An Abstract of the Dissertation Of

Total Page:16

File Type:pdf, Size:1020Kb

An Abstract of the Dissertation Of AN ABSTRACT OF THE DISSERTATION OF Edward Gilman Barge for the degree of Doctor of Philosophy in Botany and Plant Pathology presented on December 13, 2019. Title: Structure and Function of Foliar Fungal Communities of Populus trichocarpa Across its Native Range, Pacific Northwest, USA. Abstract approved: ______________________________________________________ Posy E. Busby Foliar fungi – pathogens, endophytes, epiphytes – form taxonomically diverse communities that affect plant health and productivity. The composition of foliar fungal communities is variable at spatial scales both small (e.g., individual plants) and large (e.g., continents). However, few studies have focused on how environmental factors and host plant traits influence the composition and temporal variability of these communities. Moreover, predicting how nonpathogenic members of these communities affect the plant host remains a challenge. In Chapter two we used ITS metabarcoding to characterize foliar fungal communities of Populus trichocarpa in two consecutive years at the same sites located across its native range in the Pacific Northwest of North America. We used multivariate analyses to test for and differentiate spatial and environmental factors affecting community composition, and tested whether the magnitude of year-to-year variation in community composition varied among environments. We found that climate explained more variation in community composition than geographic distance, although the majority of variation was shared, and that the year-to-year variability of communities depended on the environmental context, with greater variability in the drier sites located east of the Cascade Range. In Chapter three we used ITS metabarcoding and multivariate analyses to test whether the influence of intraspecific host genetic variation on the foliar fungal community diminished over the course of one growing season. We utilized 12 P. trichocarpa genotypes that vary in two functional traits: phenology of bud-burst (early vs. late) and Sphaerulina leaf spot resistance (resistant vs. susceptible). We found that both of these traits drove differences in community composition among trees, but that the strength of the effect diminished through time as the communities converged. Our results suggest that for the leaves of deciduous plants, intraspecific host genetic variability may have its strongest impact on microbial community composition early in assembly. In Chapter four we tested whether Cladosporium endophyte phylogeny can be used to predict endophyte effects on P. trichocarpa leaf rust disease severity caused by Melampsora × columbiana. We used multilocus sequence typing to infer phylogenetic relationships among 96 Cladosporium endophyte isolates collected from wild P. trichocarpa trees throughout its native range. We then conducted a double- inoculation leaf-disk assay (endophyte inoculated first, then rust pathogen) for a subset of 50 Cladosporium isolates to characterize disease modification for the endophyte isolates; data on endophytes parasitizing rust was collected simultaneously for each isolate. We found that Cladosporium phylogeny was a significant predictor of rust disease severity and was also correlated with rust mycoparasitism, demonstrating that fungal endophyte phylogenetic relatedness can help predict differences in endophyte function. ©Copyright by Edward Gilman Barge December 13, 2019 All Rights Reserved Structure and Function of Foliar Fungal Communities of Populus trichocarpa Across its Native Range, Pacific Northwest, USA by Edward Gilman Barge A DISSERTATION submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Presented December 13, 2019 Commencement June 2020 Doctor of Philosophy dissertation of Edward Gilman Barge presented on December 13, 2019 APPROVED: Major Professor, representing Botany and Plant Pathology Head of the Department of Botany and Plant Pathology Dean of the Graduate School I understand that my dissertation will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my dissertation to any reader upon request. Edward Gilman Barge, Author ACKNOWLEDGEMENTS I am indebted to too many people, things, ideas, places to name them all. But, here’s a start. I would like to thank the Botany and Plant Pathology department as a whole for providing a warm, welcoming, and stimulating environment for my dissertation. I would like to thank everyone in both the Busby and Spatafora labs. Thank you Posy Busby for being an excellent advisor and mentor. You were very gracious and helped me grow in so many ways. Shawn Brown helped kick things off. Devin Leopold, Kyle Gervers, Gillian Bergmann and Sabrina Heitmann were always there to chat and trouble-shoot and push me to think about things in different ways. I would like to thank the Stuntz Foundation, Oregon Mycological Society, Cascade Mycological Society, and the Ben Woo Research Grant for funding. I would like to thank Richard Tehan for being a great friend and partner in crime (mushroom hunting). I would like to acknowledge and thank the beaches, forests, mushrooms, and beer of Oregon. Truly a wonderful state. I would like to thank Ekhart Tolle. And last but not least, I would like to thank my family, my mother, father, brother aunt Patty, and my wife, Charissa Bujak for providing unconditional love and support throughout. One Love, Edward G. Barge CONTRIBUTION OF AUTHORS Chapter 2: Posy E. Busby and George Newcombe conceived the idea for the study. Posy E. Busby collected and processed the samples with assistance from Kabir Peay. Devin R. Leopold assisted with data analysis. Posy E. Busby, George Newcombe, Kabir Peay, and Devin R. Leopold advised and edited the manuscript. Chapter 3: Posy E. Busby and Sean P. Brown conceived the idea for the study, assisted with data analysis and edited the manuscript. Chapter 4: Posy E. Busby and Rytas Vilgalys assisted in the design of the study. Alejandro Rojas conducted a portion of the multi-locus sequence typing. Devin R. Leopold assisted with data analysis. Posy E. Busby, Alejandro Rojas, and Devin R. Leopold edited the manuscript. TABLE OF CONTENTS Page Chapter 1: Introduction...……………………………………………………………...1 References……………………………………………………………………..5 Chapter 2: Differentiating spatial from environmental effects on foliar fungal communities of Populus trichocarpa...………………………………………….…… 7 Abstract………………………………………………………………………..8 Introduction………………………………………………………………...….9 Materials and Methods…………………………………………………….…12 Results………………………………………………………………………..18 Discussion……………………………………………………………...…….20 References……………………………………………………………………25 Chapter 3: Intraspecific host genetic effects on the foliar fungal microbiome of Populus trichocarpa diminish through the growing season….....………………...…………...47 Abstract………………………………………………………………………48 Introduction………………………………………….……………………….49 Materials and Methods……………………………………………………….52 Results………………………………………………………………………..57 Discussion……………………………………………………...…………….59 References……………………………………………………………………65 Chapter 4: Phylogenetic relatedness among Cladosporium leaf endophytes predicts their ability to reduce the severity of a poplar leaf rust disease …………....78 Abstract………………………………………………………………………79 TABLE OF CONTENTS (Continued) Page Introduction……..…………………………………………..………………..80 Materials and Methods……………………………………………………….82 Results………………………………………………………………………..90 Discussion……………………………………………………………………92 References……………………………………………………………………99 Chapter 5: Conclusion………………………………………………………………128 LIST OF FIGURES Figure Page Figure 2.1 Map of study sites………………………………….…………..…………29 Figure 2.2 Taxonomic distribution of the 200 most abundant foliar fungal OTUs….30 Figure 2.3 NMDS ordination of foliar fungal community composition and scatterplots of site-level Bray-Curtis dissimilarity vs. geographic distance...…..…...31 Figure 2.4 Associations between OTUs and sites over the two years……………….32 Figure 2.5 Box plots of foliar fungal Shannon diversity and Chao1 richness.......…..33 Figure 2.6 Venn diagram of variation in community composition explained by spatial vs. climatic factors………………………………………….……..………….34 Figure 2.7 Bar graph showing the proportion of variation in community composition explained by year at each site…………………………………………..35 Figure 2.S1 Monthly precipitation and mean temperature at sites in 2013 and 2014……………………………………………………………………………...36 Figure 2.S2 Variation in sequencing depth by year and region…………………...…37 Figure 2.S3 Within-site and within-region betadispersion………………..…………38 Figure 2.S4 PCA plot of abiotic environmental variation among sites…………...…39 Figure 3.1 Verification of leaf phenology and disease resistance phenotypes…………………………………………………………………………...69 Figure 3.2 Convergence in community composition (mean pairwise Bray-Curtis dissimilarity) between disease resistant vs. susceptible trees and between early vs. late phenology trees…………………………………………..70 Figure 3.3 Convergence in community composition (PCoA axes) over time……………………………………………………………………..………71 Figure 3.S1 Map of study sites and genotypes and their associated phenology and disease resistance phenotypes…………………………………………………...72 Figure 3.S2 Variation in community composition (PCoA axes 1–4) over time and between early vs. late phenology trees and between disease resistant vs. susceptible trees……………………………………………………...…73 LIST OF FIGURES (Continued) Figure Page Figure 3.S3 Variation in richness and Shannon diversity over time and between
Recommended publications
  • Castanedospora, a New Genus to Accommodate Sporidesmium
    Cryptogamie, Mycologie, 2018, 39 (1): 109-127 © 2018 Adac. Tous droits réservés South Florida microfungi: Castanedospora,anew genus to accommodate Sporidesmium pachyanthicola (Capnodiales, Ascomycota) Gregorio DELGADO a,b*, Andrew N. MILLER c & Meike PIEPENBRING b aEMLab P&K Houston, 10900 BrittmoorePark Drive Suite G, Houston, TX 77041, USA bDepartment of Mycology,Institute of Ecology,Evolution and Diversity, Goethe UniversitätFrankfurt, Max-von-Laue-Str.13, 60438 Frankfurt am Main, Germany cIllinois Natural History Survey,University of Illinois, 1816 South Oak Street, Champaign, IL 61820, USA Abstract – The taxonomic status and phylogenetic placement of Sporidesmium pachyanthicola in Capnodiales(Dothideomycetes) are revisited based on aspecimen collected on the petiole of adead leaf of Sabal palmetto in south Florida, U.S.A. New evidence inferred from phylogenetic analyses of nuclear ribosomal DNA sequence data together with abroad taxon sampling at family level suggest that the fungus is amember of Extremaceaeand therefore its previous placement within the broadly defined Teratosphaeriaceae was not supported. Anew genus Castanedospora is introduced to accommodate this species on the basis of its distinct morphology and phylogenetic position distant from Sporidesmiaceae sensu stricto in Sordariomycetes. The holotype material from Cuba was found to be exhausted and the Florida specimen, which agrees well with the original description, is selected as epitype. The fungus produced considerably long cylindrical to narrowly obclavate conidia
    [Show full text]
  • The Behavioral Ecology of the Tibetan Macaque
    Fascinating Life Sciences Jin-Hua Li · Lixing Sun Peter M. Kappeler Editors The Behavioral Ecology of the Tibetan Macaque Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associ- ated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthu- siasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Jin-Hua Li • Lixing Sun • Peter M. Kappeler Editors The Behavioral Ecology of the Tibetan Macaque Editors Jin-Hua Li Lixing Sun School of Resources Department of Biological Sciences, Primate and Environmental Engineering Behavior and Ecology Program Anhui University Central Washington University Hefei, Anhui, China Ellensburg, WA, USA International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology Anhui, China School of Life Sciences Hefei Normal University Hefei, Anhui, China Peter M. Kappeler Behavioral Ecology and Sociobiology Unit, German Primate Center Leibniz Institute for Primate Research Göttingen, Germany Department of Anthropology/Sociobiology University of Göttingen Göttingen, Germany ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-030-27919-6 ISBN 978-3-030-27920-2 (eBook) https://doi.org/10.1007/978-3-030-27920-2 This book is an open access publication.
    [Show full text]
  • Horizontal Gene Transfer and Gene Dosage Drives Adaptation to Wood Colonization in a Tree Pathogen
    Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen Braham Dhillona,1, Nicolas Feaua,1,2, Andrea L. Aertsb, Stéphanie Beauseiglea, Louis Bernierc, Alex Copelandb, Adam Fosterd, Navdeep Gille, Bernard Henrissatf,g, Padmini Heratha, Kurt M. LaButtib, Anthony Levasseurh, Erika A. Lindquistb, Eline Majoori,j, Robin A. Ohmb, Jasmyn L. Pangilinanb, Amadeus Pribowok, John N. Saddlerk, Monique L. Sakalidisa, Ronald P. de Vriesi,j, Igor V. Grigorievb, Stephen B. Goodwinl, Philippe Tanguayd, and Richard C. Hamelina,d,2 aDepartment of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4; bUS Department of Energy Joint Genome Institute, Walnut Creek, CA 94598; cCentre d’Étude de la Forêt, Université Laval, Québec, QC, Canada G1V 0A6; dNatural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, Canada G1V 4C7; eDepartment of Botany, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4; fUMR 7257 Centre National de la Recherche Scientifique, Aix-Marseille University, 13288 Marseille, France; gDepartment of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; hUnité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; iFungal Physiology, Centraalbureau voor Schimmelcultures–Royal Netherlands Academy of Arts and Sciences Fungal Biodiversity Centre (CBS-KNAW), 3584 CT, Utrecht, The Netherlands; jFungal Molecular Physiology, Utrecht University, 3584 CT, Utrecht, The Netherlands; kForest Products Biotechnology and Bioenergy, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4; and lUS Department of Agriculture–Agricultural Research Service Crop Production and Pest Control Research Unit, Purdue University, West Lafayette, IN 47907-2054 Edited by Ronald R.
    [Show full text]
  • Molecular Systematics of the Marine Dothideomycetes
    available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora.
    [Show full text]
  • Food Microbiology Fungal Spores: Highly Variable and Stress-Resistant Vehicles for Distribution and Spoilage
    Food Microbiology 81 (2019) 2–11 Contents lists available at ScienceDirect Food Microbiology journal homepage: www.elsevier.com/locate/fm Fungal spores: Highly variable and stress-resistant vehicles for distribution and spoilage T Jan Dijksterhuis Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, Utrecht, the Netherlands ARTICLE INFO ABSTRACT Keywords: This review highlights the variability of fungal spores with respect to cell type, mode of formation and stress Food spoilage resistance. The function of spores is to disperse fungi to new areas and to get them through difficult periods. This Spores also makes them important vehicles for food contamination. Formation of spores is a complex process that is Conidia regulated by the cooperation of different transcription factors. The discussion of the biology of spore formation, Ascospores with the genus Aspergillus as an example, points to possible novel ways to eradicate fungal spore production in Nomenclature food. Fungi can produce different types of spores, sexual and asexually, within the same colony. The absence or Development Stress resistance presence of sexual spore formation has led to a dual nomenclature for fungi. Molecular techniques have led to a Heat-resistant fungi revision of this nomenclature. A number of fungal species form sexual spores, which are exceptionally stress- resistant and survive pasteurization and other treatments. A meta-analysis is provided of numerous D-values of heat-resistant ascospores generated during the years. The relevance of fungal spores for food microbiology has been discussed. 1. The fungal kingdom molecules, often called “secondary” metabolites, but with many pri- mary functions including communication or antagonism. However, Representatives of the fungal kingdom, although less overtly visible fungi can also be superb collaborators as is illustrated by their ability to in nature than plants and animals, are nevertheless present in all ha- form close associations with members of other kingdoms.
    [Show full text]
  • Cladosporium Lebrasiae, a New Fungal Species Isolated from Milk Bread Rolls in France
    fungal biology 120 (2016) 1017e1029 journal homepage: www.elsevier.com/locate/funbio Cladosporium lebrasiae, a new fungal species isolated from milk bread rolls in France Josiane RAZAFINARIVOa, Jean-Luc JANYa, Pedro W. CROUSb, Rachelle LOOTENa, Vincent GAYDOUc, Georges BARBIERa, Jerome^ MOUNIERa, Valerie VASSEURa,* aUniversite de Brest, EA 3882, Laboratoire Universitaire de Biodiversite et Ecologie Microbienne, ESIAB, Technopole^ Brest-Iroise, 29280 Plouzane, France bCBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands cMeDIAN-Biophotonique et Technologies pour la Sante, Universite de Reims Champagne-Ardenne, FRE CNRS 3481 MEDyC, UFR de Pharmacie, 51 rue Cognacq-Jay, 51096 Reims cedex, France article info abstract Article history: The fungal genus Cladosporium (Cladosporiaceae, Dothideomycetes) is composed of a large Received 12 February 2016 number of species, which can roughly be divided into three main species complexes: Cla- Received in revised form dosporium cladosporioides, Cladosporium herbarum, and Cladosporium sphaerospermum. The 29 March 2016 aim of this study was to characterize strains isolated from contaminated milk bread rolls Accepted 15 April 2016 by phenotypic and genotypic analyses. Using multilocus data from the internal transcribed Available online 23 April 2016 spacer ribosomal DNA (rDNA), partial translation elongation factor 1-a, actin, and beta- Corresponding Editor: tubulin gene sequences along with Fourier-transform infrared (FTIR) spectroscopy and Matthew Charles Fisher morphological observations, three isolates were identified as a new species in the C. sphaer- ospermum species complex. This novel species, described here as Cladosporium lebrasiae,is Keywords: phylogenetically and morphologically distinct from other species in this complex. Cladosporium sphaerospermum ª 2016 British Mycological Society.
    [Show full text]
  • Phylogeny and Ecology of the Ubiquitous Saprobe Cladosporium Sphaerospermum, with Descriptions of Seven New Species from Hypersaline Environments
    available online at www.studiesinmycology.org STUDIEs IN MYCOLOGY 58: 157–183. 2007. doi:10.3114/sim.2007.58.06 Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments P. Zalar1*, G.S. de Hoog2,3, H.-J. Schroers4, P.W. Crous2, J.Z. Groenewald2 and N. Gunde-Cimerman1 1Biotechnical Faculty, Department of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia; 2CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands; 3Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Kruislaan 315, 1098 SM Amsterdam, The Netherlands; 4Agricultural Institute of Slovenia, Hacquetova 17, p.p. 2553, 1001 Ljubljana, Slovenia *Correspondence: Polona Zalar, [email protected] Abstract: Saprobic Cladosporium isolates morphologically similar to C. sphaerospermum are phylogenetically analysed on the basis of DNA sequences of the ribosomal RNA gene cluster, including the internal transcribed spacer regions ITS1 and ITS2, the 5.8S rDNA (ITS) and the small subunit (SSU) rDNA as well as β-tubulin and actin gene introns and exons. Most of the C. sphaerospermum-like species show halotolerance as a recurrent feature. Cladosporium sphaerospermum, which is characterised by almost globose conidia, is redefined on the basis of its ex-neotype culture.Cladosporium dominicanum, C. psychrotolerans, C. velox, C. spinulosum and C. halotolerans, all with globoid conidia, are newly described on the basis of phylogenetic analyses and cryptic morphological and physiological characters. Cladosporium halotolerans was isolated from hypersaline water and bathrooms and detected once on dolphin skin. Cladosporium dominicanum and C. velox were isolated from plant material and hypersaline water.
    [Show full text]
  • AR TICLE Additions to the Mycosphaerella Complex
    GRLLPDIXQJXV IMA FUNGUS · VOLUME 2 · NO 1: 49–64 Additions to the Mycosphaerella complex ARTICLE 3HGUR:&URXV1.D]XDNL7DQDND%UHWW$6XPPHUHOODQG-RKDQQHV=*URHQHZDOG1 1&%6.1$:)XQJDO%LRGLYHUVLW\&HQWUH8SSVDODODDQ&78WUHFKW7KH1HWKHUODQGVFRUUHVSRQGLQJDXWKRUHPDLOSFURXV#FEVNQDZQO )DFXOW\RI$JULFXOWXUH /LIH6FLHQFHV+LURVDNL8QLYHUVLW\%XQN\RFKR+LURVDNL$RPRUL-DSDQ 5R\DO%RWDQLF*DUGHQVDQG'RPDLQ7UXVW0UV0DFTXDULHV5RDG6\GQH\16:$XVWUDOLD Abstract: Species in the present study were compared based on their morphology, growth characteristics in culture, Key words: DQG '1$ VHTXHQFHV RI WKH QXFOHDU ULERVRPDO 51$ JHQH RSHURQ LQFOXGLQJ ,76 ,76 6 QU'1$ DQG WKH ¿UVW Anthracostroma ESRIWKH6QU'1$ IRUDOOVSHFLHVDQGSDUWLDODFWLQDQGWUDQVODWLRQHORQJDWLRQIDFWRUDOSKDJHQHVHTXHQFHV Camarosporula for Cladosporium VSHFLHV 1HZ VSHFLHV RI Mycosphaerella Mycosphaerellaceae LQWURGXFHG LQ WKLV VWXG\ LQFOXGH Cladosporium M. cerastiicola RQCerastium semidecandrum7KH1HWKHUODQGV DQGM. etlingerae RQEtlingera elatior+DZDLL Mycosphaerella Mycosphaerella holualoana is newly reported on Hedychium coronarium +DZDLL (SLW\SHVDUHDOVRGHVLJQDWHGIRU phylogeny Hendersonia persooniae, the basionym of Camarosporula persooniae, and for Sphaerella agapanthi, the basionym Sphaerulina of Teratosphaeria agapanthi FRPE QRY Teratosphaeriaceae RQ Agapathus umbellatus IURP 6RXWK $IULFD 7KH taxonomy latter pathogen is also newly recorded from A. umbellatusLQ(XURSH 3RUWXJDO )XUWKHUPRUHWZRVH[XDOVSHFLHVRI Teratosphaeria Cladosporium Davidiellaceae DUHGHVFULEHGQDPHO\C. grevilleae RQGrevilleaVS$XVWUDOLD DQGC. silenes
    [Show full text]
  • Abbreviations
    Abbreviations AfDD Acriflavine direct detection AODC Acridine orange direct count ARA Arachidonic acid BPE Bleach plant effluent Bya Billion years ago CFU Colony forming unit DGGE Denaturing gradient gel electrophoresis DHA Docosahexaenoic acid DOC Dissolved organic carbon DOM Dissolved organic matter DSE Dark septate endophyte EN Ectoplasmic net EPA Eicosapentaenoic acid FITC Fluorescein isothiocyanate GPP Gross primary production ITS Internal transcribed spacer LDE Lignin-degrading enzyme LSU Large subunit MAA Mycosporine-like amino acid MBSF Metres below surface Mpa Megapascal MPN Most probable number MSW Molasses spent wash MUFA Monounsaturated fatty acid Mya Million years ago NPP Net primary production OMZ Oxygen minimum zone OUT Operational taxonomic unit PAH Polyaromatic hydrocarbon PCR Polymerase chain reaction © Springer International Publishing AG 2017 345 S. Raghukumar, Fungi in Coastal and Oceanic Marine Ecosystems, DOI 10.1007/978-3-319-54304-8 346 Abbreviations POC Particulate organic carbon POM Particulate organic matter PP Primary production Ppt Parts per thousand PUFA Polyunsaturated fatty acid QPX Quahog parasite unknown SAR Stramenopile Alveolate Rhizaria SFA Saturated fatty acid SSU Small subunit TEPS Transparent Extracellular Polysaccharides References Abdel-Waheb MA, El-Sharouny HM (2002) Ecology of subtropical mangrove fungi with empha- sis on Kandelia candel mycota. In: Kevin D (ed) Fungi in marine environments. Fungal Diversity Press, Hong Kong, pp 247–265 Abe F, Miura T, Nagahama T (2001) Isolation of highly copper-tolerant yeast, Cryptococcus sp., from the Japan Trench and the induction of superoxide dismutase activity by Cu2+. Biotechnol Lett 23:2027–2034 Abe F, Minegishi H, Miura T, Nagahama T, Usami R, Horikoshi K (2006) Characterization of cold- and high-pressure-active polygalacturonases from a deep-sea yeast, Cryptococcus liquefaciens strain N6.
    [Show full text]
  • 1 Research Article 1 2 Fungi 3 Authors: 4 5 6 7 8 9 10
    1 Research Article 2 The architecture of metabolism maximizes biosynthetic diversity in the largest class of 3 fungi 4 Authors: 5 Emile Gluck-Thaler, Department of Plant Pathology, The Ohio State University Columbus, OH, USA 6 Sajeet Haridas, US Department of Energy Joint Genome Institute, Lawrence Berkeley National 7 Laboratory, Berkeley, CA, USA 8 Manfred Binder, TechBase, R-Tech GmbH, Regensburg, Germany 9 Igor V. Grigoriev, US Department of Energy Joint Genome Institute, Lawrence Berkeley National 10 Laboratory, Berkeley, CA, USA, and Department of Plant and Microbial Biology, University of 11 California, Berkeley, CA 12 Pedro W. Crous, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The 13 Netherlands 14 Joseph W. Spatafora, Department of Botany and Plant Pathology, Oregon State University, OR, USA 15 Kathryn Bushley, Department of Plant and Microbial Biology, University of Minnesota, MN, USA 16 Jason C. Slot, Department of Plant Pathology, The Ohio State University Columbus, OH, USA 17 corresponding author: [email protected] 18 1 19 Abstract: 20 Background - Ecological diversity in fungi is largely defined by metabolic traits, including the 21 ability to produce secondary or "specialized" metabolites (SMs) that mediate interactions with 22 other organisms. Fungal SM pathways are frequently encoded in biosynthetic gene clusters 23 (BGCs), which facilitate the identification and characterization of metabolic pathways. Variation 24 in BGC composition reflects the diversity of their SM products. Recent studies have documented 25 surprising diversity of BGC repertoires among isolates of the same fungal species, yet little is 26 known about how this population-level variation is inherited across macroevolutionary 27 timescales.
    [Show full text]
  • New Cladosporium Species from Normal and Galled Flowers of Lamiaceae
    pathogens Article New Cladosporium Species from Normal and Galled Flowers of Lamiaceae Beata Zimowska 1, Andrea Becchimanzi 2 , Ewa Dorota Krol 1, Agnieszka Furmanczyk 1, Konstanze Bensch 3 and Rosario Nicoletti 2,4,* 1 Department of Plant Protection, University of Life Sciences, 20-068 Lublin, Poland; [email protected] (B.Z.); [email protected] (E.D.K.); [email protected] (A.F.) 2 Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; [email protected] 3 Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; [email protected] 4 Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy * Correspondence: [email protected] Abstract: A series of isolates of Cladosporium spp. were recovered in the course of a cooperative study on galls formed by midges of the genus Asphondylia (Diptera, Cecidomyidae) on several species of Lamiaceae. The finding of these fungi in both normal and galled flowers was taken as an indication that they do not have a definite relationship with the midges. Moreover, identification based on DNA sequencing showed that these isolates are taxonomically heterogeneous and belong to several species which are classified in two different species complexes. Two new species, Cladosporium polonicum and Cladosporium neapolitanum, were characterized within the Cladosporium cladosporioides species complex Citation: Zimowska, B.; based on strains from Poland and Italy, respectively. Evidence concerning the possible existence of Becchimanzi, A.; Krol, E.D.; additional taxa within the collective species C. cladosporioides and C.
    [Show full text]
  • Phylogeny of Rock-Inhabiting Fungi Related to Dothideomycetes
    available online at www.studiesinmycology.org StudieS in Mycology 64: 123–133. 2009. doi:10.3114/sim.2009.64.06 Phylogeny of rock-inhabiting fungi related to Dothideomycetes C. Ruibal1*, C. Gueidan2, L. Selbmann3, A.A. Gorbushina4, P.W. Crous2, J.Z. Groenewald2, L. Muggia5, M. Grube5, D. Isola3, C.L. Schoch6, J.T. Staley7, F. Lutzoni8, G.S. de Hoog2 1Departamento de Ingeniería y Ciencia de los Materiales, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain; 2CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, Netherlands; 3DECOS, Università degli Studi della Tuscia, Largo dell’Università, Viterbo, Italy; 4Free University of Berlin and Federal Institute for Materials Research and Testing (BAM), Department IV “Materials and Environment”, Unter den Eichen 87, 12205 Berlin, Germany; 5Institute für Pflanzenwissenschaften, Karl-Franzens-Universität Graz, Holteigasse 6, A-8010 Graz, Austria; 6NCBI/NLM/NIH, 45 Center Drive, Bethesda MD 20892, U.S.A.; 7Department of Microbiology, University of Washington, Box 357242, Seattle WA 98195, U.S.A.; 8Department of Biology, Duke University, Box 90338, Durham NC 27708, U.S.A. *Correspondence: Constantino Ruibal, [email protected] Abstract: The class Dothideomycetes (along with Eurotiomycetes) includes numerous rock-inhabiting fungi (RIF), a group of ascomycetes that tolerates surprisingly well harsh conditions prevailing on rock surfaces. Despite their convergent morphology and physiology, RIF are phylogenetically highly diverse in Dothideomycetes. However, the positions of main groups of RIF in this class remain unclear due to the lack of a strong phylogenetic framework. Moreover, connections between rock-dwelling habit and other lifestyles found in Dothideomycetes such as plant pathogens, saprobes and lichen-forming fungi are still unexplored.
    [Show full text]