Abstracts from the Second Astrobiology Science Conference

Total Page:16

File Type:pdf, Size:1020Kb

Abstracts from the Second Astrobiology Science Conference International Journal of Astrobiology 1 (2): 87–176 (2002) Printed in the United Kingdom 87 DOI: 10.1017\S147355040200112X # 2002 Cambridge University Press Abstracts from the Second Astrobiology Science Conference NASA Ames Research Center, Moffett Field, California, USA 7–11 April 2002 Keynote presentations Digital organisms for experimental evolution Life beneath glacial ice – Earth! Mars? Europa? C. Adam $ Digital Life Laboratory; Jet Propulsion Laboratory; Carlton C. Allen $ NASA Johnson Space Center, Stephen. E. Grasby $ California Institute of Technology Geological Survey of Canada, Teresa G. Longazo $ Hernandez Experiments in evolution are difficult for all the obvious reasons: the Engineering, John T. Lisle $ United States Geological Survey, Benoit process is slow (such that macroevolutionary events occur only on a Beauchamp $ Geological Survey of Canada time scale of thousands to millions of years), and controlled conditions We are investigating a set of cold springs that deposit sulfur and are hard to establish. As a consequence, evolution has, in the past, been carbonate minerals on the surface of a Canadian arctic glacier. The mostly an observational and theoretical science, with little quantitative spring waters and mineral deposits contain microorganisms, as well as support. This has changed over the last decade, as more and more clear evidence that biological processes mediate subglacial chemistry, evolution experiments using microorganisms with short generational mineralogy, and isotope fractionation. The formation of native sulphur time have been conducted and their evolutionary dynamics studied in and associated deposits are related to bacterially mediated reduction controlled conditions. and oxidation of sulphur below the glacier. A non-volcanic, topography- Digital organisms are a new form of life that is adapted to life in the driven geothermal system, harboring a microbiological community, computer.1,2 Because of its simplicity, it is ideal for experimental operates in an extremely cold environment and discharges through solid evolution, even though (and perhaps because) digital life does not share ice. any ancestry with biochemical life on Earth. Digital organisms are self- Microbial life can thus exist in isolated geothermal refuges despite replicating computer programs that thrive in the memory of specially long-term subfreezing surface conditions. Earth history includes several prepared computers. They adapt to a virtual world, and grow in periods of essentially total glaciation. Ice in the near subsurface of Mars complexity. Their main use is as an experimental organism, to test and may have discharged liquid water in the recent past. Cracks in the ice study evolutionary theories and hypotheses. While several experiments crust of Europa have apparently allowed the release of water to the have been conducted that mirror classic experiments performed with surface. Chemolithotrophic bacteria, such as those in the Canadian microorganisms, recently new evolutionary dynamics have been springs, could have survived beneath the ice of ‘‘Snowball Earth,’’ and observed3 in digitals that await confirmation with ‘‘biochemicals.’’ life forms with similar characteristics might exist beneath the ice of References Mars or Europa. Discharges of water from such refuges may have 1 Adami, C. (1998). Introduction to Artificial Life (Springer Verlag, NY). brought to the surface living microbes, as well as long-lasting chemical, 2 Harvey, I. (1999). Creatures from another world. Nature 400, 618–619. mineralogical, and isotopic indications of subsurface life. 3 Wilke, C.O., Wang, J.L., Ofria, C., Lenski, R.E. & Adami, C. (2001). Evolution of digital organisms at high mutation rate leads to survival of A culture-independent survey of the bacterial the flattest. Nature, 412, 331–333. community in a radon hot spring in the Flinders Ranges of South Australia From interstellar polycyclic aromatic hydrocarbons Roberto Anitori $ Macquarie University, Australia, Cherida Trott $ and ice to astrobiology University of Auckland, David J. Saul $ University of Auckland, Peter Louis Allamandola $ NASA Ames Research Center L. Bergquist $ University of Auckland Medical School, New Zealand, The first part of this talk will describe how infrared studies of interstellar Malcolm Walter $ Macquarie University, Australia space, combined with laboratory simulations, have revealed the com- Studies of the microbial biota inhabiting active and ancient terrestrial position of interstellar ices (the building blocks of comets) and the hot springs is relevant to the analysis of similar Martian sites. For nature of interstellar polycyclic aromatic hydrocarbons (PAHs). instance, such research permits the development and refinement of The remainder of the presentation will focus on the photochemical appropriate methodologies (e.g. lipid biomarker analysis) for detecting evolution of these materials and astrobiology. Within a dense molecular evidence of present or past life on Mars. Paralana hot spring is located cloud, the birthplace of stars and planets, the materials frozen into the in the Mt Painter province of South Australia’s Flinders Ranges. This ices are energetically processed by ultraviolet light and cosmic rays, region is highly mineralised as the result of ancient and current producing complex organic molecules. Since these interstellar materials (Paralana) hydrothermal activity, with uranium and radium minerals are thought to be the building blocks of comets and related to the predominating. Consequently, radon gas is released into the Paralana organics in meteorites and micrometeorites, they are likely to have been hot spring (" 0n1–0n8 µCi\L) [Grant, 1938. Trans. Roy. Soc. S.A. 62, important sources of complex materials on the early Earth. Thus, their 357–365]. We have performed culture-independent 16S rRNA analyses composition may have played a role in the origin of life. (using bacteria-specific primers) of the microbial assemblages in nine Paralana samples. Water temperatures ranged from 48 to 63 mC, and pH was neutral. Database searches and phylogenetic analyses conducted using Paralana 16S sequences indicated the presence of a diverse microbial community. Representatives of at least eight bacterial divisions were identified, including members of the cyanobacteria, green sulfur bacteria, nitrospira, the proteobacteria, and candidate division Downloaded from https://www.cambridge.org/core. IP address: 170.106.202.8, on 26 Sep 2021 at 09:48:23, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S147355040200112X 88 Abstracts from the Second Astrobiology Science Conference OP8. Interestingly, with the exception of one 16S sequence, there was no massive stars. In these environments, proto-planetary disks are exposed evidence of previously described radiation-resistant microorganisms. to the dynamical effects of dense proto-clusters or multiple star systems, harsh radiation fields, and powerful winds. As a result, disks may be Student research in astrobiology short lived. Indeed, in one of the nearest regions of star formation, the Jodi Asbel-Clarke $ TERC, Jeff Lockwood $ TERC, Dan Barstow $ Orion Nebula, the Hubble Space Telescope has provided direct evidence TERC for rapid disk destruction. The observed constraints imply that either Building on experience in several successful scientist–student research planets form very rapidly, or that planetary systems will be relatively partnership programs, the Center for Earth and Space Science Edu- rare. I will review our current understanding of star and planet formation cation (CESSE) at TERC is developing authentic research experiences with an emphasis on observational results and on the processes that for high school students and teachers in astrobiology. To enrich student may affect the prospects for the eventual evolution of life. learning in their early high-school integrated science astrobiology curriculum (to be published 2002–2003 by It’s About Time), CESSE has created Habitable Worlds, an interactive online research tool for students. Habitable Worlds provides a student-friendly user interface- Mars soil formation and properties: the ‘‘acid fog’’ called an Exploration Portal to access image data from Pathfinder and hypothesis in view of recent evidence other probes to enable students to pursue their own investigations about Amos Banin $ Hebrew University; NRC; NASA Ames Research Center Earth, Mars, and other worlds. We have proposed and tested experimentally a model that attributes the As the next step, CESSE is beginning development on student– peculiar nature of Mars soil to it being a relatively ‘‘young’’ weathering scientist partnerships in astrobiology following models used by other product. The model suggests that Mars soil components formed at the TERC projects. CESSE will develop tools and user interfaces for microscopic rock–atmosphere interface during recent periods by a databases so that large numbers of students and teachers can engage in process involving chemical neutralization of acidic volcanic aerosols authentic research, while minimizing the time needed from scientists. containing soluble S and Cl species. This ‘‘Acid Fog’’ formation scenario With initial input from scientists and teachers, CESSE will develop seeks to reconcile conflicting evidence for the presence of very soluble, protocols and instructions (with a background curriculum) so that water-transported sulfate and chloride salt minerals (‘‘evaporites’’)
Recommended publications
  • Modelling Panspermia in the TRAPPIST-1 System
    October 13, 2017 Modelling panspermia in the TRAPPIST-1 system James A. Blake1,2*, David J. Armstrong1,2, Dimitri Veras1,2 Abstract The recent ground-breaking discovery of seven temperate planets within the TRAPPIST-1 system has been hailed as a milestone in the development of exoplanetary science. Centred on an ultra-cool dwarf star, the planets all orbit within a sixth of the distance from Mercury to the Sun. This remarkably compact nature makes the system an ideal testbed for the modelling of rapid lithopanspermia, the idea that micro-organisms can be distributed throughout the Universe via fragments of rock ejected during a meteoric impact event. We perform N-body simulations to investigate the timescale and success-rate of lithopanspermia within TRAPPIST-1. In each simulation, test particles are ejected from one of the three planets thought to lie within the so-called ‘habitable zone’ of the star into a range of allowed orbits, constrained by the ejection velocity and coplanarity of the case in question. The irradiance received by the test particles is tracked throughout the simulation, allowing the overall radiant exposure to be calculated for each one at the close of its journey. A simultaneous in-depth review of space microbiological literature has enabled inferences to be made regarding the potential survivability of lithopanspermia in compact exoplanetary systems. 1Department of Physics, University of Warwick, Coventry, CV4 7AL 2Centre for Exoplanets and Habitability, University of Warwick, Coventry, CV4 7AL *Corresponding author: [email protected] Contents Universe, and can propagate from one location to another. This interpretation owes itself predominantly to the works of William 1 Introduction1 Thompson (Lord Kelvin) and Hermann von Helmholtz in the 1.1 Mechanisms for panspermia...............2 latter half of the 19th Century.
    [Show full text]
  • Water, Habitability, and Detectability Steve Desch
    Water, Habitability, and Detectability Steve Desch PI, “Exoplanetary Ecosystems” NExSS team School of Earth and Space Exploration, Arizona State University with Ariel Anbar, Tessa Fisher, Steven Glaser, Hilairy Hartnett, Stephen Kane, Susanne Neuer, Cayman Unterborn, Sara Walker, Misha Zolotov Astrobiology Science Strategy NAS Committee, Beckmann Center, Irvine, CA (remotely), January 17, 2018 How to look for life on (Earth-like) exoplanets: find oxygen in their atmospheres How Earth-like must an exoplanet be for this to work? Seager et al. (2013) How to look for life on (Earth-like) exoplanets: find oxygen in their atmospheres Oxygen on Earth overwhelmingly produced by photosynthesizing life, which taps Sun’s energy and yields large disequilibrium signature. Caveats: Earth had life for billions of years without O2 in its atmosphere. First photosynthesis to evolve on Earth was anoxygenic. Many ‘false positives’ recognized because O2 has abiotic sources, esp. photolysis (Luger & Barnes 2014; Harman et al. 2015; Meadows 2017). These caveats seem like exceptions to the ‘rule’ that ‘oxygen = life’. How non-Earth-like can an exoplanet be (especially with respect to water content) before oxygen is no longer a biosignature? Part 1: How much water can terrestrial planets form with? Part 2: Are Aqua Planets or Water Worlds habitable? Can we detect life on them? Part 3: How should we look for life on exoplanets? Part 1: How much water can terrestrial planets form with? Theory says: up to hundreds of oceans’ worth of water Trappist-1 system suggests hundreds of oceans, especially around M stars Many (most?) planets may be Aqua Planets or Water Worlds How much water can terrestrial planets form with? Earth- “snow line” Standard Sun distance models of distance accretion suggest abundant water.
    [Show full text]
  • The Mystery of Methane on Mars and Titan
    The Mystery of Methane on Mars & Titan By Sushil K. Atreya MARS has long been thought of as a possible abode of life. The discovery of methane in its atmosphere has rekindled those visions. The visible face of Mars looks nearly static, apart from a few wispy clouds (white). But the methane hints at a beehive of biological or geochemical activity underground. Of all the planets in the solar system other than Earth, own way, revealing either that we are not alone in the universe Mars has arguably the greatest potential for life, either extinct or that both Mars and Titan harbor large underground bodies or extant. It resembles Earth in so many ways: its formation of water together with unexpected levels of geochemical activ- process, its early climate history, its reservoirs of water, its vol- ity. Understanding the origin and fate of methane on these bod- canoes and other geologic processes. Microorganisms would fit ies will provide crucial clues to the processes that shape the right in. Another planetary body, Saturn’s largest moon Titan, formation, evolution and habitability of terrestrial worlds in also routinely comes up in discussions of extraterrestrial biology. this solar system and possibly in others. In its primordial past, Titan possessed conditions conducive to Methane (CH4) is abundant on the giant planets—Jupiter, the formation of molecular precursors of life, and some scientists Saturn, Uranus and Neptune—where it was the product of chem- believe it may have been alive then and might even be alive now. ical processing of primordial solar nebula material. On Earth, To add intrigue to these possibilities, astronomers studying though, methane is special.
    [Show full text]
  • Bayesian Analysis of the Astrobiological Implications of Life's
    Bayesian analysis of the astrobiological implications of life's early emergence on Earth David S. Spiegel ∗ y, Edwin L. Turner y z ∗Institute for Advanced Study, Princeton, NJ 08540,yDept. of Astrophysical Sciences, Princeton Univ., Princeton, NJ 08544, USA, and zInstitute for the Physics and Mathematics of the Universe, The Univ. of Tokyo, Kashiwa 227-8568, Japan Submitted to Proceedings of the National Academy of Sciences of the United States of America Life arose on Earth sometime in the first few hundred million years Any inferences about the probability of life arising (given after the young planet had cooled to the point that it could support the conditions present on the early Earth) must be informed water-based organisms on its surface. The early emergence of life by how long it took for the first living creatures to evolve. By on Earth has been taken as evidence that the probability of abiogen- definition, improbable events generally happen infrequently. esis is high, if starting from young-Earth-like conditions. We revisit It follows that the duration between events provides a metric this argument quantitatively in a Bayesian statistical framework. By (however imperfect) of the probability or rate of the events. constructing a simple model of the probability of abiogenesis, we calculate a Bayesian estimate of its posterior probability, given the The time-span between when Earth achieved pre-biotic condi- data that life emerged fairly early in Earth's history and that, billions tions suitable for abiogenesis plus generally habitable climatic of years later, curious creatures noted this fact and considered its conditions [5, 6, 7] and when life first arose, therefore, seems implications.
    [Show full text]
  • The 29Th Annual Meeting the 29Th Annual Meeting of the Society Took Place on April 17Th, 2016 Program and Abstracts Program
    The 29th annual meeting The 29th annual meeting of the society took place on April 17th, 2016 Program and Abstracts Program: Program of the 29th annual meeting Time Lecturer Lecture Title 8:45- Refreshments & Gathering 9:05 Session 1 -Astrobiology (Doron Lancet, Chair; Amri Wandel, Organizer) 9:05- Gonen Ashkenasy Opening Remarks 9:15 (BGU) 9:15- Ravit Helled Methane-Rich Planets and the Characterization of Exoplanets 9:45 (TAU) 9:45- Sohan Jheeta (NoR Formation of Glycolaldehyde (HOCH2CHO) from Pure 10:10 HGT, LUCA) Methanol in Astrophysical Ice Analogues 10:10- Joseph Is Liquid Water Essential for Life? A Reassessment 10:35 Gale (HUJI) 10:35- Coffee break 11:00 Session 2 - Evolution (Addy Pross, Chair) 11:00- Robert Pascal Identifying the Kinetic, Thermodynamic and Chemical 11:40 (CNRS Conditions for Stability and Complexity in Living Systems Montpellier) 11:40- Omer Markovitch Predicting Proto-Species Emergence in Complex Networks 12:05 (Newcastle) 12:05- Amir Aharoni Engineering a Species Barrier in Yeast 12:30 (BGU) 12:30- Jayanta Nanda Spontaneous Evolution of β-Sheet Forming Self Replicating 12:55 (BGU) Peptides 12:55- Lunch 14:05 Session 3 - Origins of Order and Complexity (Gonen Ashkenasy, Chair; Tal Mor, Organizer) 14:05- Prof. Zvi HaCohen, Greetings 14:15 Rector (BGU) 14:15- Doron Composomics: a Common Biotic Thread 14:45 Lancet (WIS) 14:45- Avshalom Elitzur Living State Physics: Does Life's Uniqueness Elude Scientific 15:10 (IYAR) Definition? 15:10- Tal Mor Origins of Translation: Speculations about the First and the 15:35
    [Show full text]
  • Radiation Exposure and Mission Strategies for Interplanetary Manned Mission
    Radiation Exposure and Mission Strategies for Interplanetary Manned Mission Radiation Hazard and Space Weather Warning System WP 5000 Final Version: 14 December 2004 Compiled by Claire Foullon1, Andrew Holmes-Siedle2, Norma Bock Crosby1, Daniel Heynderickx1 1 Belgian Institute for Space Aeronomy Ringlaan-3-Avenue Circulaire 1180 Brussels, Belgium 2 REM OXFORD Ltd. 64A Acre End St. Eynsham, Oxford OX29 4PD, England INTRODUCTION Radiation protection is a prime issue for space station operations, for extended missions to planets in our solar system (e.g. Mars), or for a return visit to the Moon. The radiation environment encountered by solar system missions mainly consists of the following components: 1. Trapped radiation in the Earth’s Van Allen Belts and in the magnetosphere of Jupiter 2. Galactic Cosmic Ray (GCR) background radiation 3. Solar Energetic Particle Events – Solar Proton Events (SPEs) Along with the continuous GCR background, SPEs constitute the main hazard for interplanetary missions. Up to now, prediction of SPE events is not possible. Future interplanetary manned missions will need to consider solar activity (e.g. solar flares, coronal mass ejections, …) very carefully due to the obvious detrimental effects of radiation on humans. Very high doses during the transit phase of a mission can result in radiation sickness or even death. This is equally true for extended visits to surfaces of other planets (for example to Mars) and moons lacking a strong magnetic field capable of deflecting solar particles. The risk of developing cancer several years after a mission is somewhat more difficult to quantify, but must also be considered in mission planning.
    [Show full text]
  • Astrobiology and the Search for Life Beyond Earth in the Next Decade
    Astrobiology and the Search for Life Beyond Earth in the Next Decade Statement of Dr. Andrew Siemion Berkeley SETI Research Center, University of California, Berkeley ASTRON − Netherlands Institute for Radio Astronomy, Dwingeloo, Netherlands Radboud University, Nijmegen, Netherlands to the Committee on Science, Space and Technology United States House of Representatives 114th United States Congress September 29, 2015 Chairman Smith, Ranking Member Johnson and Members of the Committee, thank you for the opportunity to testify today. Overview Nearly 14 billion years ago, our universe was born from a swirling quantum soup, in a spectacular and dynamic event known as the \big bang." After several hundred million years, the first stars lit up the cosmos, and many hundreds of millions of years later, the remnants of countless stellar explosions coalesced into the first planetary systems. Somehow, through a process still not understood, the laws of physics guiding the unfolding of our universe gave rise to self-replicating organisms − life. Yet more perplexing, this life eventually evolved a capacity to know its universe, to study it, and to question its own existence. Did this happen many times? If it did, how? If it didn't, why? SETI (Search for ExtraTerrestrial Intelligence) experiments seek to determine the dis- tribution of advanced life in the universe through detecting the presence of technology, usually by searching for electromagnetic emission from communication technology, but also by searching for evidence of large scale energy usage or interstellar propulsion. Technology is thus used as a proxy for intelligence − if an advanced technology exists, so to does the ad- vanced life that created it.
    [Show full text]
  • CASKAR: a CASPER Concept for the SKA Phase 1 Signal Processing Sub-System
    CASKAR: A CASPER concept for the SKA phase 1 Signal Processing Sub-system Francois Kapp, SKA SA Outline • Background • Technical – Architecture – Power • Cost • Schedule • Challenges/Risks • Conclusions Background CASPER Technology MeerKAT Who is CASPER? • Berkeley Wireless Research Center • Nancay Observatory • UC Berkeley Radio Astronomy Lab • Oxford University Astrophysics • UC Berkeley Space Sciences Lab • Metsähovi Radio Observatory, Helsinki University of • Karoo Array Telescope / SKA - SA Technology • NRAO - Green Bank • New Jersey Institute of Technology • NRAO - Socorro • West Virginia University Department of Physics • Allen Telescope Array • University of Iowa Department of Astronomy and • MIT Haystack Observatory Physics • Harvard-Smithsonian Center for Astrophysics • Ohio State University Electroscience Lab • Caltech • Hong Kong University Department of Electrical and Electronic Engineering • Cornell University • Hartebeesthoek Radio Astronomy Observatory • NAIC - Arecibo Observatory • INAF - Istituto di Radioastronomia, Northern Cross • UC Berkeley - Leuschner Observatory Radiotelescope • Giant Metrewave Radio Telescope • University of Manchester, Jodrell Bank Centre for • Institute of Astronomy and Astrophysics, Academia Sinica Astrophysics • National Astronomical Observatories, Chinese Academy of • Submillimeter Array Sciences • NRAO - Tucson / University of Arizona Department of • CSIRO - Australia Telescope National Facility Astronomy • Parkes Observatory • Center for Astrophysics and Supercomputing, Swinburne University
    [Show full text]
  • Biosignatures Search in Habitable Planets
    galaxies Review Biosignatures Search in Habitable Planets Riccardo Claudi 1,* and Eleonora Alei 1,2 1 INAF-Astronomical Observatory of Padova, Vicolo Osservatorio, 5, 35122 Padova, Italy 2 Physics and Astronomy Department, Padova University, 35131 Padova, Italy * Correspondence: [email protected] Received: 2 August 2019; Accepted: 25 September 2019; Published: 29 September 2019 Abstract: The search for life has had a new enthusiastic restart in the last two decades thanks to the large number of new worlds discovered. The about 4100 exoplanets found so far, show a large diversity of planets, from hot giants to rocky planets orbiting small and cold stars. Most of them are very different from those of the Solar System and one of the striking case is that of the super-Earths, rocky planets with masses ranging between 1 and 10 M⊕ with dimensions up to twice those of Earth. In the right environment, these planets could be the cradle of alien life that could modify the chemical composition of their atmospheres. So, the search for life signatures requires as the first step the knowledge of planet atmospheres, the main objective of future exoplanetary space explorations. Indeed, the quest for the determination of the chemical composition of those planetary atmospheres rises also more general interest than that given by the mere directory of the atmospheric compounds. It opens out to the more general speculation on what such detection might tell us about the presence of life on those planets. As, for now, we have only one example of life in the universe, we are bound to study terrestrial organisms to assess possibilities of life on other planets and guide our search for possible extinct or extant life on other planetary bodies.
    [Show full text]
  • Cosmochemistry Cosmic Background RadiaOn
    6/10/13 Cosmochemistry Cosmic background radiaon Dust Anja C. Andersen Niels Bohr Instute University of Copenhagen hp://www.dark-cosmology.dk/~anja Hauser & Dwek 2001 Molecule formation on dust grains Multiwavelenght MW 1 6/10/13 Gas-phase element depleons in the Concept of dust depleon interstellar medium The depleon of an element X in the ISM is defined in terms of (a logarithm of) its reducon factor below the expected abundance relave to that of hydrogen if all of the atoms were in the gas phase, [Xgas/H] = log{N(X)/N(H)} − log(X/H) which is based on the assumpon that solar abundances (X/H)are good reference values that truly reflect the underlying total abundances. In this formula, N(X) is the column density of element X and N(H) represents the column density of hydrogen in both atomic and molecular form, i.e., N(HI) + 2N(H2). The missing atoms of element X are presumed to be locked up in solids within dust grains or large molecules that are difficult to idenfy spectroscopically, with fraconal amounts (again relave to H) given by [Xgas/H] (Xdust/H) = (X/H)(1 − 10 ). Jenkins 2009 Jenkins 2009 2 6/10/13 Jenkins 2009 Jenkins 2009 The Galacc Exncon Curve Extinction curves measure the difference in emitted and observed light. Traditionally measured by comparing two stars of the same spectral type. Galactic Extinction - empirically determined: -1 -1 <A(λ)/A(V)> = a(λ ) + b(λ )/RV (Cardelli et al. 1999) • Bump at 2175 Å (4.6 µm-1) • RV : Ratio of total to selective extinction in the V band • Mean value is RV = 3.1 (blue) • Low value: RV = 1.8 (green) (Udalski 2003) • High value: RV = 5.6-5.8 (red) (Cardelli et al.
    [Show full text]
  • Environmental Philosophy and the Ethics of Terraforming Mars
    ENVIRONMENTAL PHILOSOPHY AND THE ETHICS OF TERRAFORMING MARS: ADDING THE VOICES OF ENVIRONMENTAL JUSTICE AND ECOFEMINISM TO THE ONGOING DEBATE Robert Heath French Thesis Prepared for the Degree of MASTER OF ARTS UNIVERSITY OF NORTH TEXAS August 2013 APPROVED: Robert Figueroa, Committee Chair Eugene Hargrove, Committee Member Adam Briggle, Committee Member Patricia Glazebrook, Chair of the Department of Philosophy and Religion Studies Mark Wardell, Dean of the Toulouse Graduate School French, Robert Heath. Environmental Philosophy and the Ethics of Terraforming Mars: Adding the Voices of Environmental Justice and Ecofeminism to the Ongoing Debate. Master of Arts (Philosophy), August 2013, 133 pp., 1 table, bibliography, 78 titles. Questions concerning the ethics of terraforming Mars have received some attention from both philosophers and scientists during recent decades. A variety of theoretical approaches have been supplied by a number of authors, however research pursuant to this thesis has indicated at least two major blindspots in the published literature on the topic. First, a broad category of human considerations involving risks, dangers, and social, political, and economic inequalities that would likely be associated with efforts to terraform Mars have been woefully overlooked in the published literature to date. I attempt to rectify that oversight by employing the interpretive lens of environmental justice to address questions of environmental colonialism, equality in terms of political participation and inclusion in decision making structures, risks associated with technological progressivism, and responses to anthropogenic climate change. Only by including the historically marginalized and politically disenfranchised “voices,” of both humans and nonhumans, can any future plan to terraform Mars be deemed ethical, moral or just according to the framework provided by environmental justice.
    [Show full text]
  • Exploring Biogenic Dispersion Inside Star Clusters with System Dynamics Modeling
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 October 2020 doi:10.20944/preprints202010.0232.v1 Exploring Biogenic Dispersion Inside Star Clusters with System Dynamics Modeling Authors Javier D. Burgos. Corporación para la Investigacion e Innovación -CIINAS. Contact: [email protected] Diana C. Sierra. Corporación para la Investigacion e Innovación -CIINAS; Bogotá, Colombia. Contact: [email protected] Abstract The discovery of a growing number of exoplanets and even extrasolar systems supports the scientific consensus that it is possible to find other signs of life in the universe. The present work proposes for the first time, an explicit mechanism inspired by the dynamics of biological dispersion, widely used in ecology and epidemiology, to study the dispersion of biogenic units, interpreted as complex organic molecules, between rocky or water exoplanets (habitats) located inside star clusters. The 3 results of the dynamic simulation suggest that for clusters with populations lower than 4 M/ly it is not possible to obtain biogenic worlds after 5 Gyr. Above this population size, biogenic dispersion seems to follow a power law, the larger the density of worlds lesser will be the impact rate (훽.) value to obtain at least one viable biogenic Carrier habitat after 5 Gyr. Finally, when we investigate scenarios by varying β, a well-defined set of density intervals can be defined in accordance to its characteristic β value, suggesting that biogenic dispersion has a behavior of “minimal infective dose” of “minimal biogenic effective” events by interval i.e. once this dose has been achieved, doesn’t matter if additional biogenic impact events occur on the habitat.
    [Show full text]