Environmental Philosophy and the Ethics of Terraforming Mars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Theory of Mars Introduction Over the Last 10 Years Or So I Have Been
A Theory of Mars Introduction Over the last 10 years or so I have been researching the idea there might be alien artifacts on Mars. Over this time there have been many interesting discoveries by myself and others, and some candidate artifacts have been found to be likely natural. So far proof remains elusive but some evidence has grown stronger. As more and more of these candidate artifacts have been found, similarities have begun to emerge, pointing at a more plausible theory for their origin. So in this paper I am explaining this theory, with the caveat that nothing is proven at this stage. If more candidate artifacts are found and they also support this theory then this will be additional evidence for artificiality. The reason is formations of randomly appearing similar to artifacts should also randomly seem to fit in with many different contradictory theories. To explain this theory I will need to start at the beginning of this story, which is likely to be at least several hundred million years and possibly over a billion years ago. So these artifacts, if they exist at all, are likely to be incredibly old and only have survived because erosion on Mars is very small. The main reason for this is the near vacuum on Mars prevents most erosion because most of the atmosphere is frozen at the poles. This subject then is far removed from such things as UFOs or Von Daniken like theories of extra terrestrials visiting us today. By contrast any evidence of visitation from so long ago is likely to be archeological with little more than ruins to be found. -
The Mystery of Methane on Mars and Titan
The Mystery of Methane on Mars & Titan By Sushil K. Atreya MARS has long been thought of as a possible abode of life. The discovery of methane in its atmosphere has rekindled those visions. The visible face of Mars looks nearly static, apart from a few wispy clouds (white). But the methane hints at a beehive of biological or geochemical activity underground. Of all the planets in the solar system other than Earth, own way, revealing either that we are not alone in the universe Mars has arguably the greatest potential for life, either extinct or that both Mars and Titan harbor large underground bodies or extant. It resembles Earth in so many ways: its formation of water together with unexpected levels of geochemical activ- process, its early climate history, its reservoirs of water, its vol- ity. Understanding the origin and fate of methane on these bod- canoes and other geologic processes. Microorganisms would fit ies will provide crucial clues to the processes that shape the right in. Another planetary body, Saturn’s largest moon Titan, formation, evolution and habitability of terrestrial worlds in also routinely comes up in discussions of extraterrestrial biology. this solar system and possibly in others. In its primordial past, Titan possessed conditions conducive to Methane (CH4) is abundant on the giant planets—Jupiter, the formation of molecular precursors of life, and some scientists Saturn, Uranus and Neptune—where it was the product of chem- believe it may have been alive then and might even be alive now. ical processing of primordial solar nebula material. On Earth, To add intrigue to these possibilities, astronomers studying though, methane is special. -
Why NASA Consistently Fails at Congress
W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 6-2013 The Wrong Right Stuff: Why NASA Consistently Fails at Congress Andrew Follett College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Political Science Commons Recommended Citation Follett, Andrew, "The Wrong Right Stuff: Why NASA Consistently Fails at Congress" (2013). Undergraduate Honors Theses. Paper 584. https://scholarworks.wm.edu/honorstheses/584 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. The Wrong Right Stuff: Why NASA Consistently Fails at Congress A thesis submitted in partial fulfillment of the requirement for the degree of Bachelors of Arts in Government from The College of William and Mary by Andrew Follett Accepted for . John Gilmour, Director . Sophia Hart . Rowan Lockwood Williamsburg, VA May 3, 2013 1 Table of Contents: Acknowledgements 3 Part 1: Introduction and Background 4 Pre Soviet Collapse: Early American Failures in Space 13 Pre Soviet Collapse: The Successful Mercury, Gemini, and Apollo Programs 17 Pre Soviet Collapse: The Quasi-Successful Shuttle Program 22 Part 2: The Thin Years, Repeated Failure in NASA in the Post-Soviet Era 27 The Failure of the Space Exploration Initiative 28 The Failed Vision for Space Exploration 30 The Success of Unmanned Space Flight 32 Part 3: Why NASA Fails 37 Part 4: Putting this to the Test 87 Part 5: Changing the Method. -
An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger Depauw University
DePauw University Scholarly and Creative Work from DePauw University Student research Student Work 2015 An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger DePauw University Follow this and additional works at: http://scholarship.depauw.edu/studentresearch Part of the Economics Commons, and the The unS and the Solar System Commons Recommended Citation Knappenberger, Clayton, "An Economic Analysis of Mars Exploration and Colonization" (2015). Student research. Paper 28. This Thesis is brought to you for free and open access by the Student Work at Scholarly and Creative Work from DePauw University. It has been accepted for inclusion in Student research by an authorized administrator of Scholarly and Creative Work from DePauw University. For more information, please contact [email protected]. An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger 2015 Sponsored by: Dr. Villinski Committee: Dr. Barreto and Dr. Brown Contents I. Why colonize Mars? ............................................................................................................................ 2 II. Can We Colonize Mars? .................................................................................................................... 11 III. What would it look like? ............................................................................................................... 16 A. National Program ......................................................................................................................... -
TIME Space Newsletter September 10, 2019
TIME Space Newsletter September 10, 2019 Dear readers, Not a lot of people would want to go back to the Paleocene Epoch. For one thing, the dinosaurs were only beginning to die out, and while they'd be nifty to see, they were murder on mammals. It would be a good 65 million years before humans got a literal toe-hold on the world. The Eocene wouldn't be much better. It was around that time that what is now the Indian subcontinent crashed into Asia, and while all that produced some lovely mountains, there was a lot of slo-mo violence of clashing plates before things settled down. As far as epochs go, the Holocene is everyone's favorite. It started close to 12,000 years ago, as the last Ice Age was ending, and produced the conditions that allowed all the species we love best—ourselves, and charismatic megafauna like the bald eagle, the panda and the tiger—to thrive. From humanity's perspective, it would be perfectly fine if the Holocene went on forever. But it won't. It's ending now—it may have already ended in the 1950s, according to some scientists—to be replaced by the Anthropocene. The name says it all: it's an epoch in which one species—ours, anthro—became the leading driver of the state of the planet, more powerful, at least in the short-term, than the larger forces of geology, meteorology, even biology. We have, of course, abused that power, fouling the air, annihilating species, wiping out forests and distorting the climate. -
PDF Version of the CSSS Membership Form
Join Chicago Society for Space Studies CHICAGO S!CI"#$ %!& to support space education, space exploration and space development S'AC" S#()I"S ___YES, Sign me up as a member of the Chicago Society *&INGING S'AC" #! for Space Studies ILLIN!IS ___YES, I am interested in funding space education and am including a check payable to Chicago Society for Space Studies. Name________________________________________________ Address______________________________________________ City, State, Zip_______________________________________ Email Address________________________________________ Telephone____________________________________________ Donation ____________________________________________ Mail to: CSSS 700 Cape Lane Schaumburg, IL 60193 Chicago Society for Space Studies ,,,-chicago.pace.org CSSS Services Activities Online – Visit our web site at www.chicagospace.org to learn Speakers Bureau – Chicago Society for Space Studies (CSSS) about our organization and activities. You can also sign up to maintains a very active Speakers Bureau and provides receive Spacewatch, our e-newsletter, or connect with us via our educational presentations for libraries, schools, astronomy clubs, LinkedIn group, Facebook page, or Google+ community. conventions, museums, and other civic organizations. Details can be found on our web site. Speakers Bureau – Need a speaker for your organization or club? CSSS provides experienced speakers whose area of Guest Speakers – CSSS has sponsored local appearances by expertise is space exploration. Details are available at speakers -
NASA Technical Memorandum 0000
NASA/TM–2016-219182 Frontier In-Situ Resource Utilization for Enabling Sustained Human Presence on Mars Robert W. Moses and Dennis M. Bushnell Langley Research Center, Hampton, Virginia April 2016 NASA STI Program . in Profile Since its founding, NASA has been dedicated to the CONFERENCE PUBLICATION. advancement of aeronautics and space science. The Collected papers from scientific and technical NASA scientific and technical information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or this important role. co-sponsored by NASA. The NASA STI program operates under the auspices SPECIAL PUBLICATION. Scientific, of the Agency Chief Information Officer. It collects, technical, or historical information from NASA organizes, provides for archiving, and disseminates programs, projects, and missions, often NASA’s STI. The NASA STI program provides access concerned with subjects having substantial to the NTRS Registered and its public interface, the public interest. NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space TECHNICAL TRANSLATION. science STI in the world. Results are published in both English-language translations of foreign non-NASA channels and by NASA in the NASA STI scientific and technical material pertinent to Report Series, which includes the following report NASA’s mission. types: Specialized services also include organizing TECHNICAL PUBLICATION. Reports of and publishing research results, distributing completed research or a major significant phase of specialized research announcements and feeds, research that present the results of NASA providing information desk and personal search Programs and include extensive data or theoretical support, and enabling data exchange services. -
The Search for Extreme Life
BIOCHEMIST_BARUCH S. BLUMBERG The Search for Extreme Life ofile If microorganisms exist on other worlds, the head of NASA’s fledgling Astrobiology Institute plans to find them he relentless heat cooks the the space agency aims to someday find “Technology is available to decipher Pr Badwater region of California’s on other worlds. the intricacies of this cause-and-effect Death Valley so thoroughly that “I always liked the idea of doing field- chain” that wasn’t available even five some expanses are textured like work, exploring, going out and finding years ago, Blumberg notes, citing in par- Tdry serpent skin. At some 284 feet below new things,” Blumberg says back at NAI ticular advances achieved through the sea level—North America’s lowest point— headquarters, which is nestled near Sili- Human Genome Project. The 1996 an- it is perhaps the hottest place on the sur- con Valley at the NASA Ames Research nouncement of potential fossilized life in face of the earth: the temperature once Center at Moffett Field. Out of his desert a Martian meteorite known as ALH84001 peaked at a record 53.01 degrees Celsius garb, the outdoors-loving Blumberg looks boosted enthusiasm worldwide. Even (127.4 degrees Fahrenheit). Out here, a good decade younger than his 75 years. Congress, which had quashed NASA’s blood-pumping mammals are scarce. It At the job only since last September, Blum- search for extraterrestrial intelligence may seem unfitting to find a Nobel Prize berg is trying to marshal gaggles of as- (SETI) program in 1993, became recep- winner, renowned for hepatitis B work, tronomers, chemists, ecologists, geologists, tive. -
Strategies for Detecting Biological Molecules on Titan
ASTROBIOLOGY Volume 18, Number 5, 2018 ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2017.1758 Strategies for Detecting Biological Molecules on Titan Catherine D. Neish,1 Ralph D. Lorenz,2 Elizabeth P. Turtle,2 Jason W. Barnes,3 Melissa G. Trainer,4 Bryan Stiles,5 Randolph Kirk,6 Charles A. Hibbitts,2 and Michael J. Malaska5 Abstract Saturn’s moon Titan has all the ingredients needed to produce ‘‘life as we know it.’’ When exposed to liquid water, organic molecules analogous to those found on Titan produce a range of biomolecules such as amino acids. Titan thus provides a natural laboratory for studying the products of prebiotic chemistry. In this work, we examine the ideal locales to search for evidence of, or progression toward, life on Titan. We determine that the best sites to identify biological molecules are deposits of impact melt on the floors of large, fresh impact craters, specifically Sinlap, Selk, and Menrva craters. We find that it is not possible to identify biomolecules on Titan through remote sensing, but rather through in situ measurements capable of identifying a wide range of biological molecules. Given the nonuniformity of impact melt exposures on the floor of a weathered impact crater, the ideal lander would be capable of precision targeting. This would allow it to identify the locations of fresh impact melt deposits, and/or sites where the melt deposits have been exposed through erosion or mass wasting. Determining the extent of prebiotic chemistry within these melt deposits would help us to understand how life could originate on a world very different from Earth. -
Mar 98-048 Preserving Possible Martian Life
MAR 98-048 PRESERVING POSSIBLE MARTIAN LIFE Mark Lupisella University of Maryland and NASA Goddard Space Flight Center, Greenbelt Road, Code 584, Greenbelt Maryland 20770. E-mail: [email protected]. As we expand our presence in the solar system, novel and challenging scientific and policy issues will face us. A relatively near-term issue requiring attention involves questions regarding the in situ human search for and discovery of primitive extraterrestrial life—Mars being an obvious candidate. Such a search and potential discovery is clearly of paramount importance for science and will pose unique and complex mission planning and policy questions regarding how we should search for and interact with that life. This paper will explore the scientific, mission planning, and policy issues associated with the search for and interaction with possible primitive extraterrestrial life, with an emphasis on issues regarding the preservation of such life. Some of the questions to be considered are: To what extent could effects of human presence compromise possible indigenous life forms? To what extent can we control those effects (e.g. will biological contamination be local or global?) What are the criteria for assessing the biological status of designated locales as well as the entire planet (e.g. can we extrapolate from a few strategic missions?) What should our policies be regarding our interaction with primitive forms of extraterrestrial life? Central to the science and mission planning issues is the role and feasibility of applying decision theory, risk analysis, and modeling techniques. Central to many of the policy aspects are issues of value. -
Planetary Protection Issues in the Human Exploration of Mars Final Report May 9, 2005
NASA/CP—2005-213461 Planetary Protection Issues in the Human Exploration of Mars Final Report May 9, 2005 Editors: M. E. Criswell M. S. Race J. D. Rummel A. Baker Report of a Workshop held June 20-23, 2001 at Pingree Park Mountain Campus Colorado State University Fort Collins, Colorado Workshop sponsored by NASA Ames Research Center Moffett Field, CA 94035 June 2005 The NASA STI Program Office . in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical confer- NASA Scientific and Technical Information (STI) ences, symposia, seminars, or other meetings Program Office plays a key part in helping NASA sponsored or cosponsored by NASA. maintain this important role. • SPECIAL PUBLICATION. Scientific, technical, The NASA STI Program Office is operated by or historical information from NASA programs, Langley Research Center, the Lead Center for projects, and missions, often concerned with NASA’s scientific and technical information. The subjects having substantial public interest. NASA STI Program Office provides access to the NASA STI Database, the largest collection of • TECHNICAL TRANSLATION. English- aeronautical and space science STI in the world. language translations of foreign scientific and The Program Office is also NASA’s institutional technical material pertinent to NASA’s mission. mechanism for disseminating the results of its research and development activities. These results Specialized services that complement the STI are published by NASA in the NASA STI Report Program Office’s diverse offerings include creating Series, which includes the following report types: custom thesauri, building customized databases, organizing and publishing research results . -
Go Play in Space (Second Edition) © 2006 by Bruce Irving and Andy Mcsorley, All Rights Reserved Space Is Real
Your Future In Space his final chapter is different from the others, because it is concerned with real space flight, and with some of my own ideas and opinions about the future of space flight, and the future in general. The rest of this manual has been about simulated “playing in space,” T using Orbiter for fun and as a framework to encourage you to explore certain aspects of space flight in a fairly realistic way. If you find this sort of thing to be interesting, and depending on where you are in your schooling or career plans, you might consider doing something that’s connected with real space flight. It could lead to involvement with some of the most interesting and important developments of the next 50 years or so. You could get involved now by joining a space advocacy group. Opinions expressed here about the importance of space for the future of humanity, and on the feasibility of human flights to Mars in the near future, are my own take on various things I have read and thought about. But some aspects of this epilogue were inspired by several writers in particular. The nonfiction writings of Dr. Robert Zubrin and Dr. Raymond Kurzweil, and the writings of science fiction authors Kim Stanley Robinson, John Barnes, Stephen Baxter, and Gregory Benford have been particularly helpful. I will provide references and more detailed credits at the end of this chapter. Mars for Less is a reference mission designed by Grant Bonin for MarsDrive Consortium, a group that is trying to organize other groups and individuals in support of human missions to Mars within the next twenty years.