOOOOOOOOOO "O rur-t->oc>oou-JOmp.p_pujuJurururui—i-,t~oO'G'Ococ.' a’-j-u-jcrc'crcr u i u i u i -p -p u ju j o j m ►-■ru*—Pur-'f—f-'r-r-t—‘o ru r-u jru t—‘UJi u *—uj ru*—■ ru ►— iu *— uj f-u *— z oooooooooooooooooooooooooooooooooooooooooooo o a o ao ro a ao o cc cd co a> co cq os a> a> co oo coco cu ca od ao cu jo co a. as co co a ca cu cd cc m co uo co co oa cd a> c o o 00000000000060 ooooooOOOOOOOOc o o o o o o o o o o o o MOHroC-t'f-‘Hh-UOOroO*-,(\)Ci-,t-,i-‘r- hk-TJ-hOh^OO •-4'K'Gf'CH hWhOOh o r o r u O' u j o u u a o t y - p > c o c r u j - j c m - * r u 4 s u> o o o u ) u j - p w o o o rurururu-p-uo'uj.pujro-ud OUOCCCGGOCCCGOOOCOCOOQCOOOOOCOO o o o o o o o 0 0 0 0 0 O l-*O JUJUJCrt-*UJUJUJ»-'CrU:i—‘ fU*— r—►—►—►—O r-T 'O l—‘►-’ •-‘ ►-‘t-'ru P f'J C r PJ r— *—■ r—*-*—*—• ru ►—►-* oooooooooooooooooocooooooooooooo o o o o o o o o o o o o o 00000 o a o o o00 o o o c00 oooooooooooooo o o o o o o o o o o o o o OOGOCCOCCOCOCOGDOOGCOCC OOOOOOOO o o o o o o o o o o o o o o »—* 1—r»—*»—• t—• ►—« c I : I 73 o o o o a00 o o o o o o o o o 00 o o o o o o o o000 0000000060000 7 3 m c h Q 4' h ruru-P-POUJ-POUJ-P O-P ■Tni-'HOOr'a OHH ^h-C^-rONHMHtMOli m ■•O --JUJ 6 UJ ff’H W W U M - P ' t—' COCO*-* Of— ro m cr u j u i s O sO o j v OO-P i-'-PO'OP- z OOOOOOOOOOOOOOOO 00 o o o o o o o o 000 oococoooocooq o t—• •»—• 1—* inj *—> t—* t—• ro »--•»—• t—» ►-►—►—►—I—‘Cpcm —1ro cnru OOOOOOOOOOOOOOOO 00 o o o o o o o o000 COOOOOOOOOOOO OOOOOOOOOOOOOOOO 00 o o o o o o o o000 OOOOOOOOOOOOO o OOOOOOOQOOOOOOCO CO c-ooooooa o co cooooocoqoooq I O OOO 00 O00060 ood 0 0 o o o o o o o o o 06 o o o o o o o o ro i—UJLU0^0 WOU'h'H UJUJO O-P OUHOO HHHUJ o*- ro o -p h- o -p i-r o o -PCT-P -JOoj■jo st) *—>—uJ OP'fl -«JW -U-put •ui-Jc r u i r u - p vO-P vO GO ►— I—1 sO UJ ►-< -U > oco 000 ooooo 000 0 0 o o o o o oo o o 00 o o o o o o o o I—- Y-* o* ro cr ro-o *—I—H-UJ *-*l-* *—»—1 o cr i— ro-J*—■*—* I— l-» h'CHHO'h'UiH o 000 GOO o ooo o 000 0 0 coooo oo o o 00 o o o o o o o o o 000 000 o ooo o 0 0 0 0 0 o o o o o oo o o o a o o o o o o o o > o oc o 000 ooooo 0 0 0 0 0 OCOQO o o o o 00 o o o o o o o o X » -r»—*1 —* 1—* I—* • I—* *—• t—• • I—*»—* I—• »—• K-» t—• > I 1 i o o o o o o 0 0 0 0 0 0 0 0 6 0 0 ' o o o d o o o o a o o o o o o a ■p -P UJ *— ►— o t-* •-'I—1' O OPuO I— L»j NOOUJHU1HHH I— I— OJ*— -P-P ru i\JHp 00 uJO0'Uj*-»-P(\JC0'0 PJ-P uj uiui-PLnroi— o o ooo o o o o o o o o o o 0 0 o o o o o o o o o o o o o o o o > *-» t— ►— ►— cr►—*—UJ/\)*—►—h-1*— TO UJ (}• *— *--*►-* *—■ LXl t—• t—• UJ Ul 1— 01 *—■ l— I—* c O o ooo o o o o o o o o o o 0 0 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 0 0 o o o o o o o o o o o o o o o o c o o o c o c o o o o o o o o o 0 0 0 0 0 0 0 0 0 0 0 o o o o o o o »—* t—• ♦—*»—»1—11~* *—* f—• I*-**—**—'*—<*->i—**—‘*-^1—*

o o o o o 00 0 0 i o o o a o o 0 0 o o d o o o o n C'UIHHl\j OIM WH orv ; r u - P * — - p i — O r - ‘ C o > — t— r u t — o -p o *—* g j o c r u j cro UJUJ \OHOt-J-JM cro i— c r a> -P o o j UJ o o o o o 00 o c i o o o q o o 0 0 o o o o o o o ►— r— *-* uj ru u i u j 1 »-■ i—• f—* Mt—‘ro t-^ro r—• P«>»—| r—• t—• I—* ►— m o o o o o 0 0 i o o o d o o d o o o a o o o o o o o o o o 0 0 i o o o a o o 0 0 o o o o o o o o o o o o 0 0 o o o o o o 0 0 o o q o o o o o z 0 0 o o o d o o o q o o o -pro h O»-G -p MONh h W U JU JU1 \Clvl PJO rur-uia uj ^ooff-ru-p O' 0 0 o o o d o o q o o o o O' r,i *—►— m h -j H Lurur-fO -p*-* ru o c o OL 0 0 o o o a o oooooo o 0 0 o o o d o ooqooo o 0 0 o o o a o OOQOOO o *— ►—►—•*—• I—«

0 0 ooaq o 00 00 o *— *—* H O O H UJ UJ O ocr ro a u J ru O' 0 0 oood o oc I—‘UJ r - 1—1 r u H OJ -pro 0 0 oood o o 0 0 oood o o 0 0 o o o o o o

191 ) —— I

PEDX * CONTINUED 1 G* APPENDIX ooooooooo o o o o o ooo OOOOOOO OOOOOOOOOOOOOOOO oooo X)434J'043'0'£43'0 4 j 4> 4) 45 43 45 4) vD 45 4 5 45 45 4 3 4 5 43 454i45 4>434J4>454>4>4J4)4J4343'X 43 434j 4> 44-UJUJUJUJUJUJUJUJUJU) U>U> UJUJUJ U JU JUJ UJUJ UJUJnj ru ru ro ru im ru r j ro r\> ru ru ru ru ru ru tvrururu OO434J434JC0-'JOU > U i 4 4 0 J UJOJfU vOvO'CCECDO—«-J-4C’OC»C>>CDU't4' 4- UJUJUJ l\jt-44'UJr'Jt-4i-4t-4h-4im t-* ru 1-4 U j ru(-*ujru t— us ru t-4 ru t— u j inj i—■ UJ f'J ►"* u j '"v»—*4 ' u j • iN) ' r u *-* UJ OOOOOOOOO OOOOO o o o OOOOOOO OOOOOOOOOOOOOOOO oooo coodoooscboococdcu couauJCDO)CD OS 00 CD OS CD OJ CD OS COCDODCOOOUiCDOSCDUOCDCDCCODCDQoai CD 00 CD CO

OOOOOCOdOOOOOCOrtOOCOGOOOOOOOO OOOOOOOOOOO' 0-f-r'OHlVMHHOXt O45'0UJC" 450' UJ4-J4J-'JU,r-'U l4r-44 U i U J l -4OUJ43 -J'-J43-J4 4) t-4 45 UJ O t-4UJO!M 45 UJ V c . coaoaooooooaoocoooooc oc>oc.ooc; OC OO O O oo o c o< l-4l-4C^>Dt-4^-uJUJt-4^-4U)^-4uJt-4u^l-4'.Ol-4r-44J4—4t—'uu—4-44-4!-4!-44—O' *—4 t—* ►—4 '41—4 t-41—'I—' 0 ' H ( oooooooooooooooooooocoooooooo oocooooooooc O O O O O O O O O O O O U O O O o O O O O O O O O o o o o OOOOO OOOOO OC ooooooooooooooooooooooooooooo OOOO oooc oooc >—'i— I—4t—•»—«•j ►—1 *—*t—• i—4 r—1u oo aooodooodoooooooooooOooooo ooo odooodo Oh-1 Hhl-‘HaCHh — t-Tsji-4 UJt-4»-4r-'UJUtt-4 oo UGQoooocoC'OCOoC’oacooaacGuc COO OQOOOOO oo ooooooooooooooooooooaooooo OOO OOOOOOO oo ooc oqoooooooooooocooqccooc OCO OOOOOOO »—i *—*»—• I—* I—• I—*»—* t—1 r—11—* t--1—• r--»—*»—* t—•»—• *—• t—* t—• t—41—■»—• r—• t—*»—• i I : J ! oo o o o o o o o o o o odooooooodoocoo OO OOOOO oo t-* t—• r\j ru >—1 ru 4-1-* u) fu j'W t-i- rut—'4m—‘4-rJr\)J>»—i—ru t— 1— U Jt— r - 1— i—' 4)45 Ult-‘Ul U J 0 ' U J r - 4 s4 ' O UJ43U140'*~4uJ43t—4UJUJ'*Jt'jf—'43 Ul U> 4) Ul ru Ul 43 o c Or-OOOOOOOO ooooooooooooooo OO OOOOO IMCJ' 0'-Jt-4OJUJUJt-4t-4t-44“4 t—t-'CDt-'t—^4 4* I—4 f-41—I—iuJt—'HvOH cut-4 ruuif^coi— oo OOOOOOOOOO ooooooooooooooo OO OOOOO oo OOOOOOOOOO OOOOOOOOOOOOOOO OO o o o o o CO OOOOOOOOOO OOOOOOOOOOOoooo oo o o o o o ■t-'l—* t—• I—* t—* t—•»—• t-*t- t— t-—u—t—• i—*»—■J r—* r—‘t—'i—* •—* »—* : I i ^ 1 J oo OOOOOOOOOO oauooooooaoooooo O O o d o 04i-J0N 0 r ‘MM ^ t—t-*uJOorut—ruh-uJOi-'UJi—‘ru4- I—41—4 rut-41— 4 4JUJ4 454—4t-4t—40''00 'OU'uJ~44JU1'J100'4'45UlJU(J'oJ*— u » 4 u J c r c r OOOOOOHOOO OOOOOOOOOOOOOOOO o o o c o rut-'t—CM—*»—iO't-4t—‘UJ i->4'i->f—cri-‘'uit-,rui-'t-‘uit-‘h-uJi-‘ - 4 1-4 u i t — r u OOOOOOOOOO OOOOOOOOOOOOOOOo o o o o o o o o o o o o o o o OOOOOOOOOOOOOOOO o o o o o o o o o o o o o o o oooooooooooooooo o o c o o *—*!—• I— I-4 t-4 I—• t-4!-4, t—1 *—• I—< t—* • t—■ t—11—* t—• *—• i—> t—• t—• 41—• ►— r—• J ! I 1 ooo c i o o o i o oooooooooaoooooo oo o o o o cro 4 Moujru |h- t-'OOUJ-f'r—■t-'Ot—MPji—Ujrur— O r-44^-4 O r + 4 i—4 Ul'JD 4} O' -4 4 5 4 - 0 4 - lU) U14J '.D 41-4 U1U145 UI CTi 45 04 C"- 0 43 Uu—4 45C0I-4 O' ooo o o o o IO OOOOOOHOCooooooo CO o o o o rot-* i - ) h t—t—4 (O' o cr'MHH-JOt- JlMr'Ht-KUJ t—4 U) 4) O' r+1-4 UJ ooo O O O O IO OOOOOOOOOOOOOOOO do o d o o Ooo a o o o io OOOOOOOOOduOOuOO o o o o o o O O O O Io OOOOOOOOOdoOOOC o ooo If ►—41—i t—•»—• r-^»—i»—• 41—4»—(•—* i—4) O'! CD t—> 4 IM c oo o o o jo oo do o jooo lo o I— —Jr-4 I-4 t-HHI-HHCMJ it—'r - r - 4 It-* t-4 o oo o o o o o o o o o ooo o o a oo o o d o a o d o o ooo o o o CO o o q o o o q o o Jooo o o l-f I-4 ao o o oaooo oo oo o o r-ru oj 4 U J C i H I - O r-O |u> o o u j u i u i o a t—> 4 4 3 - j r u 4 5 ro45 UlO- 14 t-4 oo ooo o o odooo OO oo io o ►— u j x H u i u j UJ t-^r-Juiruui 4 CD UJ II—4 I—• OO ood o o 00(000 oo oo io c oo oo Ooo a o ooooo oo oo IO o oo qoo o oqcooo oo d oo o o CO r-*t-* H h h t-'t-jt-

1

291 T ‘ -| oooooooooooooooooodoooooooooooooooooooooooi CONTINUED. 6. APPENDIX 4 \Q \Q 4 4 4 45 4 4 4 4 4 4 ' 0 4 4 4 > 4 > 4 4 4 4 4 4 4 4 4 -JM -J-J-JM -JM M CT'Cr'O' CT'O'O'O- O' CT'O' VtUUjlUl VIViVIVlUl VIVtV34 4 '4 '4 '4 '4 '4 '4 4 ' 4'4*4k vtvi4'4'GaNMO'0<3'*'Jcj-v'4GN>M04CJMO'V!44GM)M004rr:>-30'V34GM3t'OM mm M3M flJMMJM’M M M M M M i—'r—r—■ f—» 1'i—MMMMMMf-or—*— t— mmM>»—'r— r—MM MMM M)mGM3M 03OCCOOOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOCOOOOO 00 05 03 on 00 CXI CD CO CD CO CO 00 CD U> 00 CD OS CP CO CO 03 OD OC 00 U> 00 CD 00 CD 03 00 a> 03 CO 00 OD CD CO CD CD 00 O? o o o o o o o o o o o o oooooo c oocooooooooooooooooooooo C mj4 m *—• i— O r — 1~» I— »—• »—»»—* *-—• t—' 4 M mm m U * M M M M M m 1M M M M M M C| 4 ' G G C ' ^'^WWWO'WP' a- C*-4 O' O' O' O '4 -4 -O '4" O 'G 4» 4'4^ 4 - O'4* 4 4 4 “4 -4 0 0 VIVI4 o o c o c o o o o o o o OCiOOOC'CCOCUCOOCOCOCQOOCOCiOOOHPCJ M4MG MU'MM G G G G g g m g o g g m •— g m g m m m m i— m m g m i—m mm mm m o o j a* o o o o o o o o o o o o OCOOOOCOoocoooooooooooc ocoooood o o c o o o o o o o o o ccooocooooooooooooooooooooooooo o o o o o o o o o o o o OC OOOOOOCOOCCOCCCOGOOOOOOOOOOOI MMMMMMI—fMMMMMt I o o d o o o c j o o o b o ooaooodoooao ooooooooooooooooo N p O h M4MaCMJt—K; n3M3Mf\)OO44M0MM m C m m G m m G m 4 G 4 0 m m GG r—* O' <—• -f>(4 G 4i M 4 03 O OJ GGCT>G-'J-JMM0'MC‘4 G-JGCr-MV^MGGMM—JOO-M4 o o o o OOQOOOOC OCOOCOOOOOOO oooooooooOOOOOOOOO GMMMCT-GGG G G G 4'M I— MM GMUJ m m m m G m G —MMMMMMMGMMr- o o o o o o a c c c o c OOOOOOOOOOOO o G o o o o o o o c o o o a o o o c o o o o OOOOOOOO OOOOOOOOOOOO oooOOOOOoooooooooc OOOO a o q o o o o c oooooooooooc ooacoaooocioooooooc t—> t—• •—• •—r—*»-— »— t— l— M i— t— m m m m t— r— m MM m m m m m m m M m m m m m m m h - I o o a o o o o o o o o o o o o o d o o oo o ' oo OOOOOOOOOOOOC 1-000 H N C ^ H O C t—rof\)4't'3 MOO W 4 ' O ' 1-4 4444G4G4MIOOMM ■MMOld 4s a mgo-JM 4 G G G O oimm t— t— —J ! rvw GG m g m G m GG4CD4U o o a o o d o o o o o o o o o o a o o o o o ; o o OOOOOOOOOOOOC MGMO' r—■ O >-■■ f—11—* i— i—' M 4 G M M GMM MM MMMMMMMMadMMV o o o o OOOOOOO o o o o o o o o o o o ' C O . OOOOOOOOOOOOC oo o o OOOOOOO o o o o o o o o OO O : O O OOOOOOOOOOOOC o o o o o d o o o o o o o o o o a o o o o o o o OOOOOOOOOOOOC M 1-4 M M M M m M m m m m m m m m MMM h- ! j I , o |o o d o o o o o O O 1 a a o o a I oo OOvJOdGOO.OOOO'C O 'fv l - Q H C O O ^ 4*0 CO t— t—4- 4 11—4- t-*t— 4GM4 0GM40M4 4 :o 4 4 4 M M 4 G 0 4 to 4 O' m o- (4»— ' V M3 3 J H G t — M l — O' G 4 G l> o IO o O o o o o o O O ! o a o o o loo OOOOOOOOOOOOC O' !oj i— ab I— I— I fv m 4 m 03 rvrv MMMMMMMMMMV1M o ;o o o o o o o o O O ! o a o o a o l o o OOOOOOOOOOOOC o io oa ooooo oo o a o o loo OOOOOOOOOOOOC o o OC o o o o o OO o a o o 'OO OOOOQCOOCIOOOC r— t— r— t- r— r— t— r— r— t— r— *— * - M t— i—• c—• i—11— i— >— mm M i— t- i O o oc O O O O oo c oo oo OOOOOOOOOOOOC) d o C r— O M>*“ m j m g m or— c M4> 4-113 M 4 m GO m G 4 G m m MH- V I M G C GOM 4' 44' —I dO O' GO (4t— tv—J -4 O'm m <34 (40 5 o o oc O O O io oo C oo o oo OOOOOOOOOOOOC G r— G r ~ GMMI r— m m t - G t— Mj t— G rvi—»—t—t—rvrvt—nit—m m h O O O C OOO o OO C oo o oo OOOOOOOOOOOOC o O O C OOO o oo C oo o oo OOOOOOOOOOOOC o o OCOOO O O O c oo o oo OOOOOOOOOOOOC M t— Mt- M r — m M m m H- m r—r—t—t-

o o OC o OO c o o OO COOOO c o OC r— 4- MC M O h c a G 04 4HG4 O Mo 4 h Vi M 0" n M voa> r\ M MG H04M -4 4: G MM o O O C o oo c o OO OOOO o a o oc CD r— Ht- M O'*— u M t— M flit—r—M r— t—M Mt“ O o oc o oo c o o o o Oooo O a o oc o o oc O oo C o o oo O ooo O c O oc o o oc o oo c o o o c c o o o o c o oc r— t— t— r - M m m t - t- t—r—t— t— G M M ►-

O o oc OO o c O o oc o G 4 U w o 4 N o t— M)M —J 4 VI*- 0 4 u M VI C7> *- o O O C O O c O t— OC M t— m *— (— O ' u M o MH- O O OC OO o C O o o c o o od oo o c o o o c o c oc o o o C o o o c M t— r— t - m m t- *— f— MH-

, . . . . - -

£91 ♦ HHhlHHHOOOOOOOOOOOOdlOOOOOOOdlOOOOOOOOOOOOOOOaOjo odooooo ood > O O O C O O i/'fi^ -O -0 -c -0 -O -C ^0 -0-0-0'0'£>'0'0|0'0'C '£J'0'0'0 -O -0 -U6 *0 -O -£| -O -O O -O -O -O ~K 3 000000\C'00'£>^)\OvO>0'OvOOOvOvOa>(xU!'a>ccccce(^cooDa)coa:-o -o co cn - J ~ j - v O ' o O v> v i v r 4 s -P u> o j ro *— o vO cr> - j a - m rvi—iv i—rvi—iv i—f-r\>i—*-rv ^ i\> i—rv^»—i—rvh -rv*-ui rvi—u )rvi-u )rvi—rvi—rvt-i—i—i—i->i—r—i— z oooooooooocoooooooooooooooOoocooooooooooaoooicuooucxiQocDoocscsccLoaiaicDCucscoococra^cocoooixoucocoaic&occscxiooobooaooocooocxjcxxxico o

OOOOOOOOO coo ooooooo oooooo 0 6 ooooooo csooooooodo rvi—'O ^ c -P i— 1— i— ► -i— i— u j i — o i — u ’ i— 1— 01 — 1—h~i—oorv^-uji—u jo ^ -o i— ouirvr-^rvn—rvrv <#> UJC?'6 -P~-JUJPjcpu)rvV>U)Ouiu)u)r—uJui'O rvuia.'O 'Ui'O Uii—►-u>i— -■Ju)'CU>uJ-PV)0'-PUJO'V!>u> oooooo ooooooooooooooooo ooooooo000 cii oocoooodo I— IV'-Ill— I— I— rviVJi— I— UJI— I— I— UU — I— t— t— CM — I— r-'UJtVO'i— rvivi— i— i— I— VH-r-uJi— I— U U — i— fVI-fl— codoocooocoooocococOOOOOOOOOOOOC oooooooooooo o OOOOOOOOOOOOOOOO v >OOOOOOCOOO<- j OOOOOOOOOOOOOOOO a 000o o o o o o o o o0000000c 000COooooooooooooooooo00 z t—• •»—>■ t—*• r—■ 1—• 1—‘(—•i— I— I— i— h ^ i— r— i— i f ►—**—• t—• t-»»(—• ►—**—• “ 1—>• i—'r - ^ • r—■>• t—j-1—• (—'* —•»—• *—• *—«i—'!-»►—

oodoooooucciooo | o OCC o o o o o o o o OOOOOOOOOOOOOOOO) d < z 1—-pi—4- uir-o-puiar^uio-p i rv MOOW W ^W ^Hli' rvrv.p o-P wo*— ot-rvuioot-o c oujviiui-p-pujujoi—u»i-u>u) 1 -p PvOHh'PPPNO-ll' O .01— rvuJ-j-oui--icru)i— m OOOOOOOOOOCOOO|o o o o o o o o o o o OOOOOOOOOOOOOOC o o •— t—1O' I— i— •— CXi t— I— I— { j J ►— UJ ►— ' I— i - c m — rvi-i-i-rvi-H * I—I—I—I—l—I—CM—I—U)l—I—I—I—IVI— • OOOOOOOOOOOC 0 0 I o o o o o o o o o o o OOOCOCCjOCOOOOOCO OOOOOOOOOOOOOO IO o o o o o o o o o o 0000006000000000 OOOOOOOOOOOOOO I o o o o o o o o o o o o o c 0 0 0 0 o o o o o o o q o t—»—• *—r 1— t—• 1—• *-—• *—«r—• »-♦* *—•»— i—* ! I— • t-t* • t—1 »“• I—• l~* »—• »— ►— r— 1—i* 1— 1— r— l-f 1— 1—»— I— I— 1— 1— q I— I ! 0 0 d o o 0 6 0 o o o o 0 0 o 0 0 0 o a o o o O 0 0 ! ocodooodooo o o oj iv oj uj h- ro t - oj I— -p o o tv U l r v i - r - p 01 — c c - u u — U l 1— ; oouji-uji-p'uirvcjrv o -J ON .p- (-> I— tv -P 4' 03 CO U» -J -J -P (J'Cf'i-* -PUJvOIVOU) - p r v I—OUJl—OS-P'OUJ VJ OOOOOOOOOOOOOO o 0 0 0 o o o o o o 0 0 I OOOOOOOOOOO o r v I—.pi— HH'O'OJI-'H 1 I—I— 1 1—uifvOi—1—1—1—1— Cd'i— O' 0 0 do 0 0 0 0 0 0 C.000 o o o o o o o o o o 0 0 : OOOOOOOOOOO o OOOOOOOOOOOOOO o 0 0 0 o o o o o o 0 0 ; 00000000000 o ooocouooooqooo o O O O O O O O O O CO I OOOOOOOOOOO o I—* *—• *—•»—• »—• I—«*—• f —• »—• *—•»—» I r . 1---- r I---- 1— - r J ! I 00000000006000 ! o o o o o o o I O O Ootiooocj* O O O O O O O O ►'i-,0 4'0^ 0^ M i- diUJ0i-‘ ! O -f'h—UIIV-P'O 1 rvo i—uJrvOi— 1—* 01 —1— CO P Jk VIC v 'j JO u JvOM vOO' i - > l t— rv O' ui uj -v I C3^0l\)0 0"0-P u>-JCPO OOOOOOOOOOOOOO I o 0 0 0 0 0 6 I OOOOOOOOOOO 1I- 1—1—1— . p i — r— ! UJ C M — I— I— Ull— I— I— -pi— OOOOOOOOOOOOOO ! o 0 0 0 0 0 6 ! oooooccdooo OOOOOOOOOOOOOO i o o o o o o o i 0 0 0 0 0 0 0 O 0 0 0 ooOc O O C O O O d O O C ' o o o o o o o i C COQOOCOOOO I—I—I—l-fl—I—I—I—I—I—I— I oodooooo POOO O o 0 0 0 0 0 c o o W OOHOHi-f-f' b-PUJUJ o o I— I— I— p - C-P I- •p rv i v J r v ^ j %0 CO I— U>U> p o o o c » ° ( 1 0 0 0 o OOOO 0 0 c o o r v i — r v u 'I—I I— ' 1—1—O' r v i — H OOOOO Pooo o o OOOC' 0 0 c o o 0 0 0 O 0 0 0 0 o o 0 0 0 0 0 c o o o o o q o 0 0 0 o o c o o a 0 0 o o 1— >—* 1-— t—1—

0( 0 0 0 0 o o o o c 10 o 0 0 o a c - p i r v i — 1— 0 I l\J - p - p -P< IU) o U )i— I— I— p UJ O ' O ' - j I— u l UJ- J -p —J r v r v v O rv 0 0 0 0 o o o o < PO o 0 0 0 0 1— 1— UJ 1— r 1—> I— I— o < 0 0 0 0 □ o o odo o 0 0 c 0 0 c OC 0 0 0 0 o o o 0 6 0 o O O C‘ 0 0 c o< 0 0 0 0 o o o 0 0 0 o 0 0 c 0 0 c 1— >— »— >—

0 0 0 0 o oc o 0 0 c o o o r v H* - p ■p r rv OUI c o VI -0 - 0 0 VI o 0-1 O' UJ UJ-J vO o 0 0 0 O o oc o o 0 0 o O' O ' 1— *— VI - p UJ r v i — O' o 0 0 0 O o oc o o 0 0 c o o 0 0 0 O o oc o o 0 0 c o o 0 0 0 O o oc o o 0 0 o 1— 1— 1— r—

1

*791 APPENDIX S* CONTINUED.

1003108 016020001 016010001 014010001 043010001 001010001 041010001 012010001 1003203 034010001 0 0 90 6 0 0 0 r ~ t r i 5 0 6 0 0 0 TT) 04 010001^03^0T0001~0070 1 0 0 0 1 — ------1004108 014010001 016020001 007010001 043010001 009060001 031010001 023020001 1004208 041010001 016010001 015050001 1005108 013010001 014010001 041010001 0 16020001_ 043010001_P070_10.00.1_OMO„LOOQL 1006108 013010001 014010001 031010001 043010001 031020001 007010001

-5-ENTRTES~~T-4 OF "EACH''TTWE^'TmXECTnJN CODES (SEE APPENDIX C) ENTRY 5 OF EACH LINE = COLLECTION COMPUTER CARD f? ENTRIES 6 -7 = MONTH OF COLLECTION OTHER ENTRIES = ALGAL TAXA CODE NUMBERS (SEE APPEND IX .. SJ------APPENDIX H. OCCURRENCE OF ALGAL TAXA IN OCTOBER COLLECTIONS

1111110 013010001 040010001 043010001 047010001 041010001 011050001 025010001 1111210 044010001 -926010001- 009050001- 1112110 013010001 025010001 020010001 043010001 041010001 037010001 032010001 1112210 007010001 034010001 031010001 014010001 1113110 013010001 0430100C1 011050001 020010001 025010001 019010001 015050001 1113210 034010001 -041010001- 011010001- -031910001"—OO-TOirOOOir 1114110 014010001 043010001 002020001 013010001 016020001 012010001 020010001 1114210 007010001 034010001 015060001 011050001 041010001 016010001 042010001 1114310 013010001 009010001 009020001 1115110 043010001 034010001- 007010001 0 12010 00-1-9140-19991—0-19010091—003 019001r 1115210 015060001 00 3010 001 013010001 017030001 002020001 009020001 1116110 031010001 009060001 034010001 041010001 003010001 007010001 014010001 1116210 004010001 315060001 015050001 019010001 013010001 043010001 016010001 1116310 015070001 009020001- 1117110 034010001 043010001 019010001 015060001 007010001 009060001 036010001 1117210 041010001 014010001 003010001 0 15050001 016040001 016010001 013010001 1116110 019010001 007010001 012010001 015060001 009060001 014010001 041010001 1116210 034010001 -016020001 003010001 015040001 015050001- 0 4-30100 01—002020001- 1118310 003010001 002040001 016010001 023030001 039020001 031010001 011010001 1118410 02 9010001 1119110 012010001 043010001 014010001 019010001 034010001 013010001 015050001 1119210 009050001 -009060001- -015040001 -923030001- 1120110 014010001 043010001 007010001 016030001 041010001 016020001 003010001 1120210 034010001 012010001 013010001 014010001 031010001 010010001 019010001 1121110 026010001 043010001 011010001 028030001 003020001 013010001 034010001 1121210 003U1U 001 024010001 009050001 041010001- 9 1 5 0 5 0 0 0 1 - -999020901r -909060001- 1121310 011090001 1122110 02 6010001 009060001 009050001 023030001 007010001 017010001 009020001 1122210 013010001 043010001 03401 COO 1 003020001 024010001 041010001 1123110 -013010001 -9 2 4 0 ie 0 0 1 -907010001-9-26 010001-03 4010001* -0099199 01—0T6tT490 OT 1123210 043010001 04101003 1 1124110 013010001 041010001 007010001 034010001 028030001 009060001 024010001 1124210 043010001 016040001 026010001 002020001 011010001 009060001 015100001 1124310 009020001 1125110 041010001 016020001 016030001 007010001 034010001 028030001 023030001 1125210 003010001 016010001 043010001 1126110 016030001 043010001 041010001 013010001 001010001 034010001 007010001 1126210 023030001 -036010001- 9090 60001 915 060001 OT3 0 1 0 9 9 1 " 1127110 016030001 02302C 001 1123110 016040001 007010001 009060001 041010001 043010001 016030001 1129110 043010001 01604U001 019010001 009030001 015060001 009060001 023030001 o\ 1129210 00 8010001 00 30 20 001“ 0C70I 0001 0 1 7 0 1 0 0 0 1 - a\ 1130110 00 1010001 016020001 015060001 007010001 016030001 015080001 014010001 .11302 10 021010001 043010001 015090001 008010001 029010001 041010001 012010001 i 1 I ! ■ ! i K- r—• t—• I— *—• • ►—•»—• t—• ►—* I—* •»—*•»— *—• 11—■ k— *—• •—»*—• • I—- *— *—< I— • t— *—1 *—•»—• U1U1U1U34'4'4'4'4'4'4'4'4-4'4'4'4'4'OJGJGJUII j j U>U)UJUJGJU>U!UJUJU i UJI>JU>U>UJLUUJU>U>UIUJUJ UJf'jh-C'OCDGj-^-ja'O'vn-r-OJi\>>-h-C)<0'OvOcoa-4-J-JO'0'0' C’'unu'\ui'ui4'4vu>u>u.'rur'ji—t—f—t— t— t— k—i— K-rut— rut— rut—t—f—t—t—r\>t— t—eurot—rut— lu i\ji— 4'U J r u t —4 'eur'Jf— rjh-L urot— rut—4'curuf— (—11— ■ k -K-I— f— t— t— f— I— t— I— >»— • *— iiK-11— ooooooooooooooooo0000000000000000000000000000 o a o o o o o O o o o o o o o o o 0000001o o o o o o ooooooooooaoooOo |\IK-I—cHC+*Gru I—LUO 4? M O O Ci r\J rj f\j k— 4' 4- O t— i— >— 4s t— I— W f— 4f I— OJvOOJ 4) \J1 J) O' 4) t— LULTI430 01334)010f— 4'LUt\J4)4' 0'iocnwoHO,'Wivw4 O'xOLnr-riv o c o c o OOG Oh-OUOG o o o o o o o o o o o o o o o oc.*-oooaoooa OOHOO K— t— I— t— LUJ't—'I—t— l\> vji u> O r - I—‘ t—• VJIi— I—'O' t—■ cx> •— l-M M W M i- i— root— t— i— W4't— t— t— Wt—O f— t— COOQO o o o o o o o o o o o o o o o o o o o o o o o o ccooocccoco ooooo LiOGOOo o o o o o o a o o o c o o o o o o o o o o o o oooooooooooo oooo C O O C l O ooo o o o o o o o o o o o o o o o o o o o o o OOCGOOOOCOO OOOQO r~ r- i— r— r- •—+ r—• *— »— K-K-K-j>»— I o o oo o oocioo o o o o o oo o o o o O oooao ooooooooooo OOOOO 4>UI (Vl\>0 ruorut-t— i-W hinj O 1 -0 rut-Ct- C't— t— 4 '*— 0r\jro04-i—cuoru I-MONH LU K—4 ' 4 - 4 ) t— 43 4'Ulf'O 4)LUCM_iJ4) OJsO W4>0 0' 4 * W 4 ) W U l i — o t — sG LU O' 4s CJ O' -f> t— vO s O W C D W J ) oo oo o 0 0 0 1 - 0 coooo I oo o o o o o o o o i - h OHOOOOODOOC OOOOO K— t—K-K-O'h O H O h t-LUruLUUl It—VJI Wl— C M — t— t— f— -J LU CO i—W04 't—t—t—t—t—t—t— o o oo o o o a o o O O O O O Io o o o o o a o c j o o o oooooooooooOOOOO oo oo o o o a o o o o o o o oo o o o o o o o o o o ooooooooooo OOOOO oo o o o o o a o o o a o o o oo o o o o aooooo ooooooooooo O O O C o 11 K— K— I— K— K— f— K— t— h— f— t— oaooaooaaoooaoo ioo a d o o o o o ooo ooo o ooo OOOCI o WC0^4>hh Oh Oh arot-ro it-ru OWOPOOJHh*ot—4-Of— rot— O f-O i - f - f — r v 4' f - ' 4 “JWW 4'C 7' '. U U l 4)U'4 )LU'U14' 11— 4 ' ^OvDC'4ul4 4)1— r— wrut— lt O' -4roi— O' W OOOOOOOOOOOOOOO ;t— o ooooo»—c o*—o o o o o ooo ooo o Wt— r— I—11— I— W I— O' t— •— U* LU JO r— i 4) f— I— In) O'*— I— Olt— OlCJOi—— J K—* I— 1 I— • K-UJf—f— vO INJ t— OOOOOOOOOOOOOOO |GO o a o o o o o ooo ooo o ooo O O O O o aooaoooaoooaooo ioo oa ooooo ooo oaoa ooo oooo o oooooooaooaaoooloo o a o o o o o ooo ocoO ooo OOOC o oo O oooo o o o iooo oo o d a o o o o o o o o o O O O O O oc o 04 - t— rooi\)4>0 4> rsj ih-r-LU i OO N o w o w c a *- ocuruoru t—I—fSJO LUUf O ~~i u) t-UJ -JLUl— 4) LU t— I O ' O r-u W-J ■ ►-*-*sj OJ sO *0 *0 —«J 'O LnOLU 43 oo NCOOO c o o Iooo oo o a o o o o o o o o o o o OOOO oc o t—t— t— tjJK-OJI— O'HK' INtf— U)1J1 f— O' f— f— I— I— (— LUf\) CT'f'JU) O' M t - t— oo o o o o o oo o lO O O oo o o o o o o o o o o o O O O O oc o oo o o o o o o o o iooo oo ooo oo o o o o o a O O O O oco oo a o o o o o o o iooo oo c o ooo o o o o o o O O O O oc o f— K-1—1—*1— 1— f— K—f— f— f-’ I— i— Hi— o o o ooooo !oo oo oo oo o oo o a O O O O odo 4 4' O 4-Q Of rut rOLU r\>f— Of— 4* NOW c f— f— MW •—f-+f— I—f— LU4 3 3 0 K- O' 4' K) 43 U) LUt— GJ ,U1'04) 4 l O O H 4) 034 O' oo oaw oo oo OO oo oo o ooo q oocjo OC I I—I— I—VJILUI—t— I— t— I—t— f-CD ruer >— t-*rut- a f— f— i-f ru oo o o o o o o oo oo oo oo o aoo c OOCiO oo o o o o o o oo oo oo oo o ooo c ooqo oo o o o o o o oo OO oo oo o Ooo oooo f— »— •—It— f— Ht—t— o o oo o oo oo olo o o t-r\ t - r o r - LUO i—4' k-!k— 4“ O f\ N VjlLi. CMjJUI 4 ) 4 ) “JO ru ’un r- 4 3 4 ) 4 ) 4)4 *0 K-C OOH oo o oo 0:0 O oo c 4* ■ f ' G O ruO' f— K-t— K— O' f- f - o oc OOCJ oo o oo oa o doo c □oao o oc o o o oo o oo 0 : 0 o c ooc oc o o oc o o o oo o oo C;0 O q c c c ooc t—t— f—it— f— o c ooo oo olo o doo c ooc oc o t— t- i— t—o f— t— Of— *— l-jt— I— 4* 0 0 4 t— t- o o i s r o w 4> 4* Ulf- OJ Ul “J 4 ] - 4 L U •40U u> U1U 4' oc ooo o ro t-O O f- o 0 0 oocjo f-c t—r\jt—t—O' f— o LUU3 l- O *- 3LUt— K-a'Hui 4*0 oaooo o o oo OO o Ooo c oooo oc ooooo o o oo O O o d o o a oodo oao ocjooo o o oo O O o q o o OOQO odo 1—I— K—l— f—

Z9t *—■»—• *—• •»—■ • t—* *—•»—•»—•»—• *— r—• 3 - 3 - 3 — 3— 3—3—3—3—3—3—3— 3—3— 3— 3—3—' H H c ' 3— 3— 3—3— 3 -3 — 3 - 3—3-3-i CO CD CD 03 CD CD CD 00 03 0)01-4-4 40'0'OCrO'OCMj'0'Cr''Jicnuiuiuiaiuiu3 ^'-c-ojL>JNjrjK'K-»-oc.vCHE -jo cp4'CDU>r\.'ror\jro3-3-Ovo-4CPui4-CDro3-oO'£ci-4-4Cr'jivP4' i\ j)-ir\i)-> N h -‘ 0 3 ro i*11\>i— i—>»—* ^ »—• tV 3 - 4 > c D F 0 3 — F0 3— 3- 3— 3— 3- 3— 3— 3— 3— 3— ro 1 —• ►—**—• r j 3— 3— r o 3— 3 - f—• >—• |W-.»—• h-^3—3—3 - 3 - »— t—■ <—11—‘ »—• '>—•»—1►—*' t—• ►—* I—1 ^ *—11—* ►—* I—■ •»—• t—• ooooooooocaoooooooooooooocoooooooooooooooooo o o o o o o o o o o o o o O O O o o o a o o o o o o o o o OOOOOOOOOOO0000 CD 3 - CD 3— 4'3-CD3-3—4-3-3- 4>3— r \> 3 - ro»—cdod-3-43—C f\Jt—3—4* I—(—.»_3— 3—^-43— 3—CDI— 3—3—3—3— 3— CD 4 ' 4 s O'CD O' CDUI4--4crt C M — r\JsOU>P'C7'U> crO 'O 'O '4 0-)—4 4 3 —4 4 ( 4 4 4 * o o o rj o o c o o o o o o O O O 0 0 0 0 3 - o o o o o o o o OOOOOOOOOOOOOOO 3- 3— 3— 3— 3—3—rol\J3—'3—3—3— 3— CD 3-CD O* 3—»—1 o r\)3—rj0'CDcDiD3-WUJUJ'jJl-Mr'f-HCfHuJHH o o o o o o c o o o o c o O O O o o o o o o o o o o c o o OOOOOOOOOOOOOOO o o o o o o o o o o a o o o o o o o o o o o o o o o o o o OOOOOOOOOOOOOOO o o o o O C j o oo o o o o oc.oocouc. ooc c oo o o ooooocoooooccioq 3— 3—3— 3—3 i— r — r 3-3-3— 3—3—3—3—3 -3 — 3— 3— I I o o o b O Ou t j p j l O O O O O o o o oooaoooooooOo O O O O O o o o o o o o o o 3— 3—-44- ‘UiroCDD- o>— r v r — o o uj •— vji i—f-C’F\>3—3—raroro I\J O CD 3— 3— 3—3—4C D 3-4444J Cr 4-)— U) 4-o.jr oro-f'-J4> o j i j - O o»—-p-ocriO'Oooouiuio CD4C0CT 03 CDCDCD40CD3-CDc4 c o o o ooo’ooooa o o o OOOOOOOOOoooo o o o o o o o o o p o o o c c o )— 3—3— 3-'CD 33* 3—3-1 • r—•»—•I— L O O a-f—*—i—o>— rooi—ujoju 3v>)Wf-HNH 3— 3— 3— 3— rJ»— 3— 3— COCJQ o o i o o o o o c o o C'OO OO O C oo o oo o o o o o o o c o o o o o o c o o o o o o o o o o o o o o a ooooooooooooo OOOOO OOOOQOOOC' o o o o OOOCOOCO o o o OOOCJOOOC ooooo o o o o o o o o o p o o o c I—• t—• l-p t— 3—3—3-3—3—3—3—3— I I I O O O o o o o o o o o ioooo o o o o o ooo o a o o o o o oc o o O U ) H CD4ro o o o o o ( O C W ^ 3-COOO i—roo o 3—4s 3— 3— OO 04 3-3 0 i— i— CD - 4 —J —J'd O ! r \ > 0 4 c n 4 4;4-4-4M C D - 4 4> 3—1 oJ O —J -4 —4 o o o o o o o o :OOCO o o o o o o o o o o o o o o oc I— f— r— c r | r v 4 3 — 3— r\) u i r— t— ►— F0CD3— 3—3—3—03-3— 3— o o o a o o o o OOOC o o o o o o o o o o o o o o o oc ooo o o o o o o o o o o o o o o o o o o o o o o o o oc o o o o o o o oII- 1Io o o o c c o o o ooo. o o o o o o o oc 3-3— i— t— o o o o o o o o o o lo oo o oo o o o oo o o dcb o Q O oc CD)—3- •— ro3-CD4 Ih'WF'OF'COF'H O c h CD 3 - 0 0 4* CD 3— C h ' O 'j O ' uJO'Cr-i— j " 4 ~ 4 4 0 CP “4—4 CD)— ID «, o o o o o o o o boooooi. oooo o o o d o oc ro-C'OJ3 - 3-43—3- :3—3— r\)3—3—3-3—3—CD3—3—3- 4* 3— 3— 3—3— 3— 3- o o o o o o o o ioooo ooc ooooo o o o o 0 0 oc o o o o o o o o i aooooooooooo o o o o 0 0 oc o o o o o o o o ooc ooooo oooo. o o o o 0 0 oc 3—3— o o o o o o o o o o o oolooo o 3 o ojo oc CDI\33— FD 4 (\) 4 0 3 - 0 » —ir-'3—4V 4 4 3-3- 3— U (VilD -F-FOH CD CD CDCDvO :0 ororo4*OJ a CD>f\> ro4 o o o o o o o o o o 0 0 : 0 0 0 oc 3— 3—3— 3— 3-lD *—• 3-3-— ;3— CMN3,rOI— 3— ^2 3—3- o o o o o o o o o o o o oolooo o o oc o o o o o o o o o o c iO o o i o o o o 1 o § 0 oc o o o o o o o c o 0 0 0 O O O O O o 0 0 oc 3—3-33—3— 3— 3—3— 3—3— 3— t-d

3 o o o o o O O O a oo O' 4C D O roo MO h 3 - O 3— 3- 3 - 4* cd r - ►— —3 4 - 4 CPf\J4 <4 4 ' CD o * rvi 3— o o o o o O O O 0 c o MHH 3—3— CD 3 - CD 3— 3— CD 3 - CD o o o o o O O OO o o o o o o o o O O O O oo o o c o o o o o o O O O O o o o 3-3- 3—3—3-3 3— 3— 3— 3—

o o o o O OO o o o o 0 3 — t— CD O 4 * 4 “ CD CD c d CD <3 3 - 0 3 4 * 4 CD 4* 4* o o a roo O O O o o 3— 3— airo3- 1— 3— 3 - o o o o o O OO 0 0 o o o o o o O OO 0,0 ,0 o o o o o O O O do o i— 3— 3 -

891 169

-* B*B* B* B* oo o o o 30 0 OO po o OOO D O O O O o ob o o oo o o o ooo oo o o ooo P O O O O o o o °£ oo o o o ooo O O 30 o DOO D O O O O O oo o o (Mp O M3 •f-o o o I'sj'tf-m tO*DN o ■OOr* 4" CM CM CM 0 op o oo c o oo GOOD o DOO D O O 0 0 op o

■H rH rH rH H rH oo o oco o ooo lo o o b o o bo o DOOO o o o o DO o DO oo o o o< o DOO lOOOfcc o p c o o o o o o o o o DO CD o DO oo o DO o oo lOQODO o o o o D O O O b O D O DO op o DO O r* m •f(V w vC«* 4 C -J r H r H J h b * C M • * i * n r. j m h* pi h* r* m M3 r * ** b-* O r* on o DO o ooo jooobo o p o o D O O G p O O O DO o o o DO 0,00 in MCM c m o f - p o m o ms no r-O o > B * * Or* O O r * )Oin»-Hpo I-* to to CM MOO(ClN*Cl* MO •4- Dm oo oo 7 00 )O O obo o b c o D O O O b O O O :-o s g o DO

I H Jn .—I i—I ,—11—I "H rH rH p-J rH rH f-4 r * i r * H * r * o o o o o o OOOO o o o o p o o o b o o DOOODOOO DO OOOO DO o o o o o o o poo g o o o p c o o o o o DOOOOOOO O opoo DO o o o o o o oooo o o o p o o o p o o DOOOOOOO DO OOOO DO ' D B * fO rH ij* *— l f M - j O . - * B * P «■* i* i* (* i* CM*H »H rH ^-4 f\M**H**iC -* t O' o n vO m IT, CO M3CTfMirfCMOM-O ia-p-.r“rnrviCMMr*r*cn mr*vC'scmP*t’ 1 * i —cr o o cm r* H iH CD OHMHOCbCOocoo pjm o —1*0 ^io ►— 'hO O i*fC |H f\jM i\jF*00* o W c t ' O n O H m f'-miMM3mmc'*m04 - M-mmomt*o O O r * r* (M nj r* r* O r* 000000000 c o o o o o p o * b* i * r* b* r * b* b* b* i * r * B* 9— 4 H r H r H #-4 r B * i b * r * r * r * b -* r * B * i - * B * r* ^* r* r* b * t-* r* Ooooooooooooo ooo Oooooooo Q O O D O D O p O o o o o o o o oooooooopoooo ooo oooooooog oooooaooo 0 0 0 0 0 ( 3 0 ( p O O G O O O J O O G O O o o o pooooooo OOODOOOOOD ooooopo CM • * I * I * r * r * B* n O i* fCl i—I H M3b*(M i f * CO I* I-* I* H B* r l in r * "4" r* CM m r* r * f* r* »—4 CO *“H rH fH rH rH Ooooooooooooo ooo ooooooooPOCMOOOOODO o o o o o o o fMitMWCO M- rOM-M-r'-Pm iHOlMrlOMM , D if* M-i-COcn i—11—i O OMnOCCIHC. 7* *p) fO f*H rH f*H »H rH fH rH *OM*Op* CD O O O O O O O CD OOOO ooo (pooooooo Pooooooopo o o o o o p o I I B* B* J , ( . , OOOOOO O O O O O CD O O O CD ooooooOOP ooo o o o a ooo a oooo o o o o o o o o o o OOOOOO oooo oooooo o o o o o o o c o O no/~| cooo oooo o o o o o o OOOOOO oooo ooooooooo ooo o o o ooooo oooo pooo r* r* r* r* b * CM CM b* r * m r* r H rH rH f\J rHHfPl rH H rH CM r* I* b * b * M > r H H ***OJ* cn B-* i—i •—* B-* —* I—I B* e b o o o o o o o o o o o o a o o O CD O D O O o o p o o o o o o ooooo oooo oooo o r* ai* rH sj" rH rH f Sj rH*f B *B -I .“ } * 3ia*G-t O >M * * 0-(0 ♦H i ^ H CM m O r* B*omr* sf v j " r H v j “ rH © o o o o o o o o o o o oooo Ipocopo o o p o o o o o c ooooo oooo pooo

OOOOOOOOOOOOOOOCooooooo 0 6 0 0 0 ooooooooocoooooo wMfC)B((\/i*rj*c'.iB*(M<,3HMi*MHi'ifC)i*cjB*i\jcciHf\iHrvfC)i*rji*rji*(Mi*Ncn*CM«*i*c\Ji* UMninoM)n-r~'io'/j(7'CM>oO'Hr*rMCMCMmmvt-.^-Mnu‘\'OP*Db»b-'Dr30'0'DOOr*B*iM m m '4- ®coa3a:a3co3)ci>(DcncncD(j'0'^trij'0'(3'0(3'CM3'(7'0'CM3'C'0,(3'0 '(J'C 'C M > o o o o o o o o o fB* B* B* I I B* B* B* B* IB* B* B* B* B* B* B* B* B* B* B* B* B* B* B* B* B* B* B* B* B* B* B* b* B* B* B* CSj CM '"M CM G\J CM (“* sj GJ CM T B * B* B* B* B* B* b* I I * B* B* B* B* r * B* B* B * B* B* B* B* B* B* B* B* B* B * B* B* B* B* B* B * B* B-* B* B* B* B* B* B * B* B* B* ! i i i i I i i , I APPENDIX H. CONTINUED.

* ENTRIES 1 -4 OF EACH LINE = COLLECTION CODES (SEE APPENDIX C) ENTRY 5 OF EACH LINE = COLLECTION COMPUTER CARD £ ______ENTRIES- 6-7- .s_. MONTH-OF— COLLECTION------OTHER ENTRIES = ALGAL TAXA CODE NUMBERS (SEE APPENDIX 3) APPENDIX I. OCCURRENCE OF ALGAL TAXA IN DECEMBER COLLECTIONS

1292112 013010001 043010001 024010001 041010001 016040001 014010001 034010001 1292212 025010001- -01-506000-1—00905 0001 023040001 12 93112 013010001 043010001 041010001 020010001 025010001 042010001 007010001 1293212 02401COO1 011250001 034010001 006010001 047010001 031010001 002020001 1293312 032010001 -1294112 014010001- 013010001-043010001—016 03OOO ! 12942 12 056010001 015060001 013010001 012010001 016010001 024010001 009010001 12943 12 019010001 020010001 1295112 034010001 014010001 019010001 003010001 012010001 043010001 015040001 1295212 008010001 015060001 013010001 01601000 1—01 1295312 015020001 009020001 031010001 042010001 007010001 003030001 035020001 1296112 04 3010001 014010001 041010001 031010001 042010001 015060001 016020001 1296212 00 70 1C00 1 0 34010001 003010001 009010001 013010001 1297112 91 2 0 1 oocr 019010001—01401000r 013 0 1 0 0 0 1 ~ 0 T 505000I ~ 3 340 100 0 1"~04 3 0 r OO'OT 1297212 041010001 01 507C0U1 003010001 01601 COO 1 009020001 003010001 012020001 1297312 00 30 3000 1 016040001 12981 12 014010001 041010001 019010001 015070001 013010001 007010001 043010001 1298212 034C10001 038010001 012010001 002030001" 00 90600 01 0Z40TQO01 01602 0 001" 1298312 0160 30OC 1 0 15040 001 002020001 1299112 04 301OOC 1 014010001 012010001 0 16020001 041010001 015060001007010001 1299212 0170 40001 013010001 011010001 012020001 019010001 “1300112 02 6010001 0 2 8020001“ "00 90 5O O O l“0 r i3 0 1 0 0 01“7)0 9 06"0'0 OI~CTO 7'010 0 0 1 ~ 0 0'9 O2O0OT 13002 12 043010001 017040001 041010001 003010001 011010001 003020001 024010001 1300312 012010001 1301112 02 6010001 009053001 024010001 007010001 030010001 034010001 009060001 1301212 017040001 "042010001 004010001 043 01 0 0 0 r 02 B 0 2 0 001000 3 020001“ 041010001 1301012 009010001 006010001 009020001 023010001 013010001 1302112 013010001 00701C001 026010001 043010001 006010001 024010001 041010001 1302212 011010001 0 31010001 '1303112 131603000 1 043010001" 0010100OT~04101000!—00906000T 0140 IOOUT" 1304112 01603C001 023030001 13051 12 013010001 016020001 014010001 051010001 1306112 009060001 009030001 015060001 023030001 007010001 016030001 016020001 1306212 019010001 014010301" 0090 30001 0 34010001" "008 OTOOOr-0T507OUOT O40OT0O0T 1306312 003020001 1307112 026010001 019010001 040010001 012020001 043010001 015010001 015100001 1307212 025010001 041010001 009050001 01401U0G1 024010001 015030001 015090001 1307312 034010001 00202000r 03301000 FT) 1 7 0 1 0 0 0 1 “ 1307412 0 5 7010001 012040001 035020001 016040001 008010001 029010001 021010001 1307512 024020001 1306112 04 0010001 026010001 009050001 043010001 015060001 009020001 014010001 13082 12 019010001 012010001" "029010001“0 33010001“0 36010001" 0 3 3 0 20 OO1““02OO"IOO0T' 1303312 0410100C1 009010001 017020001 007010001 002020001 003010001 009060001 1303412 002030001 028010001 011130001 I I t—*»—* *—• ■ t—11—' t—* • t—• h—■ • ►—* t—• <—1 •»—■ r—•»—•r—*• r—• • ►—1 t-“ >— Oj UJ OJ UJ 0-> GJ O O-1 G-> U> L>J L'1 C <-v l>> O-1 l>'l_uOJO^OJOJU)C>lU>UJU'l>JUjU-il^JU-lUJO>JUlUJC>~L*JOJO-!U'WU' rvji\jN)f\)r\ji\jf\jrot\>r\)f\jMr\jrjr\)i\)r\ji\jNjiMt-*t-«,t-*i— i—h*f— m-h-i— i—►— f-fm- m- f-ff— o c o oO't' a-oiuio^-p'-fv-('WOJOJOJ»MK'0vc^oci3~,'0'on^- -T-oJfvrjr\/^-*— f-HCCCc«OiO»o ^>u>rvi—'ojroi— (-•(-•OJrvi—'4-'ojroi—ojrot-*ojro•-• (—■ (—■ I—" I—’ r—1 *—*»—• t—• f—■ I—■ t—- *—•»—• K—<»—■• f—• *—I'HnHMI—'PHHHHHI-HHH'I— fH-ff-fF—F—F-fF—F-FF--F-F ivjr'jr\jf\jr\jr\jf\jroi\>f\jr\>i\jrororor'or\jr\}f\}f\jf\ji\>r'or\jr\jf\>rj i\>ror\>r\jr\>f\)hjroror\jr'ors>rof\jr\>r\j oooooaoooooooooocdoooooooooOOOOOOOOOOoooooo U)I\J-«JU>OUi'£)0'0'OCO,J1CO‘0-4U>--JvO'0>—OOJ>-'OoJWvO<7'Os^'VJ1s£’4>~JU1sCrSiWOJOvOf-r>0 OOOOOt-'OOC'COOOOO OOOOOOOOOOO O c. OOOOOOOOOOOOOOO ►-'uiu'e-corof—roo-P'O'-'i-T'ot—>-‘^'►->-‘ 0' or\jr-(>rvF-Fi—vjif—4'U>f- f—uif- f- o o c oooooooooooooooooooooooo oocooc coacoocooo ooo o oooooooooo OOOOOOOOOOOOO OOoooOoo ooooo ooo OOOOOO OOOOOOOOOOOOC'C'CGOCOa OOOOO OOOOOOOO OOQO h-* »—* ♦*"* t—< »—i »—i »—• M M *—* • »—* t—* fr—* t—« *■—* F-^ 1—4 h—1 >—• ►—* H-• h—* I—* (—* ►—* ►—< >—* K-» I ooooooo oco o o o o o o o o o a o o o o o o oooooooooo OOC ooo c.i nuiokhj r\i r-or\t H i ' H H H oh-uto f'JHHOOO F— F\; f— F— O 4- O f~ r\j 4 ' C; r^F-- rvj v£) vO o ^oao cH t> F-fF-f Vj( 'Jl -O 0 0 4 0 f—■ O' CT" -G 'O '■oo 0 4 a- .33043-4 0 0 4 * jjui O' Ul O O ooooopo ooo l-oooo oooo o o o o o o o oooooooooo oao r—• f—• f—1 VJ1 • -jHCrOvHh-H-l—*U>h- O 4"oi ui oi F-F UJ F—11 1*1 F—> F -* O' F— U - ' F-F F—1WOF- O f SO O' ooooooo ooo ooooo o a o o oooooo c oooooooooo oooooooooo o o o o o oooo o o o o o o o oooooooooo ooo ooooooo o o o o o a o o oaoo o o o o o o oooooo o oooo ooo h-h-1 H-F—I-* I i o o o oo o o d o o oao o d o o o d o o o o o o doooooooi O h h •f-C U O H C h h h aor\jo-t* inj 0 4'f—r\!F— f— f— u> fv rs> f— h- fsi * r\i jio —J O' (O' O'O-P'O'F-1h 4 h j )OU1 F-i* 41 OU>OVJIi\3 43- oo o o o o o o oooo a c o o o o o o o o t— NiOCOCOOOI 1-OUIf- f H-t—* H-I—• l>) CJ* O' h-t-* F—•F~- F-1 F—> F-F F-* O vu o r\j ro f—f ca f-f oo o o o a o o c o c o a c o o o o o o o o o G O O C O O O C l ooo o o a o o o o o o o o o o o o oo oo o O O O O C O O O I oo o o o a o o oaoo 0 0 0 0 o o o o o o OOOOOOOOC F— f F-f F-F F— p— f F 3F—• F—• F—* F-F h-F F-F F-F F—F F-f F-F F—F f-F F I i oo o 0(0 o o d a o o(OOOO O OOOOO douodoooc O h m OHO^O trsiF-ao F-F -4F--I— OJF— C h h h O h h M i OJrjcr> o 41 a uj o a UJF—•4' 4JUl'U>OJp-,4' 43 CXJ 41 O'O'4) f—4-f-f f-F O' oo o OHOCO o o o o o F-F OQ h O O o o o o o h o o c Io (SJH-'U) MOO'h Q' OJbJ|-*F-F F-FF— (—‘F-f-JF-ff-f F—F F—F r\J F—F —4 F—1 F—FQi F-— oo o o o a o o a o o o o o o o o o o OOOOOOOOOO o o o o o o o o q o o o o o o o o o o oooooooodo oo o o o a o o c o o o o o o o o o o OOOOOOOOOO F—F F—F F— F-F F—' F-F 1—F F—• F—• F I— F-F F-F HF- F—F I ooo ooc c o o o o o o o d o o doaoco 0-0 C h f - c O f— ISJ f— u f F-F F-F OW-f'OC ~6~io rviisjo. O f- f 4 > (N J -P * 0 3 I M r\>ui ■-0 f—f —j e> vji co o ooc o c O O O o o ocooc rv-p-o r\j f— F— O r-F r-F-F F—F F—F uir-aF-FF-Ftj. o oc o ooc OOO OO o o OOOOC _ o o o ooc o o a o o o o d o o o c o o c o ooc Qi OOO CO o o d o c d o o o q o F—1 F—F F—F F—F F—F •—f I—F F—F I

a|c1(0 0 ooc o a OO o o o o do oo q o VJFUJF— 1 Oh F - u l 0 - 4 rot-- rorj aow c o HO r OCT 4 4 3 1X1 - 4 u J H-CP (OJF-F viJCUOUJ ‘-0 0(0 U> ooc o O o o o o OO OOOO o H » - - f — UIUI F-F F-F F—F F—F F-F F-F l\j I—F Oh h h r\> o|oo ooc o o o o o o >00 doocc o OiOO o o o o o o o o doo OOOOC o 0(0 0 uod o o o o o o OO COOOC o HHH F-F F-F F-FF-F F - i F-<

*00 ooc too o oo o o (OO COO o - 4 |F - f \ J roF—i- o HO r\ir\j OH 4* QU1C0 y'O'cr — i F _ j— J ( 4 0 3 F F— O' 141 o OiOO ooc o o o oo ‘O c oo o Ht—1\> F—*f-*Cf F-i F—F F—F F-FOJ J F-F F- •<4 F-F o o o oo! ooc c oo o o o o o 30 C(OO o o o o OQ ooc o o o o oo o o 30 O oo o o o o o o ooc o o o o o o oo d o o C oo o F-F F-F F-F F-F F-F F-*

2 Li APPENDIX I. CONTINUED. 1327112 013010001 028020001 031010001 012010001 034010001 037010001 011010001 1327212 041010001 002020001 “13 2 3112 043010001' "D 2 6 J T O T 0 T 034010001" TTO T O T O W r 013'D10'00r ooo0 6 aoor 712 8 01X5001" 1328212 012010001 003020001 023030001 009050001 024010001 002040001 011010001 1328312 029010001 016030001 015070001 017040001 018010001 011320001 1329112 012050001 03501C001 007 0100 01_ 043010001 0340 1 0 9 0 1_ .009050001 ______009060001______1329212 013010001 037010001 012G4U001 020 010001 02 9010001 0160 30001 0 24010001 1329312 011090001 1330112 016030001 009060001 036010001 007010001 023030001 012020001 018010001 1330212 034010001 0 4 3 0 1C001 0U3010Q01 014Q10001 '1331112 001010001 007010001 "009060001' "0 16 0?.0001~0340TX>OT3r 1331212 024010001 015010001 002020001 013010001 1332112 007010001 0130 1G0Q1 014010001 034010001 016030001 015060001 009060001 1332212 043010001 041010001 016010001 024010001 1333112 013010001 007010001 035020001 043010001 "03401 OOOT 1334112 013010001 024010001 040010001 031010001 014010001 041010001 034010001 1335112 013010001 028020001 0 30010001 1336112 016030001 05 6010001 043010001 00906000 1 007010001 0230 40001 034010001 1336212 012010001 020010001 “ 016010001 00601000 1“ OTTOTO 0 01 DITIT 5 DTJTTT Cf 14 OTO’OTST" 1336312 018010001 031010001 040010001 01301000 1 023030001 1337112 013010001 020010001 0 3 1G10001 0 34 01000 1 043010001 0020 20001 030010001 1337212 041010001 040010001 037010001 03301000 1 024010001 0280 20001 007010001 13381 12 04 3010001 014010001 013010001 04101000 1 0160200Cr~ni20 lo o a r "031010001" 1338212 024010001 0 51010001 020U10001 0 16 01000 I 055010001 0113 30001 1339112 014010001 043010001 031010001 01301000 1 020010001 0120 50001 012040001 1339212 015050001 016030001 007010001 02401000 1 016020001 0310 30001 034010001 1339312 051010001 -041010001 -009050001- 1340112 014010001 043010001 013010001 0 12020001 012050001 016020001 015060001 1340212 020010001 002030001 002020001 015050001 024010001 016010001 031010001 1340312 041010001 009060001 016030001 023030001 051010001 001010001 1341112 016030001 043010001 019010001 001010001 01602 0001 023020001 0 3 4 0 1 OOOT 1341212 J1801J001 015060001 013010001 051010001 041010001 012010001 020010001 1341312 007010001 008010001 016010001 1342112 016030001 014010001 043010001 041010001 004010001 001010001 051010001 1342212 016010001 007010001 016020001 0 09 060001 013010001“034010001 016010001 1342312 023020001 1343112 016030001 016020001 0430 10001 014010001 009060001 001010001 034010001 13432 12 016010001 013010001 0230 20001 041010001 00 30100 01 007010001 031010001 -1344112-041010001 -04301-000-1—0140 10001-016-03 0001-016010001— trtsggotm ooioiooor 1344212 034010001 009060001 0310 10001 013010001 018010001 007010001 1345112 009050001 014010001 0130 10001 001020001 007010001 026010001 009060001 1345212 024010001 009020001 0151 00001 015080001 041010001 019010001 015020001 1345312 043010001 0 0 3010001- 0120 5 0001 002 0 30001“020010001“ ot) 3 cr3 oti oi“ era 5DTOO o r I—I—►-»—H*^l—)—I—f—)—I—I—►—I—H*)1 I 1 1 ! • J*i— ►— ►— U W U> O) UJ U> U> Ui U) U) U> U) U) U* U> U’ U CW U> U' U» U>.U> U> U> U U> U> U' U U ’ U> U> Ul U) U) U> U' U) G' u u j u> u> **j-j*-j-*i-j-j--j-'j-j-j-)-go'O'CT'O'O'O':}'O'0i'O'a'O'cJiuiuicri'J'iuicn'jicn,jiv iji'> j)c n u i4 4 4 4 4 <'vOoc—i-JC?cn4u>rvi—O'£>u-j0'cn4U)rvH'i—oo4'Occ-'JO'Vicri4u>ivivi—►-oovOct^jo'O- r^>»—• i—' r\j r—* ’ i—‘^ - i— »—i—•»— i— i—‘i—‘i—■ i—* •»—• *—1' rv i—* tv >— i v •— i—■ r—• ■’t v i — h - i— r v i— i v i — r v ) — i— *— ►—rv»— ivivrvivrvivivrvrvivrvfvrvfvrvivfvrvrvivivivfvivfvrvivivivivivivivivivivrvivrvrvrvfvtvrv ooooo ooo OOOOOOOOOOooooooooooOOOoooo o o o o o o o o o U) O I— H* ' h* rv>— *—■»-—•»—i'O l —> t—*►—' i—I—I—U)l—r— )— H*>H“ •— 4 0»-rvrvrv04 4*0 0-4 O' cr w O' O' 0 cr- a O' O' 4 4 4 a* u) 4 - j 4 O' 4s rv 4 o 4 4 4 4 4 4 & u 4 t—cruiuiOJUJt—h- O O O O O ooo oooo oooo OOOOOOOOOOO OC/OOOOOO o o c o o c io o o H* O'►—►—*.>)WWO) HHI-HWUIWIPH ooooo ooo coooooooooooooooooooooooooo O G C C C C C C O C£ OOOOooo 0000000000000000 0 0000000000 w o o o o o o o coooo ooo OOOCOOOOCOOOOOOOOOOOOOOOOOO o a o o o o o o o t—■ (—• I— • r I—1—1—*—)— H“l— I— H* M o o o o o o o O o o o o o o ociooooo o o o o a a O ooooooo o o o o o 2 4 i — )—4 i v ) — rv r v t v 4 r v i — - T - r - 4 H*I— i— •— i— 4 1—41—44 4 4 PUI^OCCM O h i-fO h* W ifffU'W D uJUI OJ OJ O O' r— U) 0*4 4U)IVU> rv iv u> u ) o j u i u i i— ►— i—f- 0 - 4 0 O' O 0-O--J 4 3 o o o o o o o o a o o o o o 0 6 0 0 0 0 0 o o o o o o o ooqocoo o o q o o @ H*I—' U) *— ►— O) U) IJUl U) I— *— I— h* *-*i— r v >—i— i— i— i— )—• I—* I-— ►—* f— I—• )—»—)-* 0> I— O' U) OU> U)H* ►— o o o o o o o o G C O O O C O CCOCOOO o o o o o o o oooooo o o o q o o o o o o o o o oo o o o o o o ooo oooo o o o o o o o oodoooo o o q o o 0 o o c -o o o o oo ooooo ooooooo o o p o o o o ooaoooa o o q o o *1—1—1— I--7 I 1 I o oooooooooooo OOOO oooo o oooo o o o o o A o Hi*i-ivj'NOi-'^clOroM^ pCWQ Oh F'H 4 I—1>— UJGl u)4qorv iv o y>U'U)V1uJ*O4g>4 4 u ),J0U) 0*41— i— r— f— -sCrCF uJ o oooccooooooo OOOCi oooo oooo o o ao o o o G)»— i— i— JO'H►—>—f—i Of— I-* i— r v i— i— ►—»1— M I—*)—* I—f I—'»—• UI O' o ooooOOOooooo OOOCi oooo o oooo o o d co o o o oooooooooooo oooo oooo o oooo o o ao o o o c oooooooCOOCO oooo oooo o oooo o oooo o o I— (— f— f— I— I— i— h + i— *— I— M* *—• t—■ I— *—j* . **4 1—* 1— H-■ *—* ! 1 I oo OO CJQOOO Io o o q o aood oo o id o o i—O O i— h ^ h O h rv -F 't— u> I— *— t— 4UJ 4 0 1— a o vO -V -J4 4 G> 4 -J 4 : U))— O' i a* O' Cr G)i—4 U l-J 4 -4 oo oo cdooo 1oooo o lo o oooo o c o o r—l— i—r— t— I—“ I—* r—• I—* i (J))— U) i rv rv O))— ►— h4 1—1— ►— l-l OO OO OOOOO iooock o !0 o oood oo o a o oo oo ooooo !o o o o o ;a o 0 0 0 0 oo o a o OO OO OCJCOO Ioooo o ;o o oaoo oo o Q o »—»»—• t—»►—(►—►— ►—

OO 0 oooo ooo o o oooq o o o G o I—4 H* Hf 4H*G 4 O Oh h S o w 4 4 UI M W o 4U)4~J CT'O'U) O' 4 h N^h ~J4 1— u 4 OO O OOOO ooo o o oooq o o o c o r v i— m > C+t—)—f— U> t— h*4 U)*H 1— 1— 1— I— H« OO o OOOO ooo o o o ooo< o o o c o OO 0 oooo ooo o o o ooo< o o o c o OC o QCOO ooo o o o 0001 o o o c o H* H* ►—

oo o oo o o o oooc o o o 4 4 i— 4 u> UJ UI OOi—I o 1— oicn o H** u) —J—iGM >— o a O' OO a oo aooc o o c o I—I— ■OH* I— I— H* M oc Cl oo o o o OOOC o o G o oo Ci oo o o o OOOC o o c o OO oo o o o OOOC o o a o 1— 1— OO o o o oo o o o ivr- o UI o 44 o IV N GIU) 4 4 t— ►— cr 4 c UI OO o o oo o o a a UJH* l-l I— I— I— H- 1— H- U) OO o o o oo o o o o o o o o o oo o o o o o o o o o oo o o o o t-1 I— APPENDIX I. CONTINUED, * ENTRIES 1-if OF EACH LINE = COLLECTION CODES (SEE APPENDIX C) ENTRY 5 OF EACH LINE * COLLECTION COMPUTER CARD # — ENTRIES- 6-7"~'MONTH OF COLLECTION------OTHER ENTRIES = ALGAL TAXA CODE NUMBER'S (SEE APPENDIX B) 176

Appendix J. Stands in association analysis subgroups, August, 1975*a

Subgroup: 1 2 3 k 5

905' 903 909 916 935 906 904 912 917 952 907 9;+3 913 918 953 908 9 ^ 91k 919 975 910 9^5 915 921 976 911 9^6 93k 938 977 920 9k7 936 9k9 978 922 9^8 987 951 979 923 950 988 955 98k 9 2-k 93k 989 960 970 925 956 990 961 971 926 958 997 962 99k 927 972 1003 963 995 928 980 96k 998 929 985 965 999 930 986 966 1005 931 992 9 67 932 993 968 933 996 969 937 1000 97k 939 1001 981 9^0 1002 982 9'fl 100k 957 9^2 1006 959 973 983

a Subgroups 1-5 are illustrated in Fig. 31; Collection numbers, arranged by date and site, are given in Appendix C. Occurrence of algal taxa in.August collections is given in Appendix G. 177

Appendix K. Stands in association analysis subgroups, late March-early April, 1975«a

Subgroup 1 2 3 *4

515 512 51 *4 511 516 52*4 537 513 518 53*4 5*4*4 517 520 536 553 519 521 577 570 530 522 578 57*4 531 525 579 575 533 525 580 585 535 526 581 591 538 527 582 592 5*41 528 583 595 5*45 529 606 596 5*46 532 598 5*1-8 5*40 601 550 5*43 60*4 551 5*49 608 571 552 609 572 55*4 587 555 588 556 589 •557 590 558 593 559 599 560 600 561 602 562 603 565 605 % k 610 565 566 567 568 asubgroups 1-/4 are illustrated in 569 Fig* 33; collection nurab&rs are 573 arranged by date and site in 58*4 Appendix C. Occurrence of algal 586 taxa in late March-early April 597 collections is given in Appendix E* 607 611 178

Appendix L. Stands in association analysis subgroups, December, 1975*a

Subgroup: 1 2 3 4 5

1295 1293 1292 1314 1304 1297 1302 1294 1318 1305 1298 1331 1296 1319 1316 1301 1334 1299 1320 1317 1306 1337 1300 1328 1324 1307 1338 1303 1336 1326 1308 1339 1309 1347 1327 1310 1340 1313 1348 1329 1311 1344 1315 .1349 1330 1312 1354 1332 1350 1333 1321 1355 1342 1371 1335 1322 1356 1345 1372 1362 1323 1357 1346 1373 1364 1325 1360 1351 1374 1369 1341 1361 1352 1375 1370 1343 1365 1353 1376 1366 1358 1377 1359 1378 1363 1379 1367 1377 1368 1378 - 1379

a subgroups 1-5 are illustrated in Fig. 34 ; collection numbers are arranged by date and site in Appendix. Cj occurrence of algal taxa in December collections is given in Appendix I. 179 Appendix M. Stands in association analysis subgroups, June, 1975.a

Subgroup: 1 2 $ if 5

72/+ 733 726 739 738 725 741 732 751 756 72? 742 748 752 757 728 749 750 760 758 729 755 • 754 762 759 730 765 763 764 766 731 765 767 784 769 734 774 773 794 770 735 775 779 795 771 736 111 780 803 772 737 778 781 810 791 743 783 782 811 812 745 790 785 813 836 753 81if 786 816 768 8if1 787 820 789 788 821 8/+?. 796 822 797 823 798 824 799 825 800 826 801 82 7 802 828 804 829 805 830 806 831 807 832 808 833 809 834 817 835 818 837 819 838 039 8if0 843 asubgroups 1-5 are illustrated in Fig. 35; collection numbers arc arranged by date and site in Appendix occurrence of algal taxa in June collections is given in Appendix F. %

180

Appendix II* Stands in association analysis subgroups, October, 1975«a

Subgroup 1 2 3 4

113 1114 1111 1127 113 1124 1112 1140 116 1185 1121 1141 117 1186 1122 1142 118 1190 1123 1143 119 1191 1125 1144 120 1192 1126 1145 129 1193 1130 1149 131 1194 1134 1150 132 1195 1151 1162 133 1196 1152 1163 135 - . 1200 1153 1164 136 1154 1165 137 1155 1166 138 1156 1167 139 1157 1169 1**6 1158 1170 14? 1159 1174 148 1160 1175 1161 1176 1173 1177 1178 1197 1179 1199 1180 , 1201 1181 1202 1182 1204 1183 1184 1187 1188 1189 1198 1203 asubgroups 1-4 are illustrated in Fig. 37; collection numbers, arranged by site and date, are given in Appendix C; occurrence of algal taxa in October collections is given in Appendix H. LITERATURE CITED1

Allen, T. F. 1971. Multivariate approaches to the ecology of algae on terrestrial rock surfaces in North Wales, J. Ecol. 59: 803-826. Biebel, P. 196k. The sexual cycle of Netrium digitus. Amer. J. Bot. 51: 697-704. Braun-Blanquet, J. 1964. Pflanzensoziologie. Grundzuge der Vegetationskunde, 3rd Ed* Springer, Berlin* 865 pp. Chu, S. P. 194-2* The influence of the mineral composition of the medium on the growth of planktonic algae* J* Ecol. 30: 284.-325• Collins, F. S, 1909* The green algae of North America, Tufts Coll* Stud. Sci. Ser. 2: 79-4-80. Daily, W. A. 1942. The of Ohio, Kentucky, and Indiana. Amer. Midi. Naturalist 27: 636-661. Deason, T. R. and H. C. Bold. 1960. Phycological Studies. I. Exploratory Studies of Texas Soil Algae. Univ. of Texas Publ. No. 6022. DeBary, A. 1858, Untersuchungen (Iber die Familie der Conjugaten. Leipzig. 91 pp. Desikachary, T. V. 1959* Cyanophyta. Indian Council of Agricultural Research, New Delhi, 686 pp. Forsyth, J. L. 1966. Glacial Map of Licking County, Ohio. Report of Investigation No. 59* Ohio Department of Natural Resources, Division of Geological Survey, Columbus. literature abbreviations follow B-P-H (Botanico-Periodicum- Huntianum). George H. M. Lawrence, A. F. Gunther Buchheim, Gilbert S. Daniels, and Helmut Dolezal, editors. 1968. Hunt Botanical Library, Pittsburgh, Pa, 1063 pp.

I 181 182 Fritsch, F. E. 1907* The subaerial and freshwater algal flora of the tropics. Ann. Bot. (London) 21: 235-275* . 19^5* Structure and Reproduction of the Algae. Vol. II* Cambridge Univ. Press, London. 959 PP* Geitler, L. 1952. Cyanophyceae. In L. Rabenhorst Krypto- gamen-Flora von Deutschland, ^esterreich und der Schweiz 1/f. Akad. Verlags., Leipzig. 1196 pp. Gittins, R. 1965. Multivariate approaches to a limestone grassland community. III. A comparative study of ordina­ tion and association analysis. J. Ecol, 55s ^11-^25. Golubic, S. 1967. Algenvegetation der Felsei.. Eine 8kolo« gische Algenstudie ira dinarischen Karstgebiet. Die Binnengewasser, |}and 23* E. Schweizerbart’sche Verlags- buchshandlung (Nagele u. Obermiller), Stuttgart. 183 PP* Greig-Smith, P., M. P. Austin, and T. C. Whitmore. 1967. The application of quantitative methods to vegetation survey. I. Association-analysis and principle component ordination of rainforest, J. Ecol. 55: 4-83-503* . 1971. Analysis of vegetation data: the user viewpoint. Statistical Ecology (eds. G. P. Patil, E. C, Pielou and W. E, Waters), Vol. 3* Pennsylvania State Univ. Press, University Park. pp. 195-206* Hoham, R. W., J. E, Mullet and J. P. Rosowski. 1976. A new species of Chloromonas from snow. Suppl. J. Phycol. 12: 18. Abst*

Huber-Pestalozzi, G. 194-1. Das Phytoplankton der Suss- wassers, Systernatik und Biologie. Die Biennengewasser Sinzelderstellungen aus der Limnologie und ihren Nach- bargebieten; horausgegcben von Dr. August Thienoraann. Vol. 16, Part 2(1), Chrysophyceae; Farblose Flagellaten; Hefterokontac. E. Schweizerbart‘sche verlagsbuchhandlung (Nagle u. Obermiller), Stuttgart. 365 PP* Hufford, T. L. 1972. Analyses of seasonal and areal distri­ bution oattcrns of diatom taxa of Cedar Bog, Champaign County/Ohio. Unpubl. Ph.D. Dissertation. The Ohio State Univ. 14-5 p* Hustedt, F. 1930, j.Bacillariophyta (Diatomeae). In Pascher, A., ed.. Die Susswasser-Flora Mitteleuropas, Heft 10. Jena. 4-66 pp. 183

Jaag, 0. 1945. Untersuchungen uber die Vegetation und Biol- ogie der Algen des nackten Gesteins in den Alpen in Jura und in Schweizerischon Hittelland, Beitr• Kryptoganenfl* Schweiz. 9: 1-560. Kaufmann, H. 1914* Ueber den Entwicklungsgang von Gylindrocystis. Z. Bot. 6 : 721-774. Kershav/, K. A. 1973# Quantitative and Dynamic Plant Ecology 2nd edn. American Elsevier Publ. Co., Inc., New York, N. Y. 308 pp.

King, J. K. 197.1* Comparative studies of some palmelloid green algae. Unpubl* Ph.D. Dissertation. Univ. of Texas at Austin, 254 pp. Krieger, W. 1937* Die Despidaceen Europas mit Berucksich- tigung der aussereuropaischen Arten. In L. Rabenhorst Kryptogamen-Flora von Deutschland, Osterreich und der Schweiz 13* Abt. 1, Toil 1. Akad. Verlags., Leipzig. 712 pp.

and J, Gerloff. 1962. Die Gattung Cosmarium. Lieferung 1. J. Cramer, V/einheim. 112 pp.

______;______• 1965* Die Gattung Cosmarium. Lieferung 2. J. Cramer, V/einheim. pp. 113-240.

______• 1969* Die Gattung Cosmarium. Lieferung 3+4*r J'* Cramer, V/einheim. pp. 24 1 —if 10. Lowe, R. L. and G. B. Collins. 1973* An aerophilous diatom community from Hocking County, Ohio. Trans. Araer. Microscop. Soc, 92: 492-496. Marchesoni, V. 1939* Le alghe epilitiche de alta montagna nel grunno del Cevedale. Kuovo Giorn. Bot. Ital. 46: 389-436;* Mattox, K. P. and H. C. Bold. 1962. Phycological Studies. III. The taxonomy of certain Ulotrichacean algae. Univ. of Texas Publ. No. 6222, 67 PP* Nichols, H. W. 1973* Growth media - freshwater. In. Stein, J. R., ed. Handbook of Phycological Methods, Culture Methods and Growth Measurements. Cambridge Univ. Press, London, pp. 7-24,* Nie, N. H., C. II. Hull, J. G. Jenkins, K. Stoinbrenner, and D, H. Bent. 1975* SPSS: Statistical Package for the* Social Sciences. 2nd edn. McGraw-Hill, New York, If. Y. 675 pp. 18/f

Orloci, L. 1966. Geometric models in ecology. I, The theory . and apolication of some ordination methods, J, Ecol, 5*fJ 193-215. ______• 1967* Data centering: a review and evaluation with reference to comnoncnt analysis, Syst, Zool, 16: 208-212,

Paschqr, A, (ed.). 1915* Die Susswasser-Flora Deutschlands, Gsterreichs und der Schweiz, Heft 5* Chlorophyceae II, Tetrasporales, Protococcales, Einzellige Gattungen Unsicherer ,Stellung. G, Fischer, Jena, 250 pp. Patrick, P. and C, V/. Peimer, 1966. The diatoms of the United States, Vol. 1. Acad, Nat. Sci. Philadelphia Konogr. No, 13. 688 pp.

Potthoff, H. 1928, Zur Phylogenie und Entwicklungsgeschichte der Conjugaten. Ber, Deutsch. Bot. Ges. ^6 : 667-673,

Prescott, G, V/. 1962. Algae of the Western Great Lakes area with an illustrated key to the genera of desmids and freshwater diatoms. Rev. edn. Wm. C. Brown Co., Dubuque, Iowa. 977 pp.

______H. T. Croasdale, and 17. C. Vinyard. 1972. A Synopsis of North American Desmids. Part I. Saccodermae, Mesotacniaceae. North American Flora. Series II, Part 6 . New York Botanical Garden, Bronx, New York, N, Y. Ql± pp.

______. 1975. A Synopsis of North American Desmids. Part II. Desmid- iaceae: Placodermae. Section 1, University of Nebraska Press, Lincoln. 275 PP*

Proctor, M. C, F. 1967. The distribution of British liver­ worts: A statistical analysis. J. Ecol, 55: 119-156. Pice, S, L. 1960. The microclii’.iate of a relict stand of sugar maple in Devil's Canyon, Canadian County, Oklahoma. Ecol. ^1: ^5-453•

Skuja, H. 196A. Grundzuge der Algenflora und Algenvcgetation der F.jeldgegenden ura Abisko in Schwedisch-Lappland, Nov. Act. kcgiae Soc. Sci. Upsaliensis. Ser. if. Voi. 18. No. 3. ^65 pp. Smith, G. V/. 1950. The Fresh-water Algae of the United States. McGraw-Hill Book Co., Inc., Now York, N. Y. 719 pp. 185

Starr, R. C. 1975* Apparatus and maintenance• In Stein, J. R. ed. Handbook of Phycological Methods,1Tulture . Methods and Grov.-th Measurements* Cambridge Univ* Press, London, pp* 171-180. Stout, W. 1916. Geology of Southern Ohio including Jackson and Lawrence Counties and parts of Pike, Scioto, and Gallia, Geological Survey^of Ohio, Bulletin 20. Springfield Publishing Co., Springfield, Ohio. 723 pp, Taft, C. E. 1937. The life history of a new species of Mesotaeniurn. 3ull. Torrey Bot, Club. 6Jft 75-79* $ . 1942. A new species of Cylindrocystis. Ohio J. Sci. Zj2: 122. 19^9. New, rare, or otherwise interesting algae. Trans, Amer. Microscop. Soc. 68: 2.08-216.

______j ana O.W. Taft. 1971. The Algae of Western Lake Erie. Ohio Biol. Surv. Bull, N.S. if. 139 PP*

Teiling, E. 1954* Actinotaenium genus Desnidiacearum resus- citatum. Bot. Hot. 195/fi 57^-426.

Transeau, E. N* 1916. The periodicity of freshwater algae. Amer, J, Bot, 3: 121-133.

Webb, L, J., J, G. Tracey, 17. T, ’Williams, and G. N. Lance. 1967. Studies in the numerical analysis of complex rain-forest communities. I. A comparison of methods applicable to site/speciesdata. J. Ecol. 55: 171-191. West, W, and G. S. West. 190if. A Monograph of the British Desmidiaceae. Vol. 1. Ray Society, London. 2Zl\ PP* . 1905* A Monograph of the British ' Liesmidiaceae. Vol." 2. Ray Society, London. 20if pp. . 1908. A Monograph of the British d o smid .iac eac.VoIT 3. Ray Society, London. 273 pp* 1912. A Monograph of the British Desmidiaceae. VolY 4 . Ray Society, London. 191 PP* ______, and N. Carter. 1923* A Monograph of the' British besmidiaceae. Vol. 5* Ray Society, London. 300 pp. 186

Whitford, L. A. and G. J* Schumacher. 1973* A Manual of Fresh-V/ater Algae. Sparks Press, Raleigh, N. C. I>24 pp. Williams, V/. T. and J. M. Lambert. 1959* Multivariate methods in plant ecology. I. Association-analysis in plant communities. J. Ecol. 47: 83-101. Wolfe, .J. N., R. T. Wareham, and H. T. Scofield. 1949* Microclimates and macroclimates of Neotoraa, a small valley in central Ohio. Ohio Biol. Surv. Bull. 8s 1-26?* Wolle, F. 1887* Fresh-water algae of the United States. Vol. I & II. Bethlehem, Pa. 364 PP* Young, D. C. 1973* Comparisons of analyses of diatom commu­ nities of five ponds in Perry County, Ohio. Unpubl. M.S. Thesis, The Ohio State Univ. 167 PP* . 1976. Multivariate analyses of diatom communities affected by acid mine drainage. Unpubl. Ph.D. Dissertaiion. The Ohio State Univ. 378 pp.

Zehnder, A. 1953* Beitrag zur Kenntnis von Mikroklima und Algenvegetation des nackten Gesteins in den Tropen. Ber. schweiz. Bot. Ges., 632 3-26.