Hierarchical Dirichlet Processes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Superprocesses and Mckean-Vlasov Equations with Creation of Mass
Sup erpro cesses and McKean-Vlasov equations with creation of mass L. Overb eck Department of Statistics, University of California, Berkeley, 367, Evans Hall Berkeley, CA 94720, y U.S.A. Abstract Weak solutions of McKean-Vlasov equations with creation of mass are given in terms of sup erpro cesses. The solutions can b e approxi- mated by a sequence of non-interacting sup erpro cesses or by the mean- eld of multityp e sup erpro cesses with mean- eld interaction. The lat- ter approximation is asso ciated with a propagation of chaos statement for weakly interacting multityp e sup erpro cesses. Running title: Sup erpro cesses and McKean-Vlasov equations . 1 Intro duction Sup erpro cesses are useful in solving nonlinear partial di erential equation of 1+ the typ e f = f , 2 0; 1], cf. [Dy]. Wenowchange the p oint of view and showhowtheyprovide sto chastic solutions of nonlinear partial di erential Supp orted byanFellowship of the Deutsche Forschungsgemeinschaft. y On leave from the Universitat Bonn, Institut fur Angewandte Mathematik, Wegelerstr. 6, 53115 Bonn, Germany. 1 equation of McKean-Vlasovtyp e, i.e. wewant to nd weak solutions of d d 2 X X @ @ @ + d x; + bx; : 1.1 = a x; t i t t t t t ij t @t @x @x @x i j i i=1 i;j =1 d Aweak solution = 2 C [0;T];MIR satis es s Z 2 t X X @ @ a f = f + f + d f + b f ds: s ij s t 0 i s s @x @x @x 0 i j i Equation 1.1 generalizes McKean-Vlasov equations of twodi erenttyp es. -
Birth and Death Process in Mean Field Type Interaction
BIRTH AND DEATH PROCESS IN MEAN FIELD TYPE INTERACTION MARIE-NOÉMIE THAI ABSTRACT. Theaim ofthispaperis to study theasymptoticbehaviorofa system of birth and death processes in mean field type interaction in discrete space. We first establish the exponential convergence of the particle system to equilibrium for a suitable Wasserstein coupling distance. The approach provides an explicit quantitative estimate on the rate of convergence. We prove next a uniform propagation of chaos property. As a consequence, we show that the limit of the associated empirical distribution, which is the solution of a nonlinear differential equation, converges exponentially fast to equilibrium. This paper can be seen as a discrete version of the particle approximation of the McKean-Vlasov equations and is inspired from previous works of Malrieu and al and Caputo, Dai Pra and Posta. AMS 2000 Mathematical Subject Classification: 60K35, 60K25, 60J27, 60B10, 37A25. Keywords: Interacting particle system - mean field - coupling - Wasserstein distance - propagation of chaos. CONTENTS 1. Introduction 1 Long time behavior of the particle system 4 Propagation of chaos 5 Longtimebehaviorofthenonlinearprocess 7 2. Proof of Theorem1.1 7 3. Proof of Theorem1.2 12 4. Proof of Theorem1.5 15 5. Appendix 16 References 18 1. INTRODUCTION The concept of mean field interaction arised in statistical physics with Kac [17] and then arXiv:1510.03238v1 [math.PR] 12 Oct 2015 McKean [21] in order to describe the collisions between particles in a gas, and has later been applied in other areas such as biology or communication networks. A particle system is in mean field interaction when the system acts over one fixed particle through the em- pirical measure of the system. -
1 Introduction
The analysis of marked and weighted empirical processes of estimated residuals Vanessa Berenguer-Rico Department of Economics; University of Oxford; Oxford; OX1 3UQ; UK and Mansfield College; Oxford; OX1 3TF [email protected] Søren Johansen Department of Economics; University of Copenhagen and CREATES; Department of Economics and Business; Aarhus University [email protected] Bent Nielsen1 Department of Economics; University of Oxford; Oxford; OX1 3UQ; UK and Nuffield College; Oxford; OX1 1NF; U.K. bent.nielsen@nuffield.ox.ac.uk 29 April 2019 Summary An extended and improved theory is presented for marked and weighted empirical processes of residuals of time series regressions. The theory is motivated by 1- step Huber-skip estimators, where a set of good observations are selected using an initial estimator and an updated estimator is found by applying least squares to the selected observations. In this case, the weights and marks represent powers of the regressors and the regression errors, respectively. The inclusion of marks is a non-trivial extention to previous theory and requires refined martingale arguments. Keywords 1-step Huber-skip; Non-stationarity; Robust Statistics; Stationarity. 1 Introduction We consider marked and weighted empirical processes of residuals from a linear time series regression. Such processes are sums of products of an adapted weight, a mark that is a power of the innovations and an indicator for the residuals belonging to a half line. They have previously been studied by Johansen & Nielsen (2016a) - JN16 henceforth - generalising results by Koul & Ossiander (1994) and Koul (2002) for processes without marks. The results presented extend and improve upon expansions previously given in JN16, while correcting a mistake in the argument, simplifying proofs and allowing weaker conditions on the innovation distribution and regressors. -
Analysis of Error Propagation in Particle Filters with Approximation
The Annals of Applied Probability 2011, Vol. 21, No. 6, 2343–2378 DOI: 10.1214/11-AAP760 c Institute of Mathematical Statistics, 2011 ANALYSIS OF ERROR PROPAGATION IN PARTICLE FILTERS WITH APPROXIMATION1 By Boris N. Oreshkin and Mark J. Coates McGill University This paper examines the impact of approximation steps that be- come necessary when particle filters are implemented on resource- constrained platforms. We consider particle filters that perform in- termittent approximation, either by subsampling the particles or by generating a parametric approximation. For such algorithms, we de- rive time-uniform bounds on the weak-sense Lp error and present associated exponential inequalities. We motivate the theoretical anal- ysis by considering the leader node particle filter and present numeri- cal experiments exploring its performance and the relationship to the error bounds. 1. Introduction. Particle filters have proven to be an effective approach for addressing difficult tracking problems [8]. Since they are more compu- tationally demanding and require more memory than most other filtering algorithms, they are really only a valid choice for challenging problems, for which other well-established techniques perform poorly. Such problems in- volve dynamics and/or observation models that are substantially nonlinear and non-Gaussian. A particle filter maintains a set of “particles” that are candidate state values of the system (e.g., the position and velocity of an object). The filter evaluates how well individual particles correspond to the dynamic model and set of observations, and updates weights accordingly. The set of weighted particles provides a pointwise approximation to the filtering distribution, which represents the posterior probability of the state. -
Hierarchical Dirichlet Process Hidden Markov Model for Unsupervised Bioacoustic Analysis
Hierarchical Dirichlet Process Hidden Markov Model for Unsupervised Bioacoustic Analysis Marius Bartcus, Faicel Chamroukhi, Herve Glotin Abstract-Hidden Markov Models (HMMs) are one of the the standard HDP-HMM Gibbs sampling has the limitation most popular and successful models in statistics and machine of an inadequate modeling of the temporal persistence of learning for modeling sequential data. However, one main issue states [9]. This problem has been addressed in [9] by relying in HMMs is the one of choosing the number of hidden states. on a sticky extension which allows a more robust learning. The Hierarchical Dirichlet Process (HDP)-HMM is a Bayesian Other solutions for the inference of the hidden Markov non-parametric alternative for standard HMMs that offers a model in this infinite state space models are using the Beam principled way to tackle this challenging problem by relying sampling [lO] rather than Gibbs sampling. on a Hierarchical Dirichlet Process (HDP) prior. We investigate the HDP-HMM in a challenging problem of unsupervised We investigate the BNP formulation for the HMM, that is learning from bioacoustic data by using Markov-Chain Monte the HDP-HMM into a challenging problem of unsupervised Carlo (MCMC) sampling techniques, namely the Gibbs sampler. learning from bioacoustic data. The problem consists of We consider a real problem of fully unsupervised humpback extracting and classifying, in a fully unsupervised way, whale song decomposition. It consists in simultaneously finding the structure of hidden whale song units, and automatically unknown number of whale song units. We use the Gibbs inferring the unknown number of the hidden units from the Mel sampler to infer the HDP-HMM from the bioacoustic data. -
The Tail Empirical Process of Regularly Varying Functions of Geometrically Ergodic Markov Chains Rafal Kulik, Philippe Soulier, Olivier Wintenberger
The tail empirical process of regularly varying functions of geometrically ergodic Markov chains Rafal Kulik, Philippe Soulier, Olivier Wintenberger To cite this version: Rafal Kulik, Philippe Soulier, Olivier Wintenberger. The tail empirical process of regularly vary- ing functions of geometrically ergodic Markov chains. Stochastic Processes and their Applications, Elsevier, 2019, 129 (11), pp.4209-4238. 10.1016/j.spa.2018.11.014. hal-01228825v2 HAL Id: hal-01228825 https://hal.archives-ouvertes.fr/hal-01228825v2 Submitted on 21 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The tail empirical process of regularly varying functions of geometrically ergodic Markov chains Rafa lKulik∗ Philippe Soulier† Olivier Wintenberger‡ September 21, 2018 Abstract We consider a stationary regularly varying time series which can be expressed as a function of a geometrically ergodic Markov chain. We obtain practical con- ditions for the weak convergence of the tail array sums and feasible estimators of cluster statistics. These conditions include the so-called geometric drift or Foster- Lyapunov condition and can be easily checked for most usual time series models with a Markovian structure. We illustrate these conditions on several models and statis- tical applications. -
Part 2: Basics of Dirichlet Processes 2.1 Motivation
CS547Q Statistical Modeling with Stochastic Processes Winter 2011 Part 2: Basics of Dirichlet processes Lecturer: Alexandre Bouchard-Cˆot´e Scribe(s): Liangliang Wang Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor. Last update: May 17, 2011 2.1 Motivation To motivate the Dirichlet process, let us consider a simple density estimation problem: modeling the height of UBC students. We are going to take a Bayesian approach to this problem, considering the parameters as random variables. In one of the most basic models, one would define a mean and variance random parameter θ = (µ, σ2), and a height random variable normally distributed conditionally on θ, with parameters θ.1 Using a single normal distribution is clearly a defective approach, since for example the male/female sub- populations create a skewness in the distribution, which cannot be capture by normal distributions: The solution suggested by this figure is to use a mixture of two normal distributions, with one set of parameters θc for each sub-population or cluster c ∈ {1, 2}. Pictorially, the model can be described as follows: 1- Generate a male/female relative frequence " " ~ Beta(male prior pseudo counts, female P.C) Mean height 2- Generate the sex of each student for each i for men Mult( ) !(1) x1 x2 x3 xi | " ~ " 3- Generate the mean height of each cluster c !(2) Mean height !(c) ~ N(prior height, how confident prior) for women y1 y2 y3 4- Generate student heights for each i yi | xi, !(1), !(2) ~ N(!(xi) ,variance) 1Yes, this has many problems (heights cannot be negative, normal assumption broken, etc). -
Lectures on Bayesian Nonparametrics: Modeling, Algorithms and Some Theory VIASM Summer School in Hanoi, August 7–14, 2015
Lectures on Bayesian nonparametrics: modeling, algorithms and some theory VIASM summer school in Hanoi, August 7–14, 2015 XuanLong Nguyen University of Michigan Abstract This is an elementary introduction to fundamental concepts of Bayesian nonparametrics, with an emphasis on the modeling and inference using Dirichlet process mixtures and their extensions. I draw partially from the materials of a graduate course jointly taught by Professor Jayaram Sethuraman and myself in Fall 2014 at the University of Michigan. Bayesian nonparametrics is a field which aims to create inference algorithms and statistical models, whose complexity may grow as data size increases. It is an area where probabilists, theoretical and applied statisticians, and machine learning researchers all make meaningful contacts and contributions. With the following choice of materials I hope to take the audience with modest statistical background to a vantage point from where one may begin to see a rich and sweeping panorama of a beautiful area of modern statistics. 1 Statistical inference The main goal of statistics and machine learning is to make inference about some unknown quantity based on observed data. For this purpose, one obtains data X with distribution depending on the unknown quantity, to be denoted by parameter θ. In classical statistics, this distribution is completely specified except for θ. Based on X, one makes statements about θ in some optimal way. This is the basic idea of statistical inference. Machine learning originally approached the inference problem through the lense of the computer science field of artificial intelligence. It was eventually realized that machine learning was built on the same theoretical foundation of mathematical statistics, in addition to carrying a strong emphasis on the development of algorithms. -
Specification Tests for the Error Distribution in GARCH Models
Computational Statistics and Data Analysis 56 (2012) 3587–3598 Contents lists available at SciVerse ScienceDirect Computational Statistics and Data Analysis journal homepage: www.elsevier.com/locate/csda Specification tests for the error distribution in GARCH models B. Klar a,∗, F. Lindner a, S.G. Meintanis b a Institut für Stochastik, Karlsruhe Institute of Technology (KIT), Kaiserstraße 89, 76133 Karlsruhe, Germany b Department of Economics, National and Kapodistrian University of Athens, 8 Pesmazoglou Street, 105 59 Athens, Greece article info a b s t r a c t Article history: Goodness-of-fit and symmetry tests are proposed for the innovation distribution in Received 19 November 2009 generalized autoregressive conditionally heteroscedastic models. The tests utilize an Received in revised form 18 May 2010 integrated distance involving the empirical characteristic function (or the empirical Laplace Accepted 19 May 2010 transform) computed from properly standardized observations. A bootstrap version of Available online 12 June 2010 the tests serves the purpose of studying the small sample behaviour of the proclaimed procedures in comparison with more classical approaches. Finally, all tests are applied to Keywords: some financial data sets. GARCH model Goodness-of-fit test ' 2010 Elsevier B.V. All rights reserved. Symmetry test Empirical characteristic function Bootstrap test 1. Introduction Suppose that a process is driven by a generalized autoregressive conditionally heteroscedastic (GARCH) model of specific order. This class of models was introduced by Bollerslev(1986), and despite the fact that certain properties of GARCH processes make no use of the particular form of the innovation distribution (see, for example, the stationarity conditions mentioned later in this section), GARCH models with Gaussian innovations have been considered. -
Nonparametric Bayes: Inference Under Nonignorable Missingness and Model Selection
NONPARAMETRIC BAYES: INFERENCE UNDER NONIGNORABLE MISSINGNESS AND MODEL SELECTION By ANTONIO LINERO A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2015 c 2015 Antonio Linero Dedicated to Mike and Hani for their gracious support, and Katie for her patience! ACKNOWLEDGMENTS I would first like to convey my sincerest gratitude to my advisers, Professor Michael J. Daniels and Professor Hani Doss, for their help and encouragement. I have been fortunate to have two excellent mentors to bounce ideas off of, and to offer assurances when I doubted my work. They have provided me with every opportunity to succeed, and it has been an honor to work with them. I would also like to thank my committee members, Professor Malay Ghosh who always had an open door and Professor Arunava Banerjee for providing a valuable Machine Learning perspective. Outside of my committee, I am grateful to Professor Daniel O. Scharfstein for his insights into the missing data problem and for giving me the opportunity to visit Johns Hopkins. I am also particularly grateful to Professor Ron Randles, whose Introduction to Mathematical Statistics course provided the initial inspiration for me to pursue Statistics, and to Professor Andrew Rosalsky for providing me with a deep appreciation of Probability. Lastly, I would like to thank my partner Katie for her inspiration and patience, and my parents, without whose support I would not have had the opportunity to succeed. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS.................................4 LIST OF TABLES.....................................8 LIST OF FIGURES....................................9 ABSTRACT....................................... -
Notes on Counting Process in Survival Analysis
Notes on Counting Process in Survival Analysis Mai Zhou Distribution of some statistics, especially rank based, with censored data are hard to get. Even if they can be worked out for small samples, they are likely to be prohibitively expensive for larger sample sizes. Therefore we need to work on the asymptotic distribution - which often works well for moderate and large sample sizes. This notes is intended to be read along with Fleming and Harrington's book Counting Pro- cesses and Survival Analysis. It is not intended as a rigorous treatment of the subject of counting process martingale. The aim is to (1) present intuitions to help visualize the counting process and (2) supply simplified proofs (in special cases, or with more assumptions, perhaps), make the book easier to read and (3) select the materials that can be realistically covered in one semester or even one quarter. The students need only to have had background in Poisson process and basic probability/statistics. Some prior knowledge of survival analysis will help understand the example/application of counting process in the survival analysis. There is an equally good book on the counting processes: by Andersen, Borgan, Keiding, Gill Statistical Models Based on Counting Processes, Springer 1993 This book contains many more examples of application. The book also has more materials then can be covered in one semester. At a math level similar to FH book. Chapter 5 of Kalbflisch and Prentice, second edition is similar to this note. Review of Master level Survival Analysis. Review of central limit theorem (Linderberg condi- tion) and Poisson process (outlined below). -
Heavy Tailed Analysis Eurandom Summer 2005
HEAVY TAILED ANALYSIS EURANDOM SUMMER 2005 SIDNEY RESNICK School of Operations Research and Industrial Engineering Cornell University Ithaca, NY 14853 USA [email protected] http://www.orie.cornell.edu/ sid ∼ & Eurandom http://www.eurandom.tue.nl/people/EURANDOM_chair/eurandom_chair.htm 1 60 SIDNEY RESNICK 8. Asymptotic Normality of the Tail Empirical Measure As in Section 7.1, suppose X , j 1 are iid, non-negative random variables with common { j ≥ } distribution F (x), where F¯ RV−α for α > 0. Continue with the notation in (7.1), (7.2), and (7.3). Define the tail empirical∈ process, 1 n n (8.1) W (y)=√k ǫ (y−1/α, ] F¯(b(n/k)y−1/α) n k Xi/b(n/k) ∞ − k i=1 X =√k ν (y−1/α, ] E(ν (y−1/α, ]) . n ∞ − n ∞ Theorem 7. If (7.1), (7.2), and (7.3) hold, then in D[0, ) ∞ W W n ⇒ where W is Brownian motion on [0, ). ∞ Remark 3. Note, because of regular variation, as n , k/n 0, → ∞ → n −α (8.2) Eν (y−1/α, ]= F¯(b(n/k)y−1/α) y−1/α = y. n ∞ k → For applications to such things as the asymptotic normality of the Hill estimator and other estimators derived from the tail empirical measure, we would prefer the centering in (8.1) be y. However, to make this substitution in (8.1) requires knowing or assuming n (8.3) lim √k F¯(b(n/k)y−1/α) y n→∞ k − exists finite. This is one of the origins for the need of second order regular variation.