Westminsterresearch the Astrobiology Primer V2.0 Domagal-Goldman, S.D., Wright, K.E., Adamala, K., De La Rubia Leigh, A., Bond

Total Page:16

File Type:pdf, Size:1020Kb

Westminsterresearch the Astrobiology Primer V2.0 Domagal-Goldman, S.D., Wright, K.E., Adamala, K., De La Rubia Leigh, A., Bond WestminsterResearch http://www.westminster.ac.uk/westminsterresearch The Astrobiology Primer v2.0 Domagal-Goldman, S.D., Wright, K.E., Adamala, K., de la Rubia Leigh, A., Bond, J., Dartnell, L., Goldman, A.D., Lynch, K., Naud, M.-E., Paulino-Lima, I.G., Kelsi, S., Walter-Antonio, M., Abrevaya, X.C., Anderson, R., Arney, G., Atri, D., Azúa-Bustos, A., Bowman, J.S., Brazelton, W.J., Brennecka, G.A., Carns, R., Chopra, A., Colangelo-Lillis, J., Crockett, C.J., DeMarines, J., Frank, E.A., Frantz, C., de la Fuente, E., Galante, D., Glass, J., Gleeson, D., Glein, C.R., Goldblatt, C., Horak, R., Horodyskyj, L., Kaçar, B., Kereszturi, A., Knowles, E., Mayeur, P., McGlynn, S., Miguel, Y., Montgomery, M., Neish, C., Noack, L., Rugheimer, S., Stüeken, E.E., Tamez-Hidalgo, P., Walker, S.I. and Wong, T. This is a copy of the final version of an article published in Astrobiology. August 2016, 16(8): 561-653. doi:10.1089/ast.2015.1460. It is available from the publisher at: https://doi.org/10.1089/ast.2015.1460 © Shawn D. Domagal-Goldman and Katherine E. Wright, et al., 2016; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons Attribution Noncommercial License (http://creativecommons.org/licenses/by- nc/4.0/) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners. Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/). In case of abuse or copyright appearing without permission e-mail [email protected] ASTROBIOLOGY Volume 16, Number 8, 2016 Education Article Mary Ann Liebert, Inc. DOI: 10.1089/ast.2015.1460 The Astrobiology Primer v2.0 Co-Lead Editors Shawn D. Domagal-Goldman and Katherine E. Wright Chapter Editors Shawn D. Domagal-Goldman (Co-Lead Editor, Co-Editor Chapter 1, and Author)1,2,* Katherine E. Wright (Co-Lead Editor, Co-Editor Chapter 1, and Author)3,4,* Katarzyna Adamala (Co-Editor Chapter 3 and Author)5 Leigh Arina de la Rubia (Editor Chapter 9 and Author)6 Jade Bond (Co-Editor Chapter 3 and Author)7 Lewis R. Dartnell (Co-Editor Chapter 7 and Author)8 Aaron D. Goldman (Editor Chapter 2 and Author)9 Kennda Lynch (Co-Editor Chapter 5 and Author)10 Marie-Eve Naud (Co-Editor Chapter 7 and Author)11 Ivan G. Paulino-Lima (Editor Chapter 8 and Author)12,13 Kelsi Singer (Co-Editor Chapter 5, Editor Chapter 6, and Author)14 Marina Walter-Antonio (Editor Chapter 4 and Author)15 Authors Ximena C. Abrevaya,16 Rika Anderson,17 Giada Arney,18 Dimitra Atri,13 Armando Azu´a-Bustos,13,19 Jeff S. Bowman,20 William J. Brazelton,21 Gregory A. Brennecka,22 Regina Carns,23 Aditya Chopra,24 Jesse Colangelo-Lillis,25 Christopher J. Crockett,26 Julia DeMarines,13 Elizabeth A. Frank,27 Carie Frantz,28 Eduardo de la Fuente,29 Douglas Galante,30 Jennifer Glass,31 Damhnait Gleeson,32 Christopher R. Glein,33 Colin Goldblatt,34 Rachel Horak,35 Lev Horodyskyj,36 Betu¨l Kac¸ar,37 Akos Kereszturi,38 Emily Knowles,39 Paul Mayeur,40 Shawn McGlynn,41 Yamila Miguel,42 Michelle Montgomery,43 Catherine Neish,44 Lena Noack,45 Sarah Rugheimer,46,47 Eva E. Stu¨eken,48,49 Paulina Tamez-Hidalgo,50 Sara Imari Walker,13,51 and Teresa Wong52 *These two authors contributed equally to the work. 1NASA Goddard Space Flight Center, Greenbelt, Maryland, USA. 2Virtual Planetary Laboratory, Seattle, Washington, USA. 3University of Colorado at Boulder, Colorado, USA. 4Present address: UK Space Agency, UK. 5Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA. 6Tennessee State University, Nashville, Tennessee, USA. 7Department of Physics, University of New South Wales, Sydney, Australia. 8University of Westminster, London, UK. 9Oberlin College, Oberlin, Ohio, USA. 10Division of Biological Sciences, University of Montana, Missoula, Montana, USA. 11Institute for research on exoplanets (iREx), Universite´ de Montre´al, Montre´al, Canada. 12Universities Space Research Association, Mountain View, California, USA. 13Blue Marble Space Institute of Science, Seattle, Washington, USA. 14Southwest Research Institute, Boulder, Colorado, USA. 15Mayo Clinic, Rochester, Minnesota, USA. 16Instituto de Astronomı´ayFı´sica del Espacio (IAFE), UBA—CONICET, Ciudad Auto´noma de Buenos Aires, Argentina. 17Department of Biology, Carleton College, Northfield, Minnesota, USA. 18University of Washington Astronomy Department and Astrobiology Program, Seattle, Washington, USA. 19Centro de Investigacio´n Biome´dica, Universidad Auto´noma de Chile, Santiago, Chile. 20Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA. 21Department of Biology, University of Utah, Salt Lake City, Utah, USA. 22Institut fu¨r Planetologie, University of Mu¨nster, Mu¨nster, Germany. 23Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA. 24Planetary Science Institute, Research School of Earth Sciences, Research School of Astronomy and Astrophysics, The Australian National University, Canberra, Australia. 561 562 DOMAGAL-GOLDMAN AND WRIGHT ET AL. Table of Contents Chapter 1. Introduction—What Is Astrobiology? 562 Chapter 2. What Is Life? 563 Chapter 3. How Did Earth and Its Biosphere Originate? 565 Chapter 4. How Have Earth and Its Biosphere Evolved? 582 Chapter 5. What Does Life on Earth Tell Us about Habitability? 589 Chapter 6. What Is Known about Potentially Habitable Worlds beyond Earth? 597 Chapter 7. What Are the Signs of Life (Biosignatures) That We Could Use to Look for Life beyond Earth? 613 Chapter 8. What Relevance Does Astrobiology Have to the Future of Life on This Planet? 623 Chapter 9. Resources 626 Acknowledgments 627 References 627 Abbreviations List 653 Chapter 1. Introduction—What Is Astrobiology? life in the Universe in a holistic way, astrobiology asks ques- tions that transcend all these individual scientific subjects. 1.1. What is astrobiology? Astrobiological research potentially has much broader strobiology is the science that seeks to understand the consequences than simply scientific discovery, as it includes Astory of life in our universe. Astrobiology includes inves- questions that have been of great interest to human beings tigation of the conditions that are necessary for life to emerge for millennia (e.g., are we alone?) and raises issues that and flourish, the origin of life, the ways that life has evolved and could affect the way the human race views and conducts adapted to the wide range of environmental conditions here on itself as a species (e.g., what are our ethical responsibilities Earth, the search for life beyond Earth, the habitability of ex- to any life discovered beyond Earth?). traterrestrial environments, and consideration of the future of life here on Earth and elsewhere. It therefore requires knowl- 1.2. Have we already found life beyond Earth? edge of physics, chemistry, biology, and many more specialized scientific areas including astronomy, geology, planetary sci- No. There have been many exciting discoveries that ence, microbiology, atmospheric science, and oceanography. suggest life is possible on other planets and moons, but we However, astrobiology is more than just a collection of have not yet detected any definite signs of life beyond Earth. different disciplines. In seeking to understand the full story of That does not necessarily mean life exists only on Earth, but 25Earth and Planetary Science, McGill University, and the McGill Space Institute, Montre´al, Canada. 26Society for Science & the Public, Washington, DC, USA. 27Carnegie Institute for Science, Washington, DC, USA. 28Department of Geosciences, Weber State University, Ogden, Utah, USA. 29IAM-Departamento de Fisica, CUCEI, Universidad de Guadalajara, Guadalajara, Me´xico. 30Brazilian Synchrotron Light Laboratory, Campinas, Brazil. 31School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA. 32Science Foundation Ireland, Dublin, Ireland. 33Southwest Research Institute, San Antonio, Texas, USA. 34School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada. 35American Society for Microbiology, Washington, DC, USA. 36Arizona State University, Tempe, Arizona, USA. 37Harvard University, Organismic and Evolutionary Biology, Cambridge, Massachusetts, USA. 38Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budapest, Hungary. 39Johnson & Wales University, Denver, Colorado, USA. 40Rensselaer Polytechnic Institute, Troy, New York, USA. 41Earth Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan. 42Laboratoire Lagrange, UMR 7293, Universite´ Nice Sophia Antipolis, CNRS, Observatoire de la Coˆte d’Azur, Nice, France. 43University of Central Florida, Orlando, Florida, USA. 44Department of Earth Sciences, The University of Western Ontario, London, Canada. 45Royal Observatory of Belgium, Brussels, Belgium. 46Department of Astronomy, Harvard University, Cambridge, Massachusetts, USA. 47University of St. Andrews, St. Andrews, UK. 48University of Washington, Seattle, Washington, USA. 49University of California, Riverside, California, USA. 50Novozymes A/S, Bagsvaerd, Denmark. 51School
Recommended publications
  • The Evolution of Star Habitable Zones
    The Evolution of Star Habitable Zones Jeffrey J. Wolynski November 17, 2018 Rockledge, FL 32922 Abstract: It was discovered that planets are older, evolving stars. This means the Circumstellar Habitable Zone collapses and/or shrinks into the star itself, thus evolves as the star evolves. Explanation is provided. The habitable zone of a star is the area where liquid water exists or can exist. Since stars cool down and become water worlds as they evolve, combining their hydrogen with the leftover oxygen in large amounts, it is easy to see what happens. The star is too hot in the beginning to form water, or sustain it, but it can heat up other much colder stars allowing them to pool water on their surfaces from a distance. As the star cools and evolves, the distance it can do this diminishes considerably and its habitable zone shrinks. Blue giants have the largest habitable zones, but they quickly contract because they are so young and are evolving rapidly to cooler, less massive states. What this means is that the time variable for the habitable zones of these objects is quite small. The activity of more evolved stars around blue giants should be short-lived, but interesting to say the least. White stars have smaller habitable zones but are still very large. Orange dwarfs have even smaller habitable zones, as well show a noticeable thinning of the zone as opposed to earlier stages. Red dwarfs have very small external habitable zones and the smallest external habitable zone belongs to only the smallest brown dwarfs, which still have a small amount of heat to radiate the surface of another more evolved star.
    [Show full text]
  • JUICE Red Book
    ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat.
    [Show full text]
  • Astrobiology and the Search for Life Beyond Earth in the Next Decade
    Astrobiology and the Search for Life Beyond Earth in the Next Decade Statement of Dr. Andrew Siemion Berkeley SETI Research Center, University of California, Berkeley ASTRON − Netherlands Institute for Radio Astronomy, Dwingeloo, Netherlands Radboud University, Nijmegen, Netherlands to the Committee on Science, Space and Technology United States House of Representatives 114th United States Congress September 29, 2015 Chairman Smith, Ranking Member Johnson and Members of the Committee, thank you for the opportunity to testify today. Overview Nearly 14 billion years ago, our universe was born from a swirling quantum soup, in a spectacular and dynamic event known as the \big bang." After several hundred million years, the first stars lit up the cosmos, and many hundreds of millions of years later, the remnants of countless stellar explosions coalesced into the first planetary systems. Somehow, through a process still not understood, the laws of physics guiding the unfolding of our universe gave rise to self-replicating organisms − life. Yet more perplexing, this life eventually evolved a capacity to know its universe, to study it, and to question its own existence. Did this happen many times? If it did, how? If it didn't, why? SETI (Search for ExtraTerrestrial Intelligence) experiments seek to determine the dis- tribution of advanced life in the universe through detecting the presence of technology, usually by searching for electromagnetic emission from communication technology, but also by searching for evidence of large scale energy usage or interstellar propulsion. Technology is thus used as a proxy for intelligence − if an advanced technology exists, so to does the ad- vanced life that created it.
    [Show full text]
  • The Evolving Universe and the Origin of Life
    Pekka Teerikorpi · Mauri Valtonen · Kirsi Lehto · Harry Lehto · Gene Byrd · Arthur Chernin The Evolving Universe and the Origin of Life The Search for Our Cosmic Roots Second Edition The Evolving Universe and the Origin of Life Pekka Teerikorpi • Mauri Valtonen • Kirsi Lehto • Harry Lehto • Gene Byrd • Arthur Chernin The Evolving Universe and the Origin of Life The Search for Our Cosmic Roots Second Edition 123 Pekka Teerikorpi Mauri Valtonen Department of Physics and Astronomy Department of Physics and Astronomy University of Turku University of Turku Turku, Finland Turku, Finland Kirsi Lehto Harry Lehto Department of Biology Department of Physics and Astronomy University of Turku University of Turku Turku, Finland Turku, Finland Gene Byrd Arthur Chernin Department of Physics and Astronomy Sternberg Astronomical Institute The University of Alabama Moscow University Tuscaloosa, AL, USA Moscow, Russia ISBN 978-3-030-17920-5 ISBN 978-3-030-17921-2 (eBook) https://doi.org/10.1007/978-3-030-17921-2 1st edition: © 2009 Springer Science+Business Media, LLC 2nd edition: © Springer Nature Switzerland AG 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • CASKAR: a CASPER Concept for the SKA Phase 1 Signal Processing Sub-System
    CASKAR: A CASPER concept for the SKA phase 1 Signal Processing Sub-system Francois Kapp, SKA SA Outline • Background • Technical – Architecture – Power • Cost • Schedule • Challenges/Risks • Conclusions Background CASPER Technology MeerKAT Who is CASPER? • Berkeley Wireless Research Center • Nancay Observatory • UC Berkeley Radio Astronomy Lab • Oxford University Astrophysics • UC Berkeley Space Sciences Lab • Metsähovi Radio Observatory, Helsinki University of • Karoo Array Telescope / SKA - SA Technology • NRAO - Green Bank • New Jersey Institute of Technology • NRAO - Socorro • West Virginia University Department of Physics • Allen Telescope Array • University of Iowa Department of Astronomy and • MIT Haystack Observatory Physics • Harvard-Smithsonian Center for Astrophysics • Ohio State University Electroscience Lab • Caltech • Hong Kong University Department of Electrical and Electronic Engineering • Cornell University • Hartebeesthoek Radio Astronomy Observatory • NAIC - Arecibo Observatory • INAF - Istituto di Radioastronomia, Northern Cross • UC Berkeley - Leuschner Observatory Radiotelescope • Giant Metrewave Radio Telescope • University of Manchester, Jodrell Bank Centre for • Institute of Astronomy and Astrophysics, Academia Sinica Astrophysics • National Astronomical Observatories, Chinese Academy of • Submillimeter Array Sciences • NRAO - Tucson / University of Arizona Department of • CSIRO - Australia Telescope National Facility Astronomy • Parkes Observatory • Center for Astrophysics and Supercomputing, Swinburne University
    [Show full text]
  • WATER – Overview
    WATER – Overview Contents Introduction ............................1 Module Matrix ........................2 FOSS Conceptual Framework...4 Background for the Conceptual Framework in Water ................6 FOSS Components ................ 16 FOSS Instructional Design ..... 18 FOSSweb and Technology ...... 26 Universal Design for Learning ................................ 30 Working in Collaborative INTRODUCTION Groups .................................. 32 Safety in the Classroom Water is the most important substance on Earth. Water dominates and Outdoors ........................ 34 the surface of our planet, changes the face of the land, and defi nes life. These powerful pervasive ideas are introduced here. The Scheduling the Module .......... 35 Water Module provides students with experiences to explore the FOSS K–8 Scope properties of water, changes in water, interactions between water and Sequence ....................... 36 and other earth materials, and how humans use water as a natural resource. In this module, students will • Conduct surface-tension experiments. • Observe and explain the interaction between masses of water at diff erent temperatures and masses of water in liquid and solid states. • Construct a thermometer to observe that water expands as it warms and contracts as it cools. • Investigate the eff ect of surface area and air temperature on evaporation, and the eff ect of temperature on condensation. • Investigate what happens when water is poured through two earth materials—soil and gravel. • Design and construct a waterwheel and use it to lift or pull objects. • Use fi eld techniques to compare how well several soils drain. © Copyright The Regents of the University California. Not for resale, redistribution, or use other than classroom without further permission. www.fossweb.com Full Option Science System 1 WATER – Overview Module Summary Focus Questions Students investigate properties of water.
    [Show full text]
  • Monday, November 13, 2017 WHAT DOES IT MEAN to BE HABITABLE? 8:15 A.M. MHRGC Salons ABCD 8:15 A.M. Jang-Condell H. * Welcome C
    Monday, November 13, 2017 WHAT DOES IT MEAN TO BE HABITABLE? 8:15 a.m. MHRGC Salons ABCD 8:15 a.m. Jang-Condell H. * Welcome Chair: Stephen Kane 8:30 a.m. Forget F. * Turbet M. Selsis F. Leconte J. Definition and Characterization of the Habitable Zone [#4057] We review the concept of habitable zone (HZ), why it is useful, and how to characterize it. The HZ could be nicknamed the “Hunting Zone” because its primary objective is now to help astronomers plan observations. This has interesting consequences. 9:00 a.m. Rushby A. J. Johnson M. Mills B. J. W. Watson A. J. Claire M. W. Long Term Planetary Habitability and the Carbonate-Silicate Cycle [#4026] We develop a coupled carbonate-silicate and stellar evolution model to investigate the effect of planet size on the operation of the long-term carbon cycle, and determine that larger planets are generally warmer for a given incident flux. 9:20 a.m. Dong C. F. * Huang Z. G. Jin M. Lingam M. Ma Y. J. Toth G. van der Holst B. Airapetian V. Cohen O. Gombosi T. Are “Habitable” Exoplanets Really Habitable? A Perspective from Atmospheric Loss [#4021] We will discuss the impact of exoplanetary space weather on the climate and habitability, which offers fresh insights concerning the habitability of exoplanets, especially those orbiting M-dwarfs, such as Proxima b and the TRAPPIST-1 system. 9:40 a.m. Fisher T. M. * Walker S. I. Desch S. J. Hartnett H. E. Glaser S. Limitations of Primary Productivity on “Aqua Planets:” Implications for Detectability [#4109] While ocean-covered planets have been considered a strong candidate for the search for life, the lack of surface weathering may lead to phosphorus scarcity and low primary productivity, making aqua planet biospheres difficult to detect.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Distant Ekos: 2017 OG69 and 9 New Centaur/SDO Discoveries: 2017 SN132, 2017 WH30, 2018 AX18, 2018 AY18, 2018 VM35, 2018 VO35, 2019 AB7, 2019 CR, 2019 CY4
    IssueNo.118 February2019 ✤✜ s ✓✏ DISTANT EKO ❞✐ ✒✑ The Kuiper Belt Electronic Newsletter ✣✢ r Edited by: Joel Wm. Parker [email protected] www.boulder.swri.edu/ekonews CONTENTS News & Announcements ................................. 2 Abstracts of 6 Accepted Papers ......................... 4 Abstracts of 1 Submitted Paper ......................... 7 Titles of 55 Conference Contributions . 8 Newsletter Information .............................. 11 1 NEWS & ANNOUNCEMENTS Request for Nominations for 9th “Paolo Farinella” Prize To honor the memory and the outstanding figure of Paolo Farinella (1953-2000), an extraordinary scientist and person, a prize has been established in recognition of significant contributions in one of the fields of interest of Paolo, which spanned from planetary sciences to space geodesy, fundamental physics, science popularization, security in space, weapons control and disarmament. The prize has been proposed during the “International Workshop on Paolo Farinella, the scientist and the man”, held in Pisa in 2010, and the 2019 edition is supported by the “Observatoire de la Cote d’Azur” in France. Previous recipients of the “Paolo Farinella Prize” were: • 2011: William F. Bottke, for his contribution to the field of “Physics and dynamics of small solar system bodies” • 2012: John Chambers, for his contribution to the field of “Formation and early evolution of the solar system ” • 2013: Patrick Michel, for his contribution to the field of “Collisional processes in the Solar System” • 2014: David Vokrouhlicky, for his
    [Show full text]
  • New Horizons Ultima Thule Flyby Events
    New Horizons Ultima Thule Flyby Events – Dec 31, 2018 – Jan 3, 2019 Event Date/Time Communications Event Speaker 31 Dec 12:00 PM K‐Center Opens at Noon Guest Ops team 1:00 Welcome Adrian Hill and VIP Welcome 1:05 The New Horizons Mission Alan Stern 1:25 What is the Kuiper Belt and what are Kuiper Belt Hal Weaver Objects 1:30 What We Know About MU69 – Ultima Thule Cathy Olkin 1:35 The Flyby of MU69 – Ultima Thule John Spencer NYE press 2:00 – 3:00 Daily media update on Webcast Mike Buckley; panel: Alan Stern, Helene Winters, John Spencer, Fred Pelletier. 3:15 ‐ 3:45 Flyby Ask Me Anything Webcast Moderator Adrian Hill; Panelists: Kelsi Singer; Alex Parker; Gabe Rogers 3:45 – 3:50 Song ‐ Acoustic Craig Werth – move to dining area 3:50 ‐ 4:45 Exploration for Kids Janet Ivey of Janet’s Planet ‐ dining area 4:45‐4:50 Closeout Afternoon 5:00 Doors Close for 2 hours – dinner break 7:00 PM K center reopens Kick off. 8:00 Welcome Adrian Hill and VIPs 8:10 Solar System Archaeology Ken Lacovara 8:15 NASA’s Study of Ancient Bodies. Small bodies mission panel. OSIRIS‐REx (Barnouin), Lucy (Levison), Psyche (Elkins), NH (Stern) *NASA Rep 9:00 Short break Transition to Guest ops. 9:15 Craig Werth Video Craig Werth 9:20 Doing Geology by Looking Up; Doing Walter Alvarez Astronomy by Looking Down 9:35 Pluto Flyby: Summer of 2015 Hal Weaver 9:50 Pluto and the Human Imagination David Grinspoon 10:10 Break 10:20 Meet the New Horizons Team Alan Stern and Helene Winters 10:30 Finding MU69 – Ultima Thule Marc Buie 10:45 MU69: What we expect to learn Panel: Silvia Protopapa, Hal Weaver, Cathy Olkin, John Spencer 11:00 The Eyes and Ears of New Horizons Kelsi Singer, Kirby Runyon.
    [Show full text]
  • NASA Astrobiology Institute 2018 Annual Science Report
    A National Aeronautics and Space Administration 2018 Annual Science Report Table of Contents 2018 at the NAI 1 NAI 2018 Teams 2 2018 Team Reports The Evolution of Prebiotic Chemical Complexity and the Organic Inventory 6 of Protoplanetary Disk and Primordial Planets Lead Institution: NASA Ames Research Center Reliving the Past: Experimental Evolution of Major Transitions 18 Lead Institution: Georgia Institute of Technology Origin and Evolution of Organics and Water in Planetary Systems 34 Lead Institution: NASA Goddard Space Flight Center Icy Worlds: Astrobiology at the Water-Rock Interface and Beyond 46 Lead Institution: NASA Jet Propulsion Laboratory Habitability of Hydrocarbon Worlds: Titan and Beyond 60 Lead Institution: NASA Jet Propulsion Laboratory The Origins of Molecules in Diverse Space and Planetary Environments 72 and Their Intramolecular Isotope Signatures Lead Institution: Pennsylvania State University ENIGMA: Evolution of Nanomachines in Geospheres and Microbial Ancestors 80 Lead Institution: Rutgers University Changing Planetary Environments and the Fingerprints of Life 88 Lead Institution: SETI Institute Alternative Earths 100 Lead Institution: University of California, Riverside Rock Powered Life 120 Lead Institution: University of Colorado Boulder NASA Astrobiology Institute iii Annual Report 2018 2018 at the NAI In 2018, the NASA Astrobiology Program announced a plan to transition to a new structure of Research Coordination Networks, RCNs, and simultaneously planned the termination of the NASA Astrobiology Institute
    [Show full text]
  • Astrobiology on Habitable Worlds
    Astrobiology on habitable worlds: The case for considering prebiotic chemistry in mission design Aaron Engelhart, Jennifer Blank, Christopher Carr, Zachary Adam, Ariel Anbar, Steven Benner, Donald Burke-Aguero, Aaron Burton, Andrew Ellington, Michael Gaylor, et al. To cite this version: Aaron Engelhart, Jennifer Blank, Christopher Carr, Zachary Adam, Ariel Anbar, et al.. Astrobiology on habitable worlds: The case for considering prebiotic chemistry in mission design. 2020. hal- 03161833 HAL Id: hal-03161833 https://hal.archives-ouvertes.fr/hal-03161833 Submitted on 8 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Astrobiology on habitable worlds: The case for considering prebiotic chemistry in mission design Lead author: Aaron E. Engelhart, University of Minnesota. Phone: 612-625-1950 E-mail: [email protected] Co-authors: Jennifer G Blank, NASA Ames Research Center/Blue Marble Space Institute of Science Christopher Carr, Georgia Institute of Technology Henderson James Cleaves, Earth-Life Science Institute Kennda Lynch, Lunar and Planetary Institute/USRA Co-signatories: Zachary Adam, University of Arizona Katarzyna P. Adamala, University of Minnesota Ariel D. Anbar, Arizona State University Laura M. Barge, Jet Propulsion Laboratory David A. Baum, University of Wisconsin-Madison Steven A.
    [Show full text]