Diversity of Bacillus-Like Bacterial Community in The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microbial Diversity of Molasses Containing Tobacco (Maassel) Unveils Contamination with Many Human Pathogens
European Review for Medical and Pharmacological Sciences 2021; 25: 4919-4929 Microbial diversity of molasses containing tobacco (Maassel) unveils contamination with many human pathogens M.A.A. ALQUMBER Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Saudi Arabia Abstract. – OBJECTIVE: Tobacco smoking drugs in today’s modern world. Different meth- remains a worldwide health issue, and the use of ods are currently used to consume tobacco, in- flavored varieties (maassel) embedded in glyc- cluding cigarettes, cigars and waterpipes1. Water- erine, molasses, and fruit essence via shisha pipe (shisha) smoking continues to rise globally2. paraphernalia (waterpipe) is growing globally. Smoking flavored tobacco (maassel), through the 16S rRNA gene pyrosequencing was conduct- shisha, is becoming a global preventable cause of ed on 18 different varieties representing 16 fla- 3,4 vors and three brands in order to study the mi- morbidity and mortality . crobiota of maassel and find whether it contains Scientists studied the chemical composition of pathogenic bacteria. tobacco for many years and illustrated the total MATERIALS AND METHODS: The samples number of chemicals identified in tobacco during were selected randomly from the most utilized the years from 1954 to 20055. In addition, a com- brands within Albaha, Saudi Arabia as deter- prehensive review of these chemicals’ classifica- mined through a questionnaire of 253 smok- ers. In addition, ten-fold serially diluted sam- tion, concentration and changes with time due ples were inoculated on blood agar, MacConkey to changes in the shape, design and composition agar, half-strength trypticase soy agar and malt of cigarettes was reported almost a decade ago6. -
Access to Electronic Thesis
Access to Electronic Thesis Author: Khalid Salim Al-Abri Thesis title: USE OF MOLECULAR APPROACHES TO STUDY THE OCCURRENCE OF EXTREMOPHILES AND EXTREMODURES IN NON-EXTREME ENVIRONMENTS Qualification: PhD This electronic thesis is protected by the Copyright, Designs and Patents Act 1988. No reproduction is permitted without consent of the author. It is also protected by the Creative Commons Licence allowing Attributions-Non-commercial-No derivatives. If this electronic thesis has been edited by the author it will be indicated as such on the title page and in the text. USE OF MOLECULAR APPROACHES TO STUDY THE OCCURRENCE OF EXTREMOPHILES AND EXTREMODURES IN NON-EXTREME ENVIRONMENTS By Khalid Salim Al-Abri Msc., University of Sultan Qaboos, Muscat, Oman Mphil, University of Sheffield, England Thesis submitted in partial fulfillment for the requirements of the Degree of Doctor of Philosophy in the Department of Molecular Biology and Biotechnology, University of Sheffield, England 2011 Introductory Pages I DEDICATION To the memory of my father, loving mother, wife “Muneera” and son “Anas”, brothers and sisters. Introductory Pages II ACKNOWLEDGEMENTS Above all, I thank Allah for helping me in completing this project. I wish to express my thanks to my supervisor Professor Milton Wainwright, for his guidance, supervision, support, understanding and help in this project. In addition, he also stood beside me in all difficulties that faced me during study. My thanks are due to Dr. D. J. Gilmour for his co-supervision, technical assistance, his time and understanding that made some of my laboratory work easier. In the Ministry of Regional Municipalities and Water Resources, I am particularly grateful to Engineer Said Al Alawi, Director General of Health Control, for allowing me to carry out my PhD study at the University of Sheffield. -
Aerosol Microbiome Over the Mediterranean Sea Diversity and Abundance
atmosphere Article Aerosol Microbiome over the Mediterranean Sea Diversity and Abundance Esra Mescioglu 1,* , Eyal Rahav 2, Natalia Belkin 2, Peng Xian 3, Jordan M. Eigenza 4 , Ania Vichik 2, Barak Herut 2 and Adina Paytan 5 1 Earth and Planetary Science, University of California, Santa Cruz, CA 95060, USA 2 Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 3108000, Israel 3 Marine Meteorology Division, Naval Research Laboratory, 7 Grace Hopper Avenue, Monterey, CA 93940, USA 4 Biomolecular Engineering, University of California, Santa Cruz, CA 95060, USA 5 Institute of Marine Science, University of California, Santa Cruz, CA 95060, USA * Correspondence: [email protected] Received: 18 June 2019; Accepted: 24 July 2019; Published: 1 August 2019 Abstract: Prokaryotic microbes can become aerosolized and deposited into new environments located thousands of kilometers away from their place of origin. The Mediterranean Sea is an oligotrophic to ultra-oligotrophic marginal sea, which neighbors northern Africa (a major source of natural aerosols) and Europe (a source of mostly anthropogenic aerosols). Previous studies demonstrated that airborne bacteria deposited during dust events over the Mediterranean Sea may significantly alter the ecology and function of the surface seawater layer, yet little is known about their abundance and diversity during ‘background’ non-storm conditions. Here, we describe the abundance and genetic diversity of airborne bacteria in 16 air samples collected over an East-West transect of the entire Mediterranean Sea during non-storm conditions in April 2011. The results show that airborne bacteria represent diverse groups with the most abundant bacteria from the Firmicutes (Bacilli and Clostridia) and Proteobacteria (Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) phyla. -
Resuscitation of Soil Microbiota After > 70-Years of Desiccation
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.06.371641; this version posted November 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Resuscitation of soil microbiota after > 70-years of desiccation 2 Jun Zhao1‡, Dongfeng Chen1‡*, Wei Gao1,2, Zhiying Guo1,2, Zhongjun Jia1, 3 Marcela Hernández3* 4 1State Key Laboratory of Soil and Sustainable Agriculture. Institute of Soil Science, 5 Chinese Academy of Sciences. Nanjing, 210008, Jiangsu Province, China 6 2University of Chinese Academy of Sciences, Beijing 100049, China 7 3School of Environmental Sciences, Norwich Research Park, University of East 8 Anglia, Norwich, UK 9 10 ‡These authors contribute equally to this work 11 12 * Correspondence: 13 Dongfeng Chen: [email protected] 14 Marcela Hernández: [email protected] 15 Running title: Soil microbes after long-term desiccation 16 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.06.371641; this version posted November 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 17 Abstract 18 The abundance and diversity of bacteria in 24 historical soil samples under air- 19 dried storage conditions for more than 70 years were assessed by quantification and 20 high-throughput sequencing analysis of 16S rRNA genes. -
Alicyclobacillus Spp.: New Insights on Ecology and Preserving Food Quality Through New Approaches
Microorganisms 2015, 3, 625-640; doi:10.3390/microorganisms3040625 OPEN ACCESS microorganisms ISSN 2076-2607 www.mdpi.com/journal/microorganisms Review Alicyclobacillus spp.: New Insights on Ecology and Preserving Food Quality through New Approaches Emanuela Ciuffreda, Antonio Bevilacqua, Milena Sinigaglia and Maria Rosaria Corbo * Department of the Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 15, 71122 Foggia, Italy; E-Mails: [email protected] (E.C.); [email protected] (A.B.); [email protected] (M.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-08-8158-9232. Academic Editor: Giuseppe Comi Received: 27 July 2015 / Accepted: 29 September 2015 / Published: 10 October 2015 Abstract: Alicyclobacillus spp. includes spore-forming and thermo-acidophilic microorganisms, usually recovered from soil, acidic drinks, orchards and equipment from juice producers. The description of the genus is generally based on the presence of ω-fatty acids in the membrane, although some newly described species do not possess them. The genus includes different species and sub-species, but A. acidoterrestris is generally regarded as the most important spoiler for acidic drinks and juices. The main goal of this review is a focus on the ecology of the genus, mainly on the species A. acidoterrestris, with a special emphasis on the different phenotypic properties and genetic traits, along with the correlation among them and with the primary source of isolation. Finally, the last section of the review reports on some alternative approaches to heat treatments (natural compounds and other chemical treatments) to control and/or reduce the contamination of food by Alicyclobacillus. -
Thèses Traditionnelles
UNIVERSITÉ D’AIX-MARSEILLE FACULTÉ DE MÉDECINE DE MARSEILLE ECOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTÉ THÈSE Présentée et publiquement soutenue devant LA FACULTÉ DE MÉDECINE DE MARSEILLE Le 23 Novembre 2017 Par El Hadji SECK Étude de la diversité des procaryotes halophiles du tube digestif par approche de culture Pour obtenir le grade de DOCTORAT d’AIX-MARSEILLE UNIVERSITÉ Spécialité : Pathologie Humaine Membres du Jury de la Thèse : Mr le Professeur Jean-Christophe Lagier Président du jury Mr le Professeur Antoine Andremont Rapporteur Mr le Professeur Raymond Ruimy Rapporteur Mr le Professeur Didier Raoult Directeur de thèse Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR 7278 Directeur : Pr. Didier Raoult 1 Avant-propos : Le format de présentation de cette thèse correspond à une recommandation de la spécialité Maladies Infectieuses et Microbiologie, à l’intérieur du Master des Sciences de la Vie et de la Santé qui dépend de l’Ecole Doctorale des Sciences de la Vie de Marseille. Le candidat est amené à respecter des règles qui lui sont imposées et qui comportent un format de thèse utilisé dans le Nord de l’Europe et qui permet un meilleur rangement que les thèses traditionnelles. Par ailleurs, la partie introduction et bibliographie est remplacée par une revue envoyée dans un journal afin de permettre une évaluation extérieure de la qualité de la revue et de permettre à l’étudiant de commencer le plus tôt possible une bibliographie exhaustive sur le domaine de cette thèse. Par ailleurs, la thèse est présentée sur article publié, accepté ou soumis associé d’un bref commentaire donnant le sens général du travail. -
Exploiting the Aerobic Endospore-Forming Bacterial
Couto et al. BMC Microbiology (2015) 15:240 DOI 10.1186/s12866-015-0575-5 RESEARCH ARTICLE Open Access Exploiting the aerobic endospore-forming bacterial diversity in saline and hypersaline environments for biosurfactant production Camila Rattes de Almeida Couto, Vanessa Marques Alvarez, Joana Montezano Marques, Diogo de Azevedo Jurelevicius and Lucy Seldin* Abstract Background: Biosurfactants are surface-active biomolecules with great applicability in the food, pharmaceutical and oil industries. Endospore-forming bacteria, which survive for long periods in harsh environments, are described as biosurfactant producers. Although the ubiquity of endospore-forming bacteria in saline and hypersaline environments is well known, studies on the diversity of the endospore-forming and biosurfactant-producing bacterial genera/species in these habitats are underrepresented. Methods: In this study, the structure of endospore-forming bacterial communities in sediment/mud samples from Vermelha Lagoon, Massambaba, Dois Rios and Abraão Beaches (saline environments), as well as the Praia Seca salterns (hypersaline environments) was determined via denaturing gradient gel electrophoresis. Bacterial strains were isolated from these environmental samples and further identified using 16S rRNA gene sequencing. Strains presenting emulsification values higher than 30 % were grouped via BOX-PCR, and the culture supernatants of representative strains were subjected to high temperatures and to the presence of up to 20 % NaCl to test their emulsifying activities in these extreme conditions. Mass spectrometry analysis was used to demonstrate the presence of surfactin. Results: A diverse endospore-forming bacterial community was observed in all environments. The 110 bacterial strains isolated from these environmental samples were molecularly identified as belonging to the genera Bacillus, Thalassobacillus, Halobacillus, Paenibacillus, Fictibacillus and Paenisporosarcina. -
Metagenomic Characterization Reveals Pronounced Seasonality in the Diversity and Structure of the Phyllosphere Bacterial Community in a Mediterranean Ecosystem
microorganisms Article Metagenomic Characterization Reveals Pronounced Seasonality in the Diversity and Structure of the Phyllosphere Bacterial Community in a Mediterranean Ecosystem Despoina Vokou 1,*, Savvas Genitsaris 2 , Katerina Karamanoli 3, Katerina Vareli 4, Marina Zachari 4, Despoina Voggoli 4, Nikolaos Monokrousos 5, John Maxwell Halley 4 and Ioannis Sainis 4 1 Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece 2 School of Economics, Business Administration and Legal Studies, International Hellenic University, 57001 Thermi, Greece; [email protected] 3 School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] 4 Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; [email protected] (K.V.); [email protected] (M.Z.); [email protected] (D.V.); [email protected] (J.M.H.); [email protected] (I.S.) 5 Department of Soil Science of Athens, Hellenic Agricultural Organization-Demeter, Institute of Soil and Water Resources, 14123 Lykovrisi, Greece; [email protected] * Correspondence: [email protected] Received: 17 September 2019; Accepted: 29 October 2019; Published: 1 November 2019 Abstract: We explore how the phyllosphere microbial community responds to a very seasonal environment such as the Mediterranean. For this, we studied the epiphytic bacterial community of a Mediterranean ecosystem in summer and winter, expecting to detect seasonal differences at their maximum. With high-throughput sequencing (HTS), we detected the operational taxonomic units (OTUs) present in the phyllosphere and also in the surrounding air. The epiphytic community is approximately five orders of magnitude denser than the airborne one and is made almost exclusively by habitat specialists. -
Polycyclic Aromatic Hydrocarbon Degrading Bacteria from the Indonesian Marine Environment
BIODIVERSITAS ISSN: 1412-033X Volume 17, Number 2, October 2016 E-ISSN: 2085-4722 Pages: 857-864 DOI: 10.13057/biodiv/d170263 Polycyclic aromatic hydrocarbon degrading bacteria from the Indonesian Marine Environment ELVI YETTI♥, AHMAD THONTOWI, YOPI Laboratory of Biocatalyst and Fermentation, Research Centre for Biotechnology, Indonesian Institute of Sciences. Cibinong Science Center, Jl. Raya Bogor Km 46 Cibinong-Bogor 16911, West Java, Indonesia. Tel. +62-21-8754587, Fax. +62-21-8754588, ♥email: [email protected] Manuscript received: 20 April 2016. Revision accepted: 20 October 2016. Abstract. Yetti E, Thontowi A, Yopi. 2016. Polyaromatic hydrocarbon degrading bacteria from the Indonesian Marine Environment. Biodiversitas 17: 857-864. Oil spills are one of the main causes of pollution in marine environments. Oil degrading bacteria play an important role for bioremediation of oil spill in environment. We collected 132 isolates of marine bacteria isolated from several Indonesia marine areas, i.e. Pari Island, Jakarta, Kamal Port, East Java and Cilacap Bay, Central Java. These isolates were screened for capability to degrade polyaromatic hydrocarbons (PAHs). Selection test were carried out qualitatively using sublimation method and growth assay of the isolates on several PAHs i.e. phenanthrene, dibenzothiophene, fluorene, naphtalene, phenotiazine, and pyrene. The fifty-eight isolates indicated in having capability to degrade PAHs, consisted of 25 isolates were positive on naphthalene (nap) and 20 isolates showed ability to grow in phenanthrene (phen) containing media. Further, 38 isolates were selected for dibenzothiophene (dbt) degradation and 25 isolates were positive on fluorene (flr). On the other hand, 23 isolates presented capability to degrade in phenothiazine (ptz) and 15 isolates could grow in media with pyrene (pyr). -
Genome Diversity of Spore-Forming Firmicutes MICHAEL Y
Genome Diversity of Spore-Forming Firmicutes MICHAEL Y. GALPERIN National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 ABSTRACT Formation of heat-resistant endospores is a specific Vibrio subtilis (and also Vibrio bacillus), Ferdinand Cohn property of the members of the phylum Firmicutes (low-G+C assigned it to the genus Bacillus and family Bacillaceae, Gram-positive bacteria). It is found in representatives of four specifically noting the existence of heat-sensitive vegeta- different classes of Firmicutes, Bacilli, Clostridia, Erysipelotrichia, tive cells and heat-resistant endospores (see reference 1). and Negativicutes, which all encode similar sets of core sporulation fi proteins. Each of these classes also includes non-spore-forming Soon after that, Robert Koch identi ed Bacillus anthracis organisms that sometimes belong to the same genus or even as the causative agent of anthrax in cattle and the species as their spore-forming relatives. This chapter reviews the endospores as a means of the propagation of this orga- diversity of the members of phylum Firmicutes, its current taxon- nism among its hosts. In subsequent studies, the ability to omy, and the status of genome-sequencing projects for various form endospores, the specific purple staining by crystal subgroups within the phylum. It also discusses the evolution of the violet-iodine (Gram-positive staining, reflecting the pres- Firmicutes from their apparently spore-forming common ancestor ence of a thick peptidoglycan layer and the absence of and the independent loss of sporulation genes in several different lineages (staphylococci, streptococci, listeria, lactobacilli, an outer membrane), and the relatively low (typically ruminococci) in the course of their adaptation to the saprophytic less than 50%) molar fraction of guanine and cytosine lifestyle in a nutrient-rich environment. -
Bacillus Mangrovi Sp. Nov., Isolated from a Sediment Sample of Coringa Mangrove Forest, India
Author version : International Journal of Systematic and Evolutionary Microbiology,vol.67(7);2017; 2219-2224 Bacillus mangrovi sp. nov., isolated from a sediment sample of Coringa mangrove forest, India Vasundhera Gupta1, Pradip Kumar Singh1, Suresh Korpole1, Naga Radha Srinivas Tanuku2, Anil Kumar Pinnaka.*1 1MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh-160036, India 2CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam-530017, India Address for correspondence *Dr. P. Anil Kumar MTCC-Microbial Type Culture Collection & Gene Bank, CSIR- Institute of Microbial Technology, Chandigarh-160036, India E-mail: [email protected] Telephone: +91-172-6665170 Running title: Bacillus mangrovi sp. nov. Subject category New taxa (Firmicutes) The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain AK61T is HG974242. A facultatively anaerobic, endospore forming, alkali tolerant, Gram-positive-staining, motile, rod shaped bacterium, designated strain AK61T, was isolated from a sediment sample collected from Coringa mangrove forest, India. Colonies were circular, 1.5 mm in diameter, shiny, smooth, yellowish and convex with entire margin after 48 h growth at 30oC. Growth occurred at 15-42 oC, 0- 3% (w/v) NaCl and pH of 6-9. Strain AK61T was positive for amylase activity and negative for oxidase, catalase, aesculinase, caseinase, cellulase, DNase, gelatinase, lipase and urease activities. The fatty acids were dominated by branched with iso-, anteiso-, saturated fatty acids with a high abundance of iso-C14:0, iso-C15:0, anteiso-C15:0 and iso-C16:0; the cell-wall peptidoglycan contained - meso-diaminopimelic acid as the diagnostic diamino acid; and MK-7 is the major menaquinone. -
Alicyclobacillaceae Fam. Nov
Family Firmicutes/“Bacilli”/Bacillales/ Alicyclobacillaceae fam. nov. .......................................................................................................................................................................................... Milton S. da Costa, Universidade de Coimbra, Departamento de Bioquímica, Coimbra 3001-401, Portugal Fred A. Rainey, Louisiana State University, Department of Biological Sciences, 202 Life Sciences Building, Baton Rouge, LA 70001, USA A.li.cy.clo.ba.cil.la’ce.ae. N.L. masc. n. Alicyclobacillus Asahara, Suzuki, Kasai and Yokota 2003, 1542 emend. type genus of the family; -aceae ending to denote a fam- Karavaiko, Bogdanova, Tourova, Kondrat’eva, Tsaplina, ily; N.L. fem. pl. n. Alicyclobacillaceae the Alicyclobacillus Egorova, Krasil’nikova and Zakharchuk 2005, 946. family. .................................................................................. References Cells are straight rods of variable length, generally non- motile. Terminal or subterminal ovoid endospores are Goto, K., K. Mochida, M. Asahara, M. Suzuki, H. Kasai and formed. The majority of the species stain Gram-positive. A. Yokota. 2003. Alicyclobacillus pomorum sp. nov., a novel Strains are non-pigmented. Aerobic with a strictly respiratory thermo-acidophilic, endospore-forming bacterium that type of metabolism, but a few strains reduce nitrate to nitrite does not possess omega-alicyclic fatty acids, and emended 3+ and some reduce Fe . Mesophilic, slightly thermophilic, description of the genus Alicyclobacillus. Int. J. Syst. Evol. and thermophilic, and acidophilic. Menaquinone-7 is the Microbiol. 53: 1537–1544. predominant respiratory quinone. Many species possess ω-cyclohexane or ω-cycloheptane, but some do not. Branched Karavaiko, G.I., T.I. Bogdanova, T.P.Tourova, T.F. Kondrat’eva, chain iso- and anteiso-fatty acids and straight chain fatty acids I.A. Tsaplina, M.A. Egorova, E.N. Krasil’nikova and are present in all species.